
Chapter 6

Summed and Average

Fréchet Distance between

Curves

6.1 Introduction

In this chapter we consider variations of the Fréchet distance between curves, which
we call average and summed Fréchet distance. The Fréchet distance is defined
as the maximum pointwise distance minimized over all reparameterizations. All
other pointwise distances on the curves have no influence on the Fréchet distance.
Consider for example the curves shown in Figure 6.1. Assume one wants to match
the curve f either to the curve g or h. Intuitively, it seems that g is the better
match. This is however not reflected by the Fréchet distance which is equal for
both pairs of curves (f, g) and (f, h). By slight perturbation, the Fréchet distance
can be made larger for either pair of curves. Note that both pairs of curves are
already matched optimally under rigid motions.

The aim of an average or summed Fréchet distance is to distinguish these kinds
of curves by taking into account all pointwise distances. Two natural questions
arise:

1. How to define an average or summed Fréchet distance?

2. How to compute the average or summed Fréchet distance?

In this chapter we consider the first question, i.e., we consider the question of
defining an average or summed Fréchet distance. A related notion is Dynamic Time
Warping [48]. A continuous variant of dynamic time warping has been considered
in [20] and an average Fréchet distance in [13].

f

g h
ε

ε

Figure 6.1: The pairs of curves f, g and f, h have the same Fréchet distance
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6.1.1 Triangle Inequality

As discussed in the introduction of this thesis, Chapter 1, in shape matching often
a distance measure is used for measuring the dissimilarity of shapes. An important
property of a distance measure usually is that it is a metric. In mathematics,
distance measure and metric are often used synonymously.

A metric on a set X is a function δ : X × X → R+ fulfilling

1. δ(x, y) = 0 ⇔ x = y (identity of indiscernibles)

2. δ(x, y) = δ(x, y) (symmetry)

3. ∀x, y, z ∈ X : δ(x, z) ≤ δ(x, y) + δ(y, z) (triangle inequality).

The triangle inequality is useful for matching shapes stored in data bases. As-
sume a database of geometric objects given. A typical query is to find the k best
matches in the database to a given query shape. For a large data base, the time
complexity can be significantly reduced by presorting the objects into clusters of
similar shapes.

For this purpose, also a relaxed triangle inequality would suffice, namely

∃c ∀x, y, z : δ(x, z) < c(δ(x, y) + δ(y, z)).

Fagin and Stockmeyer [24] have shown that the relaxed triangle inequality holds
for a variant of the distance measure nonlinear elastic matching (NEM). NEM is a
similar distance measure to the discrete Fréchet distance. Both are defined based on
couplings of the vertices, cf. Section 2.3.6. Instead of the distance between points,
NEM is defined based on difference in angles.

In cognitive psychology, similarity measured by human perception is studied.
Two important theories are the feature-based approach of Tversky [50] and the
transformation-based approach of Hahn et al. [31]. The feature-based approach sug-
gests that the similarity of two objects is a function of their common and distinctive
features. The transformation-based approach suggests that similarity depends on
the number of operations required to transform one object into the other. Mum-
ford [43] argues, based on Tverskys work, that human perception does not fulfill
the triangle inequality.

6.1.2 Further Properties

Some further properties that seem reasonable for an average or summed Fréchet
distance, denoted by δavgF and δsumF , respectively, are:

1. An average Fréchet distance should not be larger than the Fréchet distance:
δavgF (f, g) ≤ δF (f, g)

2. If an average or summed Fréchet distance is zero, then so should the Fréchet
distance: δavgF (f, g) = 0 ∨ δsumF (f, g) = 0 ⇒ δF (f, g) = 0

3. An average or summed Fréchet distance should not depend on the given pa-
rameterizations of the curves, but should be invariant under reparameteriza-
tion: ∀homσ : δavgF (f, g) = δavgF (f, g ◦ σ) ∧ δsumF (f, g) = δsumF (f, g ◦ σ).

