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Abstract. In this paper we study the complexity of the problem of find-
ing a symmetric subset of maximum cardinality among n point in the
plane, or in three-dimensional space, and some related problems like the
largest repetitive or k-repetitive subsets. For the maximum-cardinality
symmetric subset problem in the plane we obtain an algorithm of com-
plexity O(n”% logn).

1 Results

Finding the symmetries of a set of n points, or more general testing two sets for
congruence and finding all congruence mappings between them, is an old and
well-studied problem [3,2,4, 7-9,11], which is solved satisfactorily in dimensions
two and three (O(nlogn)) and remains an interesting problem in higher dimen-
sions. There are at least two ways to make the problem more realistic: allowing
for errors in the points (Hausdorff-approximate symmetry) and for errors in the
sets (large symmetric subsets). The Hausdorff-approximate symmetry recogni-
tion, however, is NP-complete [12], whereas the identification of large symmetric
parts in the exact model leads to interesting problems, which are related to
combinatorial geometry in a way already apparent in several other exact point
pattern matching problems [1, 6].

There are several ways to formalize the notion of ‘large symmetric parts’
contained in a point set. The most obvious is to determine the largest-cardinality
subset with a nontrivial symmetry (Figure 1 shows a set, the largest-cardinality
symmetric subset, and another symmetric subset). For this problem Eades [8]
gave an O(n*logn)-algorithm.

Theorem 1. The largest-cardinality symmetric subset of a set of n points in
. . 1 .
the plane can be determined in O(n?*3 logn) time.
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Figure 1



Our algorithm lists as an intermediate result all regular polygons contained
in that set. It is remarkable that this can indeed be done in that time, since for
each fixed k there are sets of n points containing cxn? regular k-gons [10, 14].

A different formalization is to ask for the largest subset Y of the given set
X that is repeated: there is a nontrivial motion ¢ with ¥ C X and ¢(Y) C X;
or that is r-fold repeated: Y C X, o(Y) C X,...,¢"(Y) C X. (Figure 2 shows a
set, a 5-fold repeated subset, and a once repeated subset.) This notion captures
parts of some bigger symmetric structure, e.g. some finite part of an infinite
frieze group symmetry. The special case of equidistant collinear rows of points
(¢ a translation, Y only one point) was also studied previously [5, 13, 16].

Theorem 2. The largest r-fold repeated subset of a set of n points in the plane
1 1
can be determined in O(n®>75logn) for r =1 and O(n**3 logn) for r > 2.
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Essentially the same algorithm works for both problems also in three-dimensional
space (but not in higher dimensions) where we get a time bound O(n®logn).

2 The basic algorithm

In all the above cases symmetries by reflections are simple, and can be enumer-
ated trivially in O(n”logn) time, since we have to look only at the () possible
pairs of points that can be exchanged by a reflection, and see which reflection
line occurs most frequently. So in the following we will only look for rotation
symmetries. Also, the algorithms for the different problems are almost the same
(with an important difference only in the case of finding one time repeated sets),
so we will give only the first, and state the necessary modifications later.

Given a set X of n points in the plane, the algorithm maintains two search
tree data structures, one (7) for isosceles triangles in X (point triples (a,b,c)
with d(a,b) = d(b, c)) and the other (S) for possible symmetry operations (pairs
(p, k) of a centerpoint and a rotation order, with the current number of points
#(p, k) in that symmetric subset and their list appended. The algorithm does
the following;:

1. Determine for each pair z;,zo € X the distance d(z1,z2), and collect the
point pairs having the same distance d to get a partition of (3 ) into distance
graphs G4 (d a distance occuring in X).

2. For each distance d and each point z € X, take each pair of neighbours ¥, y»
of z in G4, and insert the tripel (y1,x,y2) in a search tree 7.



