
Chapter 5

Computability of the Fréchet

Distance between Simple

Polygons

5.1 Introduction

In this chapter we consider a restricted but important class of surfaces, simple
polygons, which appear often in applications. For these we show that the set of
realizing reparameterizations can be restricted to a set of “nice” maps. This allows
us to show that the Fréchet distance between simple polygons can be computed in
polynomial time. The results in this chapter where obtained in collaboration with
Kevin Buchin and Carola Wenk and have been published in [16].

This chapter is organized as follows: Section 5.2 introduces simple polygons
and their Fréchet distance. In Section 5.3 we show that for computing the Fréchet
distance between simple polygons, we need to consider only homeomorphisms on
the boundary curves which are extended to the diagonals of a convex decomposition
of one polygon by mapping the diagonals to shortest paths in the other polygon. In
Section 5.4 we use this result to show how to compute the Fréchet distance between
simple polygons in polynomial time. For this, we will employ the algorithm for
curves, techniques for shortest path in a simple polygon, and dynamic programming.

5.2 Simple Polygons

5.2.1 Fréchet Distance between Simple Polygons

A simple polygon is the area enclosed by a non-self-intersecting closed polygonal
curve in a plane. Let P and Q be two simple polygons with n and m vertices,
respectively. The two polygons may lie in two different planes. As underlying
parameterizations we assume the identity maps f : P → P and g : Q → Q. Then
the Fréchet distance simplifies to:

δF (P, Q) = inf
σ : P→Q

max
t∈P

‖t − σ(t)‖

where σ ranges over all orientation-preserving homeomorphisms.
In the following we assume to be given an orientation of the simple polygons

in the form of an ordering of the vertices. For simple polygons, preserving their
orientation is equivalent to preserving the orientation on the boundary. We will
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42 CHAPTER 5. SIMPLE POLYGONS

consider only orientation-preserving homeomorphisms and may refer only to σ or
to a homeomorphism if the meaning is clear from the context.

We call a map σ : P → Q for which maxt∈P ‖t − σ(t)‖ = ε an ε-realizing map.
In particular, we will consider ε-realizing homeomorphisms. Recall that the Fréchet
distance of simple polygons is defined as the infimum over all homeomorphisms on
the polygons. Using the notion of ε-realizing homeomorphism we can reformulate
the decision problem for the Fréchet distance as

δF (P, Q) ≤ ε ⇔ for all ε′ > ε exists an ε′−realizing homeomorphism.

In particular, for a Fréchet distance equal to ε, an ε-realizing homeomorphism need
not exist. Instead, a sequence of εi-realizing homeomorphisms exists with εi tending
to ε for i tending to ∞. We call such a sequence an ε-realizing sequence for the
Fréchet distance.

5.2.2 Fréchet Distance between Boundary Curves

A natural question concerning the Fréchet distance between simple polygons is:
does the Fréchet distance between the polygons differ from the Fréchet distance
between their boundary curves?

Proposition 5.1. The Fréchet distance between two simple polygons may be arbi-
trarily much larger than the Fréchet distance between their boundary curves.
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Figure 5.1: Example for differing Fréchet distance between boundary curves and
polygons.

Proof. Figure 5.1 (a) shows two polygons for which the Fréchet distance between
the boundary curves may be arbitrarily much smaller than the Fréchet distance
between the polygons. We show that, if the two polygons are placed on top of each
other and the distances δ and w are both infinitesimally small, then the Fréchet
distance between the boundary curves is zero whereas the Fréchet distance between
the polygons is at least half the height of the polygons.

Figure 5.1 (b) indicates a homeomorphism which realizes the Fréchet distance
between the boundary curves, assuming that both w and δ are much smaller than
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h and the two polygons are placed on top of each other such that their bounding
boxes coincide. In the figure, pi is mapped to qi for all i. The Fréchet distance
equals the maximal point-to-point distance, which is the distance between p3 and
q3 in Figure 5.1 (b). For δ → 0 the distance ‖p3 − q3‖ converges to w/2, if also
w → 0 the Fréchet distance becomes zero.

Figure 5.1 (c) illustrates that the Fréchet distance between the polygons cannot
be smaller than h/2 provided that 4δ < h. Consider the diagonal D in the left
polygon. For the Fréchet distance to be less than half the height of the polygons,
D must be mapped to a path that lies completely either in U1 or U2. Then also
either A or B must be completely mapped to U1 or U2, in particular the vertex a
or b. But both a and b have a distance more than h/2 to both U1 and U2.

In the proof of Proposition 5.1 we showed that the Fréchet distance between
the polygons in Figure 5.1 is at least h/2. It, in fact, equals h/2 if as above both
w and δ tend to zero, and the two polygons are placed on top of each other such
that their bounding boxes coincide. This is indicated in Figure 5.1 (d), which shows
isomorphic decompositions of P and Q. The Fréchet distance of h/2 can be realized
by a homeomorphism mapping regions with the same label onto each other. The
reader may verify that such a mapping can be realized by a homeomorphism with
maximum point-to-point distance h/2, for w and δ tending to zero.