In the next section, Section 6.2, we develop several definitions for an average or
summed Fréchet distance. We show, in Section 6.3, that none of these definitions
fulfill the triangle inequality and are in particular not metrics. More specifically, we
show that one definition is not symmetric and does not fulfill the triangle inequal-
ity. All other definitions are symmetric but do not even fulfill the relaxed triangle
inequality for any constant C > 0.
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Figure 6.2: Definitions for an average Fréchet distance using the curve integral in
parameter space (right) and in image space (left).

6.2 Definitions for an Average or Summed Fréchet

Distance

In the following, we develop possible definitions for an average or summed Fréchet
distance. For both we accumulate the pointwise distances of all points on the two
curves. This gives a summed Fréchet distance. The value of a summed Fréchet
distance depends on the measure of the points over which the pointwise distances
have been accumulated. For an average Fréchet distance we normalize the summed
Fréchet distance by dividing it by the measure of these points.

We will give the definitions both in continuous and discrete form, i.e., we consider
discrete sums and their continuous limits. The discrete versions may be called
discrete summed or average Fréchet distance.

We will develop most definitions using the path integral. The path integral of
a function F : R

d → R over a path γ : [0, 1] → R
d, which is piecewise continuously

differentiable, is
∫

γ

F (z) dz =

∫ 1

0

F (γ(t)) |γ̇(t)| dt,

where γ̇ denotes the derivative of γ. We will use L(γ) to denote the length of the

path γ, i.e., L(γ) =
∫ 1

0
|γ̇(t)| dt.

6.2.1 Integrating over the Path in Free Space

One intuitive definition for a summed Fréchet distance is to take the path integral
over the monotone path in the free space diagram. That is, we compute the integral
∫

γ
F (z) dz over the function F (s, t) = ‖f(s) − g(t)‖ and the curve γ(t) = (t, σ(t)).

As |γ̇(t)| =
√

1 + σ̇2(t) this gives the definition

δa(f, g) := inf
hom σ

∫ 1

0

‖f(t) − g(σ(t))‖
√

1 + σ̇2(t) dt,

which is illustrated in Figure 6.2 right.
A discrete version of this definition is achieved by summing up the discrete

Fréchet distance:

min
C coupling

∑

(pi,qj)∈C

‖pi − qj‖.

Definition δa is a summed Fréchet distance and yields values depending also
on the length of the path in free space. For example, for two parallel segments of
distance 1, as in Figure 6.3 (a), definition δa gives the value

√
2. For an average
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Fréchet distance we can divide definition δa by the length of the path in free space.
This can be done in several ways. We consider the following three:

1. Infimum over the path integral divided by the shortest path length which
is
√

2

δa1(f, g) :=
1√
2

inf
hom σ

∫ 1

0

‖f(t) − g(σ(t))‖
√

1 + (σ̇(t))2 dt

2. Infimum over the path integral divided by the path length

δa2(f, g) := inf
hom σ

∫ 1

0 ‖f(t) − g(σ(t))‖
√

1 + (σ̇(t))2 dt
∫ 1

0

√

1 + (σ̇(t))2 dt

3. Infimum over the path integral divided by the minimum length of a path
achieving the infimum over the path integral

Let δ(f, g, σ) =

∫ 1

0

‖f(t) − g(σ(t))‖
√

1 + (σ̇(t))2 dt,

l(σ) =

∫ 1

0

√

1 + (σ̇(t))2 dt, and

M = { σ | ∀homρ : δ(f, g, σ) ≤ δ(f, g, ρ)}.

Then δa3(f, g) =
δ(f, g, σ)

l(σ)
where σ ∈ M fulfills ∀ρ∈ M : l(σ) ≤ l(ρ).

The first two definitions still yield values depending on the length of the path
in free space. Consider the examples in Figure 6.3 (b) and (c). For the curves in
Figure 6.3 (b), walking first on f and then on g minimizes the pointwise distance
for all points. This walk corresponds to the path in free space along the lower and
left boundary, which has length 2 under the Euclidean norm. The average distance
along the walk, i.e., the path integral over this path divided by the length of the
path, is 1

2 . Definition δa1, however, divides by the minimum path length
√

2, thus
δa1 = 1√

2
. Thus, definition δa1 “punishes” paths that deviate from the diagonal

path in free space.
For the curves in Figure 6.3 (b), an intuitively good walk is walking on the two

curves at equal, constant speed. This gives δa = 1
4

√
2 for the summed distance.