3. Aslong as 7T is not empty, repeat
3.1 Choose any tripel (a,b,c) from T, delete it from T.
3.2 Determine the rotation ¢ that maps a — b, b — c.
This rotation determines a polygonal arc popips ... with po = a, p1 =
¥(a) = b, pp = %(a) = ¢, and generally p; = 1)*(a). This may be a
regular polygon, an orbit under .
3.3 Construct the sequence of isosceles triangles (p;, pi+1, Pi+2), checking for
each of these triangles whether it is contained in 7, and deleting it from
T, until we either find a triangle that is not contained in T, or arrive at
the starting triangle (pk, pr+1, Pr+2) = (a,b, ).
3.3.1 In the first case (the polygonal arc remained incomplete), discard
(a,b,c) and the polygonal arc and return to step 3.
3.3.2 In the second case (the polygonal arc closed to a regular k-gon in
X), determine the center p of this regular polygon.
3.3.2.1 Insert (p, k) in S, if it does not already exist, increase #(p, k)
by k, and append the regular polygon to the list.
3.3.2.2 For each j € {2,...,k} that is coprime to k and each i =
1,...,k delete (pi, pi+j, Pi+2;) (all indices mod k) from 7.
4. Traverse S and determine the element (p,4) for which #(p,4) is maximal.
Output the list of all regular i-gons with center p.

3 Correctness

To determine the maximum cardinality of a subset that has a nontrivial rotation
symmetry, we use that each set with a k-fold rotation symmetry is the union
of concentric regular k-gons, the orbits of the points under the symmetry. Thus
we have only to find all regular polygons, collect those polygons which have
the same center and the same order, and determine the point which occurs as
common center of the largest group.

To find all regular polygons ry ...7; contained in the set, we use that any
three vertices 7;,7i1a,7i+2. (€.g. three consecutive vertices r;,7;41,Ti+2) form
an isosceles triangle, and for each isosceles triangle in our set there is at most
one minimal regular polygon containing them in this way. And this polygon can
be found by just following the polygonal arc defined by the rotation around the
intersection point of the midperpendiculars of that triangle that maps the first
leg of the isosceles triangle on the second. In each path-following step we remove
the isosceles triangle we just used from the set of all isosceles triangles, so in the
end we either find a regular polygon, or we have removed some partial polygonal
arc which does not extend to any regular polygon in our set, and which therefore
can be removed.

It remains to avoid that we find the same polygon several times, since each
isosceles triangle completes to at most one minimal regular polygon containing
that triangle, but the same polygon will be obtained with different numberings
of vertices from different isosceles triangles. E.g. a regular pentagon p; ...ps



will be found by following p;p2ps and completing that arc, but will again be
found by following p1psps and completing that arc (pipspspeps). So after we
found the regular polygon p; ... p, we have to remove all other isosceles triangles
PiPi+aPi+2q Which generate the same polygon, which is done in step 3.3.2.2. The
same polygon is found exactly for those a which are coprime to the vertex number
k of the regular polygon; if k£ has a nontrivial divisor k, then the regular k-gon
can also be interpreted as union of % regular x-gons, and will be found and
stored in S as set with k-fold rotational symmetry again. Thus in the structure
S the same set is stored for each symmetry order exactly once, and a simple
traversal of S gives the largest subset with a nontrivial rotational symmetry.

4 Analysis

The construction of the distance graphs in step 1. can be trivially done in
O(n?logn) time. If the distance graphs are given, the construction of all isosce-
les triangles (step 2) can be done in time O(n? + I'logn) where I denotes the
number of isosceles triangles that are constructed (trivially I < n?®). In each of
the following steps 3.* one of the isosceles triangles is removed from 7, which
takes O(logn), and some further operation of complexity at most O(logn) is
done. Thus the total complexity of step 3 is O(Ilogn). Step 4 finally also
takes at most O(Ilogn) time, since we touch each regular polygon at most
once, and there are at most O(I) regular polygons. Thus the total complexity
is O((n2? + I)logn). Since it is known that I = O(n?*%) [15] we obtain the
upper bound O(n”% logn) claimed in Theorem 1. Indeed bounding the num-
ber of isosceles triangles is simple: the points completing a given base pg to an
isosceles triangle are on the mid-perpendicular of pq, so the isosceles triangles
containing a fixed point p as base vertex can be counted by constructing the
mid-perpendiculars of the segments pg for all other points ¢, and finding the
incidences between all these n — 1 lines and the n — 1 points, which is known to
be O(n#); taking the sum over all p gives the O(n%) bound for I.