5.2.3 Fréchet Distance between Convex Polygons

For the special case of convex polygons Proposition 5.2 below states that the Fréchet
distance between the polygons equals the Fréchet distance between their boundary
curves. Boundary curves of convex polygons are closed convex curves and for these
it is known that the Fréchet distance equals the Hausdorff distance [3, 9, 29]. Thus
Proposition 5.2 implies that the Fréchet distance between convex polygons equals
the Hausdorff distance between their boundary curves, which can be computed
in polynomial time. In two dimensions the Hausdorff distance between convex
polygons can be computed in O((m+n) log(m+n)) time [2] and for disjoint convex
polygons or convex polygons where one contains the other in O(m + n) time [12].

Proposition 5.2 will follow also from Corollary 5.1, see Section 5.3. The proof
we give now can be generalized to convex polytopes in arbitrary dimension.

Proposition 5.2. The Fréchet distance between convex polygons equals the Fréchet
distance between their boundary curves.

Proof. The Fréchet distance between two polygons is at least as large as the Fréchet
distance between their boundary curves, since a homeomorphism on the polygons
restricted to the boundary curves is again a homeomorphism. We show that it is
also not larger by showing that for any homeomorphism σ on the boundary curves
there exists a homeomorphism σ′ between the polygons such that max ‖t−σ′(t)‖ ≤
max ‖t − σ(t)‖.

Let P, Q be two convex polygons, and σ : ∂P → ∂Q an arbitrary homeomor-
phism on the polygon boundaries. We construct a piecewise linear homeomorphism
σ′ : P → Q on the polygons which equals σ on all boundary vertices of P and Q and
attains its maximum on one of these vertices. The construction of σ′ is illustrated
in Figure 5.2.

First we add to the boundary vertices of P and Q all (inverse) images under σ
of the boundary vertices of Q and P , respectively. I.e., we add the vertex σ−1(q)
to the boundary of P for all boundary vertices q of Q and σ(p) to the boundary of
Q for all boundary vertices p of P .

Next we choose a point p0 in the interior of P and a point q0 in the interior of Q.
We choose p0 and q0 s.t. their distance is bounded by a distance ‖p− q‖ where p is
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(a) convex polygons (b) interior vertices (c) triangulations

Figure 5.2: The Fréchet distance of convex polygons is attained on the boundary
curves.

a boundary vertex of P and q = σ(p) a boundary vertex of Q. For this, we choose
p0 and q0 as the barycenters of two triangles (p1, p2, p3) and (q1, q2, q3) where the
pi and qi are boundary vertices of P and Q, respectively, for i = 1, 2, 3.

If both P and Q are not triangles, i.e., both have at least four boundary edges,
we can choose triangles (p1, p2, p3) and (q1, q2, q3) as illustrated in Figure 5.2 (b).
We choose two boundary vertices p1 and p2 of P which do not share a boundary
edge of P . Let q1 = σ(p1) and q2 = σ(p2). Then we choose a boundary vertex q3 of
Q such that q1, q2, q3 are not collinear. Let p3 = σ−1(q3). Then also p1, p2, p3 are
not collinear because p1 and p2 were chosen such that they do not share a boundary
edge of P . The barycenters of the triangles p1, p2, p3 and q1, q2, q3 lie inside P and
Q, respectively, because of the convexity of P and Q. Furthermore, the distance
between the barycenters is bounded by the distances between the vertices of the
triangles.

If P is the triangle (p1, p2, p3), then we choose these vertices and the vertices
q1 = σ(p1), q2 = σ(p2), and q3 = σ(p3) in Q. If q1, q2, q3 are not collinear then we
can proceed as before. If they are collinear, we assume without loss of generality
that q2 lies between q1 and q3 on the line. This implies that the edges (p1, p2)
and (p2, p3) are mapped by σ to the same boundary segment of Q and the edge
e = (p1, p3) is mapped to the rest of the boundary of Q. We choose a boundary
vertex q′3 of Q which does not lie on the same line, and therefore it lies on σ(e).
We replace q3 by q′3 and p3 by p′3 = σ−1(q′3). Then, because p′3 lies on the edge
e = (p1, p3), also p1, p2, p

′

3 are not collinear.

Now we triangulate both P and Q into a “circular fan” by adding for all vertices
v on the boundary of P the diagonal (v, p0) and for all vertices w on the boundary
of Q the diagonal (w, q0). See Figure 5.2 (c) for an example. This yields isomorphic
triangulations of P and Q with the property that σ is an isomorphism on the
vertices. Thus, we can define σ′ to be the piecewise linear homeomorphism between
these two triangulations.

5.2.4 Shortest Paths in a Simple Polygon

Our algorithm for computing the Fréchet distance between simple polygons involves
shortest paths. We therefore review an important concept for shortest paths in a
simple polygon which was introduced by Guibas et al. [30]: hourglasses.

If S1 and S2 are two segments in a simple polygon, the hourglass of S1 and S2

represents all shortest paths between any point p1 on S1 and any point p2 on S2. It
can be described by the (possibly degenerate) polygon given by the two segments
and the two shortest paths between neighboring endpoints of the segments (i.e.,
if a1, a2 and b1, b2 are the endpoints of S1 and S2, respectively, and their order
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along the boundary of the polygon is a1, a2, b1, b2, then the hourglass is the polygon
with boundary S1, the shortest path between a2 and b1, S2, and the shortest path
between b2 and a1). See Figure 5.3 for examples.
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Figure 5.3: Hourglasses in a simple polygon.