This walk corresponds to the diagonal path in free space, which has length
√

2.
Dividing by this length gives 1

4 as (potential) average distance. For definition δa2,
however, we can achieve a smaller value using the path in free space which walks
in infinitely small zig-zags along the first half of the diagonal. Thus, it achieves the
same summed Fréchet distance distance, but the path length is larger, 1

2 (2 +
√

2),
and thus the quotient smaller: 1

2(1+
√

2)
< 1

4 .

Observation 6.1. Definitions δa, δa1, δa2, and δa3 are symmetric, i.e., for all
curves f, g, and δ ∈ {δa, δa1, δa2, δa3} it holds δ(f, g) = δ(g, f).

Proof. We substitute in the integral t for σ−1(t), the inverse of σ of t. Then we use
that σ̇(σ−1(t)) = 1

σ̇−1(t) (derivative of the inverse function).

δa(f, g) = inf
hom σ

∫ 1

0

‖f(t) − g(σ(t))‖
√

1 + (σ̇(t))2 dt

= inf
hom σ

∫ 1

0

‖f(σ−1(t)) − g(t)‖ σ̇−1(t)
√

1 + (σ̇(σ−1(t)))2 dt

= inf
hom σ

∫ 1

0

‖f(σ−1(t)) − g(t)‖
√

(σ̇−1(t))2 + 1 dt = δa(g, f)
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Figure 6.3: Examples of curves

In the free space we can formulate this as: integrating over a monotone path
p in the free space of f, g is equivalent to integrating over the path p′, which is p
reflected at the diagonal from (0, 0) to (1, 1), in the free space of g, f .

The proof for the average definitions δa1, δa2, and δa3 is analogue.

6.2.2 Integrating over the Curves in Image Space

Instead of working in the free space diagram, i.e., in parameter space, we can also
define a summed and average Fréchet distance based on the path integral over
the curves in image space. For this, we will assume that the curves f, g are both
piecewise continuously differentiable. The curves we have in mind are polygonal or
smooth curves, which fulfill this condition.

We develop a summed Fréchet distance where the path integral is taken simul-
taneously over both curves. That is, we consider the discrete sums

∑

disti ·
(

∆fi + ∆(g ◦ σ)i

)

,

which are illustrated in Figure 6.2 (left). The limit of this sum is

δb(f, g) := inf
hom σ

∫ 1

0

‖f(t) − g(σ(t))‖
(

‖ḟ(t)‖ + ‖ġ(σ(t)) σ̇(t)‖
)

dt.

This gives a definition for a summed Fréchet distance. For an average Fréchet
distance we can normalize it in two ways:

1. divide by the sum of the lengths of the two curves

δb1(f, g) := inf
hom σ

1

L(f)+L(g)

∫ 1

0

‖f(t) − g(σ(t))‖
(

‖ḟ(t)‖ + ‖ġ(σ(t)) σ̇(t)‖
)

dt

2. normalize the weight of both curves to one and divide by the sum of the
weights, i.e., divide by two

δb2(f, g) := inf
hom σ

1

2

∫ 1

0

‖f(t) − g(σ(t))‖
(‖ḟ(t)‖

L(f)
+

‖ġ(σ(t)) σ̇(t)‖
L(g)

)

dt.

In the first case a longer curve receives more weight than a shorter curve.
If f, g are of length one and parameterized with constant speed one, as will be

the case for the counterexamples in the next section, both definitions simplify and
coincide to

inf
hom σ

1

2

∫ 1

0

‖f(t) − g(σ(t))‖ (1 + σ̇(t)) dt.
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In particular, these definitions for summed and average Fréchet distance differ only
by the scalar factor 1

2 .
Another way of writing the simplified definition is

inf
hom σ

1

2

(

∫ 1

0

‖f(t) − g(σ(t))‖ dt +

∫ 1

0

‖f(σ−1(t)) − g(t)‖ dt
)

.

That is, we take the equally weighted medium of the one-sided definitions using for
both sides the same reparameterization.