A further speedup (perhaps to O(n?*¢)) would be possible if one could avoid
inserting all isosceles triangles into 7. Only those triangles are really needed that
can occur in a regular polygon; so one really needs only those isosceles triangles
with an angle of form (1— 2)7 at the apex, all others can never lead to a regular
polygon. For a fixed vertex z, having a given list of y1,...,y,, neighbours at a
fixed distance, it seems probable that there are much less than (7;) pairs y;, y;
which determine an angle of that form (|Zy;zy;| € {im, 37, 2m,..., k%w, D).
I have a construction of points yi, ..., Y, with cmlogm such pairs, and believe
this to be near the correct order. If those pairs could be determined in O(m!'*#),
it would allow a speedup of the whole algorithm to O(n>*%).

The same algorithm works also in three-dimensional space, since the possi-
ble symmetries there are also reflections (determined by one point pair, so can
be checked in O(n?logn) time) and rotations around a line; so the nontrivial
orbits are regular polygons in space. Unfortunately, the bound for the number
of isosceles triangles in three-dimensional space is only O(n?), and that order



can be reached (take half of the points on a circle and the other half on the
mid-perpendicular of that circle, than any triangle of two points on the circle
and one point on the mid-perpendicular is isosceles).

5 Variants for repeated sets

If we are looking for repeated sets it does make a big difference whether we are
also interested in sets Y which are once repeated (Y C X and p(Y) C X for a
nontrivial motion ), or accept only those Y that occur at least r further times,
r>2. Y CX,pY)CX,?Y)CX,... 0"(Y) C X, then for each y € Y
the triangle y, o(y), 02 (y) is isosceles, and we can again just follow the paths
determined by the motion ¢, where we determine the motion from the isosceles
triangle. There are, however, two important differences:

— Two motions are possible
If we are looking for complete orbits of isometries, then the only possibe
isometries are rotations (and reflections, which have only two-point orbits).
If we are also interested in pieces of infinite orbits, then additionally trans-
lations and glide-reflections become possible. By this the continuation of an
isosceles triangle as an orbit is not anymore unique, but can be a regular
polygon (by a rotation) or a zig-zag path (by a glide-reflection).
To overcome this, we have to insert two copies of each isosceles triangle in T,
marked as ‘rotation’ and ’glide-reflection’, and remove the right copy when
extending a path.

— The paths do not close
As long as we were looking only for complete regular polygons, we found the
whole polygon by just going around. If we also take polygonal arcs, we have
to make sure that we remove maximal polygonal arcs from 7. So we have to
follow the path generated by ¢ from the starting triangle in both directions,
forward () as well as backward (¢ 1).

In this way we obtain all subsets which are partial orbits of at least three points
of some isometry. Each regular polygon found this way should be inserted in
S under the appropriate isometry, and with its full number of points, and all
copies of that regular polygon should be deleted as in step 3.3.2.2. If the partial
orbit is only a path of length k, and we are looking for an r-fold repeated subset,
then it should be discarded if k& < r, otherwise the first k — r points of the
path should be inserted in & under the appropriate isometry. Then in the end
again a simple traversal of § is sufficient to find the maximum-cardinality r-fold
repeated subset.

If we are looking for sets Y C X which are only once repeated (Y C X,
»(Y) C X), then the partial orbit of a point consists only of two points, and
does not anymore determine the motion. Instead we have to look at the pos-
sible images of pairs of points, and count how often which motion ¢ is deter-
mined by them, obtaining essentially the same algorithm as Akutsu, Tamaki and
Tokuyama [1] for the ‘maximum congruent subsets’ problem.



For a pair y1,y2 € X the possible image pairs z1 = ¢(y1), 22 = p(y2) are the
pairs that have the same distance, so we construct the distance graphs of X, take
each pair of edges (y1,¥2), (21, 22) of the same length, determine the motion that
maps the first pair on the second, and increase the count of this motion and its
reflected counterpart in a search structure S for isometries. Then the nontrivial
isometry with the largest count gives the maximum-cardinality subset Y C X
that is once repeated.

The analysis of that algorithm is the same as in [1], giving an O(n32logn)
complexity.
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