There are two kinds of hourglasses: open and closed as depicted in Figure 5.3.
An hourglass is called open if there are two points p1 on S1 and p2 on S2 that
directly see each other, i.e., the shortest path from p1 to p2 is the segment (p1, p2).
Otherwise the hourglass is called closed. In this case the segments S1 and S2 are
mutually invisible, i.e., there are no two points on S1 and S2 that directly see each
other.

We will use hourglasses which are not given by two segments but more generally
by two chains of consecutive segments. That is, instead of two segments S1, S2 we
are given two polygonal chains C1, C2 where each Ci, i = 1, 2, consists of consecutive
edge segments. We call these chains the end chains of the generalized hourglass .
This generalization is straightforward and the notions open and closed of hourglasses
remain the same.

5.2.5 Convex Decompositions of Simple Polygons

For computing the Fréchet distance between simple polygons we will decompose the
polygons into convex parts. We will decompose the polygons without allowing addi-
tional vertices, i.e., we allow diagonals only between existing vertices. For achieving
a better run time we will use an (approximate) minimum convex decomposition. A
minimum convex decomposition is a convex decomposition with a minimal number
of components.

A minimum convex decomposition without additional vertices can be computed
in O(n+r2 min(n, r2)) time [35], where n is the number of vertices of the polygon and
r the number of reflex vertices. A reflex vertex is a vertex with interior angle larger
than π. For computing a constant factor approximation of the minimum convex
decomposition several O(n log n) time algorithms exist. See the survey of Keil [34]
for more details and references. In our algorithm we will compute an approximate
minimum convex decomposition of each polygon and choose the smaller one.

Note that it is also possible to use a triangulation instead of a minimum convex
decomposition. However, since the combinatorial complexity of a triangulation is
typically much larger than that of a minimum convex decomposition, this would
increase the run time of our algorithm.
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5.3 Restricting the Set of Homeomorphisms

In this section we show that for the Fréchet distance between simple polygons
P, Q it suffices to consider a small well-behaved class of realizing maps. These are
homeomorphisms on the boundaries of P and Q which are extended to the diagonals
of a convex decomposition of P by mapping the diagonals of the decomposition to
shortest paths in Q. Each diagonal is mapped homeomorphically to the shortest
path between the images of its endpoints. We call these maps shortest path maps. If
the homeomorphism on the boundaries is orientation preserving, we call the shortest
path map orientation preserving.

For a convex decomposition C of P we denote with EC the set of all points lying
on some edge of C. The edges of C are the boundary edges and diagonals of P .
Thus, a shortest path map is a non-surjective map σ′ : EC → Q. If the shortest
paths in Q overlap (with each other or the boundary), then a shortest paths map
is not a homeomorphism. However, restricted to the boundary or to any diagonal
of C a shortest path map is a homeomorphism.

A homeomorphism on the polygons can be restricted to the polygon boundary
which yields a homeomorphism between the polygon boundaries. We can obtain
a shortest path map from a homeomorphism on the polygons by restricting it to
the boundary and then extending it to the diagonals of a convex decomposition by
mapping these to shortest paths. We call these induced shortest path maps.

First, we show a preliminary result, Lemma 5.1, which states that simplifying
a curve by replacing a part of the curve by a segment does not increase its Fréchet
distance to another curve. Then, we show that for any homeomorphism σ on
the polygons the induced shortest path map σ′ realizes a value for the Fréchet
distance which is not larger than the one realized by σ. This will follow from
Lemma 5.2. Next we show in Lemma 5.3 that for a given shortest path map σ′ there
are homeomorphisms on the polygons that realize a Fréchet distance arbitrarily close
to the value realized by σ′. Combining these two results, we see in Proposition 5.3
that for the Fréchet distance between simple polygons it suffices to consider shortest
paths maps.

5.3.1 Simplifying a Curve

Given a curve f and a line segment s, Lemma 5.1 shows that simplifying the curve
f by replacing a part of it with a line segment does not increase its Fréchet distance
to the line segment s. See Figure 5.4 for an illustration.

Lemma 5.1. Let f : [0, 1] → R
d be a curve, let s : [0, 1] → R

d be a parameterized
line segment, and let 0 ≤ t1 < t2 ≤ 1. Define f ′ : [0, 1] → R

d to coincide with f on
[0, t1]∪ [t2, 1] and to coincide with a parameterized line segment from f(t1) to f(t2)
on [t1, t2]. Then δF (f ′, s) ≤ δF (f, s).

t1

t2

s

f

f ′

Figure 5.4: The Fréchet distance between a diagonal and a curve is not increased if
the curve is simplified by substituting part of it by a line segment.
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Figure 5.5: We recursively simplify the curve A0 = σ(D) to the polygonal curve S
which is the shortest path from σ(d0) to σ(d1) in Q.