Alternatively to taking the sum of the two one-sided definitions, the maximum
could be taken, similar to the Hausdorff distance. And instead of using the same
reparameterization for both sides, one could use different parameterizations for the
two directions, i.e., exchange the sum or maximum with the infimum.

Observation 6.2. Definitions δb, δb1, and δb2 are symmetric, i.e., for all curves
f, g, and δ ∈ {δb, δb1, δb2} holds δ(f, g) = δ(g, f).

The proof Observation 6.2 is analogue to the proof of Observation 6.1.

6.2.3 General One-sided Definition

Perhaps the simplest way to define a summed or average Fréchet distance based
on the path integral, is to take the path integral along the path γ(t) = t over the
function F (t) = ‖f(t) − g(σ(t))‖. This gives the integral

inf
hom σ

∫ 1

0

‖f(t) − g(σ(t))‖ dt.

This expression is one-sided, as it allows to “jump” over parts of the curve g.
That is, in the infimum over the homeomorphism parts of g can be traversed with
infinite speed. Therefore, for example for the curves f, g in Figure 6.3 (d) the above
expression is 0. In other words, it measures the distance of f to parts of g and is
not symmetric.

We can rewrite the expression as infhom σ ‖f−g◦σ‖1, i.e., the 1-norm of (f−g◦σ).
Similarly the Fréchet distance can be expressed as the ∞-norm of (f − g ◦ σ):

δF (f, g) = inf
hom σ

‖f − g ◦ σ‖∞.

We define a general one-sided definition by replacing the ∞-norm of (f − g ◦ σ)
by the p-norm for 0 < p < ∞. That is,

δp(f, g) = inf
hom σ

‖f − g ◦ σ‖p = inf
hom σ

p

√

∫ 1

0

‖f(t) − g(σ(t))‖p dt,

for 0 < p < ∞.
As for p = 1, this general one-sided definition allows to “jump” on the curve g

and is not symmetric. In fact, δp(f, g) can be arbitrarily much larger than δp(g, f).

Observation 6.3. For all p > 0, for all C > 0, exist curves f, g s.t. δp(f, g) >
C · δp(g, f). In particular, definition δp is not symmetric for any 0 < p < ∞.

Proof. Consider the curves f and gδη in Figure 6.4. Both lie on the x-axis. f runs
from 0 to 1. g runs from 0 < δ < 1

2 to 1 and then zig-zags for a length of δ between

1 and 1 − η for 0 < η < 1
2 . It is δb(f, gδη) = δ2

2 and δb(gδη, f) = δ η
2 . Thus, for

δ < η
C

holds δb(f, gδη) > C · δb(gδη, f).
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Figure 6.4: Curves for which the one-sided definition is not symmetric.

6.2.4 Comparison of the Definitions

We essentially considered the following three definitions.

1. Integral over the path in free space:

δa(f, g) = inf
hom σ

∫ 1

0

‖f(t) − g(σ(t))‖
√

1 + (σ̇(t))2 dt

2. Integral over the curves in image space, for curves of length one and parame-
terized with constant speed one:

δb(f, g) = inf
hom σ

∫ 1

0

‖f(t) − g(σ(t))‖ (1 + σ̇(t)) dt

3. General one-sided definition:

δp(f, g) = inf
hom σ

p

√

∫ 1

0

‖f(t) − g(σ(t))‖p dt for 0 < p < ∞.

The first two definitions differ only in that the first uses the 2-norm of the
path length and the second the 1-norm. Under the 1-norm all paths have length
two in the free space. Therefore normalization by the path length is canonical:
division by two. Under the 2-norm the path lengths vary from

√
2 to 2. Therefore

normalization is not canonical and the definitions for an average Fréchet distance
give values depending on the path length. The third definition is one-sided and not
symmetric.

6.3 Relaxed Triangle-Inequality is not fulfilled

In this section, we show that the general one-sided definition does not fulfill the
triangle-inequality and all other definitions do not fulfill the relaxed triangle in-
equality for any constant C. For this, we give counter-examples of curves where the
(relaxed) triangle inequality is violated. In particular, this implies that none of the
definitions are metrics.

The curves we consider are shown in Figure 6.5. For illustration purposes they
have been slightly perturbed. Unperturbed they would all lie on the x-axis. As
previously assumed, all curves have length one and are parameterized with constant
speed one.