Proof. Given a homeomorphism σ : [0, 1] → [0, 1], let σ′ : [0, 1] → [0, 1] be the home-
omorphism that equals σ on [0, t1]∪[t2, 1] and maps (t1, t2) linearly to (σ(t1), σ(t2)).
Then it holds

max
t∈[0,1]

‖f(t) − s(σ(t))‖ ≥ maxt∈[0,t1]∪[t2,1] ‖f ′(t) − s(σ′(t))‖

= maxt∈[0,1] ‖f ′(t) − s(σ′(t))‖.

The first inequality holds because f and f ′ as well as σ and σ′ coincide on [0, t1] ∪
[t2, 1]. The following equality holds because on the missing interval (t1, t2) we
are taking the maximum distance between two parameterized segments, which is
attained at the segment endpoints.

And thus, for a sequence of homeomorphisms σi realizing δF (f, s), the sequence
of homeomorphisms σ′

i yields δF (f ′, s) ≤ δF (f, s).

5.3.2 Mapping Diagonals to Shortest Paths

Lemma 5.2. Given two simple polygons P and Q, a diagonal D of P and a home-
omorphism σ : P → Q. Let σ′ : P → Q map the diagonal D homeomorphically to
the shortest path between the images of its endpoints under σ. Then

δF (D, σ′(D)) ≤ δF (D, σ(D)).

Proof. Let d0, d1 be the starting and endpoint of the diagonal D in P . Let A = σ(D)
be the curve which is the image of D under σ and let S be the shortest path in Q
between σ(d0) and σ(d1). We want to show

δF (D, S) ≤ δF (D, A).

The shortest path S is a polygonal path in Q with starting point σ(d0) and
endpoint σ(d1). We denote the vertices of this polygonal path by s0, . . . , sl, where
s0 = σ′(d0) = σ(d0), sl = σ′(d1) = σ(d1), and l is the number of edges of the
polygonal path as shown in Figure 5.5.

We iteratively shoot rays along the edges of the shortest path and simplify the
curve A using Lemma 5.1 as follows: Let A0 = A = σ(D). For each i = 1, . . . , l we
do the following (cf. Figure 5.5): Let ri be the ray in direction si − si−1 starting at
si−1. By construction si−1 lies on Ai−1. The ray ri cuts the polygon into two parts
such that the points s0 and sl lie in different parts. Hence, the curve Ai−1, which
is a continuous curve from s0 to sl, intersects ri inside the polygon. Let ai be the
first intersection of ri with Ai−1. Define Ai to be Ai−1 simplified by exchanging
the part of Ai−1 from si−1 to ai with the line segment (si−1, ai). By Lemma 5.1,
δF (D, Ai) ≤ δF (D, Ai−1). Note that si lies on the line segment (si−1, ai). Starting
with A0 = A = σ(D) we end with Al = S = σ′(D) and therefore the iteration
shows δF (D, S) ≤ δF (D, A).
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P Q

Figure 5.6: Constructing isomorphic triangulations of P and Q. The initial de-
composition is shown in solid lines and is initially refined by the dashed edges and
furthermore refined by the dotted edges.

5.3.3 Approximating Shortest Path Maps

Lemma 5.3. Given two simple polygons P and Q, a convex decomposition C of P
and a shortest path map σ′ : EC → Q. Then for all δ > 0 there exists a homeomor-
phism σδ : P → Q that realizes a Fréchet distance not larger than δ plus the Fréchet
distance realized by σ′. That is,

max
t∈P

‖t − σδ(t)‖ ≤ max
t∈EC

‖t − σ′(t)‖ + δ.

Proof. Given a shortest path map σ′ and δ > 0, we construct a piecewise linear
homeomorphism σδ : P → Q fulfilling the claim of the lemma. We construct σδ

by constructing isomorphic triangulations of P and Q. On the vertices of the
triangulations we construct σδ as a graph isomorphism and then extend σδ piecewise
linear inside triangles. The main technical part of the proof is constructing the
isomorphic triangulations which we defer to the end of the proof. First, we give the
proof without explicit construction of the triangulations.

The shortest path map induces isomorphic decompositions of the polygons P
and Q (after perhaps slight perturbation of vertices). Namely, these are the given
convex decomposition C of P and the decomposition of Q induced by the shortest
paths to which the diagonals in P are mapped. We refine these decompositions
to isomorphic triangulations of P and Q by introducing additional vertices and
diagonals. While constructing the isomorphic triangulations, we construct σδ to
be an isomorphism on the vertices. Furthermore, σδ equals σ′ on these vertices
possibly after slight perturbation. We can then extend σδ piecewise linearly inside
triangles to obtain a homeomorphism on the polygons. By the piecewise linearity,
σδ achieves its maximum value for the Fréchet distance at a vertex. Since it equals
σ′ on vertices, the claim of the lemma follows.

During the construction of the isomorphic triangulations, we slightly perturb
vertices. This always means that we move the vertices a distance of at most δ. This
ensures that the value achieved for the Fréchet distance is increased by at most δ as
claimed. Note that the sequence of homeomorphisms σδ that we construct in this
way are an ε-realizing sequence for the Fréchet distance, where ε = maxt∈EC

‖t −
σ′(t)‖, i.e., the value for the Fréchet distance achieved by the shortest path map σ′.