All curves fθ, gθ, hθ are parameterized from left to right and depend on a value
θ which we will specify later. For now, let 0 < θ ≤ 1

2 . The curve fθ first zig-zags for
a length of 1 − θ in the the point −(θ + θ2) and −θ on the real axis. Then it runs
straight from −θ to 0. The curve hθ is fθ mirrored at 0, but traversed also from
left to right. The curve gθ runs from −θ to 0, then zig-zags for a length of 1 − 2θ
in the θ2-neighborhood of 0 and then runs from 0 to θ. We choose fθ, gθ, hθ to be
parameterized with constant speed one.
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Figure 6.5: Curves not fulfilling the relaxed triangle inequality

Because fθ and hθ and gθ itself are symmetric, the distances between fθ and gθ

and between gθ and hθ are equal.
We will now show, that for all definitions developed in the previous section, we

can choose 0 < θ ≤ 1
2 s.t. the curves fθ, gθ, hθ violate the relaxed triangle inequality.

Lemma 6.1. For δ ∈ {δa, δa1, δa2, δa3}, for all constants C > 0, there exist curves
f, g, h s.t. δ(f, h) > C

(

δ(f, g) + δ(g, h)
)

holds.

Proof. We first show that the claim holds for δa and then that it holds also for
δa1, δa2, and δa3. For this we consider the curves fθ, gθ, hθ as above. We bound the
distance between fθ and hθ from below, and the distance between fθ and gθ, which
equals the distance between gθ and hθ, from above. Then we consider the quotient
of these bounds which is larger then a

θ
for some constant a, i.e.,

δ(fθ, hθ)

δ(fθ, gθ)
≥ a

θ
.

By choosing θ < a
2C

the claim follows for all constants C > 0.

Bounding δa(fθ, hθ) from below:

δa(fθ, hθ) = inf
hom σ

∫ 1

0

‖fθ(t) − hθ(σ(t))‖
√

1 + (σ̇(t))2 dt

≥ inf
hom σ

∫ 1

0

‖fθ(t) − hθ(σ(t))‖ dt

≥
∫ 1

0

‖fθ(t)‖ dt

=

∫ 1−θ

0

‖fθ(t)‖ dt +

∫ 1

1−θ

‖fθ(t)‖ dt

≥ (1 − θ)θ + θ
θ

2
= θ(1 − θ

2
).

In the first step we use that all homeomorphisms are monotone increasing and
therefore σ̇ is positive and

√

1 + (σ̇(t))2 ≥ 1. In the next step we bound for all
points t ∈ [0, 1] the distance ‖fθ(t) − h(σ(t))‖ from below by the distance of fθ(t)
to its closest neighbor on the curve hθ, which is the point 0 for all points t. Then
we split the integral and evaluate the two integrals from 0 to 1 − θ and from 1 − θ
to 1. For all points from 0 to 1− θ the distance of fθ(t) to 0 is at least θ. Thus the
integral is at least (1 − θ)θ. In the interval from 1 − θ to 1 it is fθ(t) = 1 − t and
thus the integral evaluates to θ θ

2 .

Bounding δa(fθ, gθ) and δa(g, hθ) from above Since δa(fθ, gθ) = δa(g, hθ) it
suffices to consider δa(fθ, gθ). We bound δa(fθ, gθ) from below by evaluating the
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Figure 6.6: Paths in free space bounding the distance between the curves fθ and gθ

path integral over the path shown in Figure 6.6 (left). This path is not mono-
tone but it is the limit of monotone paths, e.g., it is the limit of the graphs of
homeomorphisms lim

η→0
ση which are shown in Figure 6.6 (right).

Informally, the path integral over the limit path is bounded as follows: On the
first segment from (0, 0) to (1−θ, 0) we are traversing the zig-zag of f and standing
in the starting point of g. The distance is at most θ2 and the length of the segment is
1−θ giving a value of at most (1−θ)θ2. Then we run on both f and g simultaneously
from −θ to 0. The distance on this segment is 0 for a length of

√
2θ giving a value of

0 ·
√

2θ = 0. Then we traverse the rest of g while standing in the endpoint of f . First
we traverse the zig-zag of g, which has a length of 1 − 2θ and where the distance
to the endpoint of f is at most θ2. This gives the value (1 − 2θ)θ2. Traversing the
final segment of g gives an average distance of θ

2 for a length of θ. Thus, in total
we get a bound of (1 − θ)θ2 + 0 + (1 − 2θ)θ2/2 + θ2/2 ≤ θ2(2 − θ).