Constructing Isomorphic Triangulations of P and Q We construct isomor-
phic triangulations of P and Q in three steps (cf. Figure 5.6). First, we define
initial isomorphic decompositions of P and Q. These decompositions are refined
twice to obtain isomorphic triangulations. In the first refinement, we refine the de-
composition of Q to a triangulation and in the second we refine the decomposition
of P to a triangulation.

During the construction we construct σδ as an isomorphism on the vertices of
the triangulations. For this, we let σδ equal σ′ on the boundary vertices of P and
Q, that is, σδ(p) = σ′(p) for all boundary vertices p of P and for all inverse images
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Figure 5.7: Degeneracies that may occur in the initial decomposition of Q (left) and
their perturbation (right).

p = σ′−1(q) of boundary vertices q of Q. During the construction, we refine the
isomorphic decompositions by adding new edges (and their endpoints). Whenever
we add an edge eP in P and corresponding edge eQ in Q, we always let σδ map the
corresponding endpoints onto each other, i.e., σδ(p) = q for corresponding endpoints
p of eP and q of eQ.

Initial Decompositions. The initial decomposition of P is the convex decomposi-
tion C. The initial decomposition of Q is obtained by connecting for each diagonal
in C the images of its endpoints under σ in Q by a shortest path. If all shortest
paths in Q are diagonals, i.e., line segments between different boundary edges of
Q, then these are isomorphic decompositions of P and Q. However, two kinds of
degeneracies may occur (cf. Figure 5.7 left): In the resulting decomposition of Q,
a shortest path may lie completely on the boundary or it may consist of more than
one edge. In the first case, a face in the decomposition is degenerated to a line
segment (1). The second case causes two faces to be connected either only by a
vertex (2a) or an edge (2b). Also, several shortest paths may share an inner vertex
or edge chain, as in the cases 2b and 1b in Figure 5.7.

For both kinds of degeneracies we can add and perturb vertices (cf. Figure 5.7
right) to obtain isomorphic decompositions. If a shortest path lies completely on the
boundary, we add the midpoints of the diagonal in P and on the shortest path in Q.
The midpoint of the shortest path is moved slightly into the interior of the polygon
which results in a triangular face (1a in Figure 5.7). If several shortest paths lie
on top of each other on the boundary (1b in Figure 5.7) the longer diagonals are
perturbed more than the shorter diagonals.

If a shortest path consists of more than one edge, we add each inner vertex
of the shortest path as a new vertex, both on the shortest path in Q and on the
diagonal in P . On the diagonal in P we add the vertices τ−1(v) where v is an inner
vertex of the shortest path and τ is an ε-realizing homeomorphism for the diagonal
and shortest path and ε is the value for the Fréchet distance achieved by σ′. If
only ε-realizing sequences exist, we slightly perturb the construction by using an
ε′-realizing homeomorphism for ε < ε′ ≤ ε + δ. We also move the inner vertices
of the shortest path slightly into the interior of the polygon. If several shortest
paths share a vertex (see Figure 5.7 (2b)), we create a new vertex for each shortest
path, and move these slightly into the interior in an order which ensures that the
shortest paths do not cross. This is possible since the corresponding diagonals in P
are non-crossing. Now we have isomorphic decompositions of P and Q.

Idea of Refinements. The idea of refining the isomorphic decompositions to
isomorphic triangulations is the following: One of the initial isomorphic decomposi-
tions is convex, namely the one of P . We first triangulate the possibly non-convex
decomposition of Q and insert corresponding diagonals in P . Then we have a
(nearly) convex decomposition of P and a (nearly) triangulation of Q (both only
nearly because of perturbation in case of degeneracies). Then we triangulate the
convex decomposition of P and insert corresponding diagonals in Q to obtain iso-
morphic triangulations (again we have to handle degenerate cases).
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Figure 5.8: Handling degeneracies in the first refinement. Vertex labels indicate the
isomorphism on the vertices.

In the following, we give these refinements in more detail. The main effort is
handling the degeneracies. We give one (of many) possible solution for this.

First Refinement. We first triangulate the initial decomposition of Q. For
all diagonals (q, q′) that we add to Q for this, we also want to add the segment

(σ′−1
(q), σ′−1

(q′)) in P . However, a segment (σ′−1
(q), σ′−1

(q′)) may lie completely
on the boundary of P . If it does not, we can add the segment as diagonal to P . If
it does, we need to perturb the segment as follows.

Let (σ′−1
(q), σ′−1

(q′)) be a segment that lies on the boundary of P . There may
be several such segments on top of each other, i.e., the corresponding diagonals
are mapped to the same boundary segment of P . In this case, we perturb the set
of segments simultaneously, as illustrated in Figure 5.8. We add the midpoints to
all these segments in P and the midpoints to the corresponding diagonals in Q.
Then we move the midpoints of the segments in P slightly into the interior. The
midpoints of longer segments are moved further than those of shorter segments.
We will call these bent diagonals in P . Next, we isomorphically triangulate both
constructions by connecting midpoints and boundary vertices as in Figure 5.8.

The resulting decomposition of P is nearly convex in the sense that it may
contain bent diagonals. The resulting decomposition of Q is nearly a triangulation
in the sense that some edges contain extra midpoints. Furthermore, these two cases
exactly coincide, i.e., each bent diagonal in P exactly corresponds to an edge with
an additional midpoint in Q.

Second Refinement. Now we triangulate the remaining faces of P which are not
yet triangulated. Because each bent edge in P corresponds exactly to a midpoint
edge in Q, there are only four possible cases: zero, one, two, or three of the edges
are irregular. In each case, we can isomorphically triangulate the two faces without
introducing new degeneracies (cf. Figure 5.9) . If all sides are regular, we add
the midpoints of the triangle in Q and the corresponding three points in P and
triangulate into a star (Figure 5.9 (a)). If one side is irregular, we triangulate from
the single midpoints (Figure 5.9 (b)). If two sides are irregular, we connect the two
midpoints and triangulate the rest (Figure 5.9 (c)). If all three sides are irregular,
we connect the three midpoints into a triangle (Figure 5.9 (d)).

QP

(a)

QP

(b)

QP

(c)

QP

(d)

Figure 5.9: All cases that may occur in the second refinement. Dashed lines indicate
convex edge chains.
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5.3.4 Fréchet distance using Shortest Paths Maps

Lemmas 5.2 and 5.3 imply the following proposition.

Proposition 5.3. The Fréchet distance between simple polygons P and Q equals

inf
σ′ : EC→Q

max
t∈EC

‖t − σ′(t)‖

where C is an arbitrary convex decomposition of P . The map σ′ ranges over all
orientation-preserving shortest path maps σ′ from EC to Q.

Proof. Lemmas 5.2 and 5.3 together give the following equivalence.

δF (P, Q) ≤ ε ⇔ for all ε′ > ε exists an ε′−realizing homeomorphism

⇔ for all ε′ > ε exists an ε′−realizing shortest path map.

The first equivalence holds by definition of the Fréchet distance, see Section 5.2.1.Now
consider the direction from left to right of the second equivalence. Let σ be an
ε′-realizing homeomorphism. Using Lemma 5.2 the induced shortest paths map
realizes a Fréchet distance of at most ε′, as well. The other direction of the second
equivalence follows from Lemma 5.3.

A convex decomposition of a convex polygon is the polygon itself. Therefore
a shortest path map on a convex polygon is a homeomorphism on the boundary
curves. Thus, for the Fréchet distance of two polygons where one is convex, it
suffices, by Proposition 5.3, to map the boundary of the convex polygon to the
boundary of the other polygon, i.e., to compute the Fréchet distance of the boundary
curves.

Corollary 5.1. The Fréchet distance between two simple polygons, of which one
polygon is convex, equals the Fréchet distance between their boundary curves.

5.4 Deciding the Fréchet Distance

In this section we give a polynomial time algorithm for deciding the Fréchet distance
between simple polygons. For this, we first characterize in Section 5.4.1 which paths
in the free space diagram correspond to solutions of the Fréchet distance between
simple polygons. In Section 5.4.2 we describe the combined reachability graph. This
graph extends the reachability structure for closed polygonal curves, reviewed in
Section 2.3.2, by adding the information of diagonals in one polygon mapped to
shortest paths in the other polygon.

As a subproblem in the algorithm we need to solve the decision problem for
the Fréchet distance between a diagonal in one polygon and all shortest paths
between two consecutive chains of boundary segments of the other polygon. These
shortest paths make up the generalized hourglass of the two chains, which was
introduced in Section 5.2.4. We show how to solve the decision problem for the
Fréchet distance between a diagonal and one hourglass in Section 5.4.3 and for a
diagonal and multiple hourglasses at once in Section 5.4.4.

In the following P and Q always denote two simple polygons with n and m
vertices, respectively, and ε a real value greater than or equal to zero. C denotes
a convex decomposition of P . The decision problem for the Fréchet distance is to
decide whether δF (P, Q) ≤ ε. We will consider the free space diagram of a diagonal
and a shortest path. Such a free space diagram consists of 1× k cells where k is the
number of edges of the shortest path. We will always assume in this case that the
free space diagram is a column of cells, i.e., the diagonal corresponds to the bottom
boundary of the diagram and the shortest path corresponds to the left boundary of
the diagram.
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5.4.1 Feasible Path in the Free Space Diagram

By Proposition 5.3, the Fréchet distance between simple polygons is realized by
an ε-realizing sequence of shortest path maps. That is, an ε-realizing sequence of
homeomorphisms on the boundary curves which are extended to the diagonals of a
convex decomposition by mapping these to shortest paths. We can find ε-realizing
sequences of homeomorphisms on the boundary curves by searching for monotone
paths in the double free space diagram [6]. For a monotone path we can check
whether the corresponding homeomorphism (or limit of homeomorphisms) maps
the diagonals to shortest paths with Fréchet distance at most ε. If it does we call
it a feasible path in the free space.