More formally, we evaluate the integral for the homeomorphisms ση and consider
the limit η → 0 of the integral. The homeomorphisms ση, for η < θ, are given as

ση(t) =











η
1−θ

t for 0 ≤ t ≤ 1 − θ

η + (t − (1 − θ)) for 1 − θ ≤ t ≤ 1 − η

θ + 1−θ
η

(t − (1 − η)) for 1 − η ≤ t ≤ 1

.

Their derivative is η
1−θ

for t < 1− θ, 1 for 1− θ < t < 1− η, and 1−θ
η

for t > 1− η.

We evaluate the integral
∫ 1

0 ‖fθ(t) − g(ση(t))‖
√

1 + (σ̇η(t))2 dt by splitting it
into the three integrals from 0 to 1− θ, from 1− θ to 1− η, and from 1− η to 1 and
evaluating these separately. We assume that η ≤ θ2.

The first integral we evaluate using ‖fθ(t) − g(ση(t))‖ ≤ θ2 + η for t ≤ 1 − θ:

∫ 1−θ

0

‖fθ(t) − g(ση(t))‖
√

1 + (σ̇η(t))2 dt

≤
√

1 +
( η

1 − θ

)2
∫ 1−θ

0

(θ2 + η) dt

=

√

1 +
( η

1 − θ

)2
(1 − θ) (θ2 + η) →

η→0
(1 − θ) θ2

The second integral we evaluate using ‖fθ(t) − g(ση(t))‖ = η and σ
′

η(t) = 1 for
1 − θ < t < 1 − η:

∫ 1−η

1−θ

‖fθ(t) − g(ση(t))‖
√

1 + (σ̇η(t))2 dt

=
√

2

∫ 1−η

1−θ

η dt =
√

2 η (θ − η) →
η→0

0.

The third integral we evaluate by substituting s for t−(1−η)
η

. Then we split the

integral into two at s = 1−2θ
1−θ

. The first of these integrals we evaluate using that
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the distance is bounded by η + θ2

2 . In the second we substitute r for s − (1−2θ
1−θ

).

Further, we use that η2 + (1− θ)2 ≤ 1− θ(2− θ− θ3) ≤ 1 for η ≤ θ2 and 0 < θ ≤ 1
2

and therefore
√

η2 + (1 − θ)2 ≤ 1.

∫ 1

1−η

‖fθ(t) − g(ση(t))‖
√

1 + (σ̇η(t))2 dt

=

∫ 1

0

‖f((1 − η) + sη) − g(θ + (1 − θ)s)‖ η

√

1 +
(1 − θ

η

)2
ds

=
√

η2 + (1 − θ)2
(

∫
1−2θ
1−θ

0

‖f((1 − η) + sη) − g(θ + (1 − θ)s)‖ ds

+

∫ 1

1−2θ
1−θ

‖f((1 − η) + sη) − g(θ + (1 − θ)s)‖ ds
)

≤
∫

1−2θ
1−θ

0

(η +
θ2

2
) ds +

∫ θ
1−θ

0

(η + r) dr

=
(1 − 2θ

1 − θ

)

(η +
θ2

2
) +

θ

1 − θ
η +

1

2

( θ

1 − θ

)2 ≤ 2η + θ2 →
η→0

θ2

Putting the results for the three integrals together, we get δa(fθ, g) ≤ θ2(2−θ).

Bounding the Quotient: Now we consider the quotient

δa(fθ, hθ)

δa(fθ, g)
≥ θ

(

1 − θ
2

)

θ2 (2 − θ)
≥ 1

θ

3

8
.

Thus, by choosing θ < 3
16C

the claim follows for all constants C > 0.

Definitions δa1, δa2, δa3: The definitions δa1, δa2 and δa3 differ from δa in that
they divide by a path length. But since the path lengths vary between

√
2 and

2, definitions δa1, δa2 and δa3 do not vary from δa by more than a constant scalar
factor. That is, for i = 1, 2, 3 and curves f, g, holds

δa(f, g)

2
≤ δai(f, g) ≤ δa(f, g)√

2
.

Thus the same bounds as before hold but for a scalar factor of
√

2 or 2, respectively.
In particular, the following bound on the quotient holds:

δai(fθ, hθ)

δai(fθ, g)
≥

√
2 δa(fθ, hθ)

2 δa(fθ, g)
≥ 1

θ

3√
2 8

Now, by choosing θ < 3√
2 16C

the claim follows as before for all constants C > 0.

Lemma 6.2. For δ ∈ {δb, δb1, δb2}, for all constants C > 0, there exist curves
f, g, h s.t. δb(f, h) > C

(

δb(f, g) + δb(g, h)
)

holds.

Proof. Since for curves of length one and parametrized with constant speed one the
definitions δb1 and δb2 differ from δb only by a constant scalar factor, it suffices to
show the claim for δb with such curves.

The proof for δb is analog to the proof for δa in the previous lemma. The same
lower and upper bounds on δb(fθ, hθ) and δb(fθ, gθ), respectively, hold. The lower
bound for δb(fθ, hθ) carries over directly. In the upper bound for δb(fθ, gθ) the
metric in which the path length is measured changes from the Euclidean metric d2
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Figure 6.7: Curves for which the one-sided definition violates the triangle-inequality

to the Manhattan metric d1. But for the path we consider, this makes a difference
only for the diagonal segment of the path where the distance is (nearly) zero and
which therefore does not contribute to the bound.

Thus, we get the same lower bound on the quotient δb(fθ, hθ)/δb(fθ, gθ) and the
claim follows as before.

Lemma 6.3. For all 0 < p < ∞, there exist curves f, g, h s.t. δp(f, h) > δp(f, g)+
δp(g, h) holds.

Proof. We show that the curves in Figure 6.7 violate the triangle inequality for
the one-sided definition. The curves lie on the x-axis, but are slightly perturbed
in the figure for illustration purpose. For all three pairs of curves, the limit of
homeomorphisms that traverses the curves sequentially, are optimal, because they
minimize the term ‖f(t)−g(σ(t))‖ for all points t. Thus, we can compute the values
δp(f, g), δp(g, h), δp(f, h) by computing the integrals along this path. This can be
done analogously as in the proof of Lemma 6.1, i.e., by computing the path integral
for a homeomorphism σθ in a sequence of homeomorphisms whose graphs in free
space converge to this path. The result of this is

δp(f, g) =
(

2
∫ 1

2

0
tpdt

)
1

p

=
1

2

( 1

p + 1

)
1

p

δp(g, h) =
(

∫ 1

0
tpdt

)
1

p

=
( 1

p + 1

)
1

p

δp(f, h) =
(

2
∫ 1

2

0 (1 + t)pdt
)

1

p

=
3

2

( 1

p + 1

)
1

p

3
1

p .

It holds δp(f, h) > δp(f, g) + δp(g, h) because 3
1

p > 1 for p > 0 and therefore

δp(f, h) = 3
2 (p + 1)−

1

p 3
1

p > 3
2 (p + 1)−

1

p = δp(f, g) + δp(g, h).

6.4 Discussion

In this chapter we derived and analyzed several definitions for an average or summed
Fréchet distance. These definitions have intuitive meanings in parameter or image
space. We showed, however, that none of the definitions fulfill the triangle inequal-
ity.

This is only a first step in analyzing this problem. An immediate open problem is
the computation of any of these definitions. Naturally, all discrete versions for fixed
discretization are computable. In particular, the discrete versions based on the free
space diagram can be computed with the same techniques as the discrete Fréchet
distance. We do not, however, know how to compute the continuous versions. For
this, techniques of variational calculus seem promising.

It also remains open, if other definitions than the ones considered in this chapter
for an average Fréchet distance exist, which have the desired properties, in particular
which fulfill the triangle inequality and are polynomial time computable.