We check the condition on the diagonals for a monotone path as follows. A
strictly monotone path in the free space diagram Fε corresponds to a homeomor-
phism on the boundary curves. Thus, we know where the diagonal endpoints are
mapped to and can decide if the Fréchet distances between diagonals and corre-
sponding shortest paths are at most ε. A monotone path may, however, contain
horizontal and vertical segments. If a vertical segment corresponds to a diagonal
endpoint, then the monotone path does not map this endpoint to a unique point but
it maps the diagonal endpoint to a connected chain of segments on the boundary
of Q instead. For any ε′ > ε there are strictly monotone paths in the free space
arbitrary close to the monotone path. For these, the vertical segment is slightly
tilted which uniquely maps the diagonal endpoint. We will see in Section 5.4.3,
that for the Fréchet distance between a diagonal and a shortest path it does not
matter which points on a vertical segment in the free space are chosen as endpoints
of the shortest paths. Therefore, in the case of vertical segments corresponding to
diagonal endpoints, we can choose arbitrary points on the segments as endpoints of
the shortest paths.

The above considerations and Proposition 5.3 yield the following corollary.

Corollary 5.2. The Fréchet distance between simple polygons is less than or equal
ε if and only if there is a feasible path in the free space diagram Fε.

Searching for such a path seems difficult at first because there typically are in-
finitely many monotone paths realizing the Fréchet distance of the boundary curves.
Of course we cannot check for infinitely many paths whether they map the diagonals
to shortest paths with Fréchet distance less than or equal ε. Again we use the result
of Section 5.4.3, by which it suffices to specify for each diagonal endpoint not the
exact point it is mapped to but only the segment it is mapped to in the following
sense.

For each point p on the boundary of P , i.e., in particular for each diagonal
endpoint, consider a pre-image of the point p in parameter space. Consider the
vertical line in free space corresponding to this pre-image. On this line there are
at most m intervals which lie in the free space, because each row can contribute at
most one interval. We call these intervals free intervals. Note that such intervals
may span several rows.

In Section 5.4.3 we will show that the solution of the decision problem of the
Fréchet distance between a diagonal and a shortest path depends only on the free
intervals to which the diagonal endpoints are mapped. We call an assignment of the
diagonal endpoints to free intervals a placement of the diagonals. As stated before,
there are at most m placements for each diagonal endpoint. We call a placement of
a diagonal valid if the Fréchet distance between the diagonal and the shortest path
given by the placement is at most ε.
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Figure 5.10: Diagonals in a convex deomposition are mapped to shortest paths by
a monotone path in the free space.

5.4.2 Combined Reachability Graph

The combined reachability graph combines the reachability information in the free
space with valid diagonal placements and thus allows us to search for feasible paths.
First, we define the reachability graph to be the reachability structure (see Sec-
tion 2.3.2) represented as a graph: its vertices are the reachable intervals of the
reachability structure with an edge between two intervals if one can reach the other.
The combined reachability graph is a subgraph of the reachability graph. Its ver-
tices are also the reachable intervals of the reachability structure. Its edges are
between intervals that can be reached by feasible paths (cf. Section 5.4.1). Since
the reachability structure contains O(mn) intervals, both the reachability graph
and the combined reachability graph contain O(mn) vertices and O((mn)2) edges.

Let d0, d1, . . . , dl−1 be the l endpoints of the k diagonals of a convex decompo-
sition C of P where l ≤ 2k. In the following we use +l to denote addition modulo l
and −l to denote subtraction modulo l.

Consider the simplified convex decomposition C′ which is obtained from C by (i)
removing duplicate edges which occur for diagonals (di, di+l1) and by (ii) contracting
every path of boundary edges between two diagonal endpoints, without any interior
diagonal endpoints, to one edge. The vertices of C′ are d0, d1, . . . , dl−1. Let TC′ be
a triangulation of C′ (cf. Figure 5.10 (a)). Let a c-diagonal be a diagonal of the
convex decomposition C. Let a t-diagonal be all other edges of the triangulation
TC′ . In Figure 5.10, (d0, d1) and (d2, d3) are c-diagonals and (d1, d3), (d1, d2), and
(d3, d0) are t-diagonals.

For any c-diagonal or t-diagonal (di, dj) let RG(i, j) denote the reachability
graph and let CRG(i, j) denote the combined reachability graph spanning the part
of the free space between di and dj . Thus CRG(i, j) takes into account the diagonals
that have both endpoints in between di and dj , using wraparound modulo l when
j is smaller than i. We assume that RG(i, j) and CRG(i, j) use the refinement of
the reachability structure of the double free space diagram. That is, we assume
the intervals occurring as vertices in RG(i, j) and CRG(i, j), respectively, to be
the (possibly) refined inervals of the larger reachability structure. This refinement
can easily be computed in O(mn log mn) time by projecting all vertical (horizontal)
intervals of the free space onto the vertical (horizontal) boundaries of the free space.

The following lemma shows that a combined reachability graph CRG(i, j) can be
recursively constructed from reachability graphs and combined reachability graphs
that span smaller parts of the free space. This construction uses two functions:
Combine and Merge. The Merge function “concatenates” adjacent reachability
graphs (some of which may be combined reachability graphs) by taking the union of
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the graphs, computing the transitive closure, and discarding intermediate vertices.
The Combine function computes the combined reachability graph from the input
reachability graph by keeping only those edges that encode valid placements of
diagonals. In the following, a pair (di, dj) will denote either a c-diagonal or a t-
diagonal. A triple (di, dh, dj) denotes a triangle in TC′ with the endpoints in the
given order.

Lemma 5.4. For any c-diagonal or t-diagonal (di, dj) of TC′ holds:

(C1) If (di, dj) is a c-diagonal with j = i +l 1 then

CRG(i, j) = Combine(RG(i, j))

(T1) If (di, dj) is a t-diagonal with j = i +l 1 then

CRG(i, j) = RG(i, j)

(C2) If (di, dj) is a c-diagonal with j 6= i +l 1 then

CRG(i, j) = Combine(Merge(CRG(i, h), CRG(h, j))),

where (di, dh, dj) is a triangle in TC′ .

(T2) If (di, dj) is a t-diagonal with j 6= i +l 1 then

CRG(i, j) = Merge(CRG(i, h), CRG(h, j)),

where (di, dh, dj) is a triangle in TC′ .

Proof. (C1) and (C2) cover the cases where (di, dj) is a c-diagonal, and (T1) and
(T2) cover the cases where (di, dj) is a t-diagonal. In the following, we show how
the combined reachability graph can be computed by partitioning the free space,
computing sub-reachability graphs on each part, and then merging and combining
the subgraphs.

(C1) and (T1) follow directly from the definition of combined reachability graphs.
Now consider case (T2) in which (di, dj) is a t-diagonal with j 6= i+l 1. There are at
most two triangles in TC′ incident to (di, dj): ∆ = (di, dh, dj) and ∆′ = (dj , dh′ , di)
for some h and h′. Since CRG(i, j) contains the reachability information for the
part of the free space between di and dj , we only need to consider the triangle ∆,
which has to exist because j 6= i +l 1. (∆′ is considered for CRG(j, i).) A path in
the free space between di and dj is feasible if and only if the sub-path between di

and dh is feasible, the sub-path between dh and dj is feasible, and in case of (C2)
it also places (di, dj) correctly. Thus, the first sub-path has to lie in CRG(i, h) and
the second in CRG(h, j). Merging these two graphs yields (T2). If (di, dj) is a
c-diagonal then an additional call to the Combine function ensures that only edges
are kept that encode valid placements of (di, dj), which yields (C2).

Corollary 5.3 below follows directly from Lemma 5.4.

Corollary 5.3. There is a feasible path in the free space diagram starting in
[di−l1, di) if and only if there is an edge in G =Merge(RG(i −l 1, i), CRG(i, i −l

1), RG(i−l 1, i)) connecting an interval in [di−l1, di) to the same interval translated
by n on the second half of the top boundary.
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Figure 5.11: If one shortest path has Fréchet distance at most ε to the line segment,
then so does every other shortest path in the hourglass.

By Corollary 5.3, a feasible path in free space corresponds to an edge in the graph
G =Merge(RG(i −l 1, i), CRG(i, i −l 1), RG(i −l 1, i)). Note that for computing G
it would suffice to consider the subgraph of CRG(i, i−l 1) of only vertical segments
in free space. However, this would not improve the asymptotic complexity of (the
computation of) G.

5.4.3 Fréchet Distance between a Diagonal and an Hourglass

The following lemma shows how to solve the decision problem for the Fréchet dis-
tance between a diagonal and all shortest paths in an hourglass. As introduced
in Section 5.2.4, we consider generalized hourglasses given by two end chains, i.e.,
two chains of consecutive edge segments. With a shortest path in the hourglass we
always refer to a shortest path between two points on the two end chains defining
the hourglass.

Lemma 5.5. Let an hourglass and a diagonal be given such that the end chains of
the hourglass are contained in the ε-disks around the endpoints of the diagonal. If
there exists one shortest path in the hourglass with Fréchet distance at most ε to
the diagonal, then all shortest paths in the hourglass have Fréchet distance at most
ε to the diagonal.

Proof. Let D be the diagonal, A = a1, . . . , al be a shortest path in the hourglass
with δF (A, D) ≤ ε, and let B = b1 . . . , bk be another shortest path in the hourglass,
as in Figure 5.11. Because the Fréchet distance between D and A is at most ε, each
ε-disk around the endpoints of D must contain at least one endpoint of A. Without
loss of generality we assume that a1 and b1 lie in one ε-disk and al and bk lie in the
other ε-disk.

We define B′ = b1, v1, . . . , vi, a1, . . . , al, w1, . . . , wj , bk, where v1, . . . , vi and w1,
. . . , wj (i, j ≥ 0) are the vertices of the end chains that (possibly) lie on a shortest
path between b1, a1 and b2, a2, respectively. See Figure 5.11 for an illustration.
Because a1, b1 have distance at most ε to one endpoint of D, al, bk have distance at
most ε to the other endpoint, and δF (A, D) ≤ ε, it follows that δF (B′, D) ≤ ε.

If B′ is not the shortest path from b1 to bk there exist two points on B′ such
that simplifying B′ by replacing the part of B′ between the two points by the line
segment between them yields a shorter path B′′ from b1 to bk in the hourglass. By
Lemma 5.1, δF (B′′, D) ≤ δF (B′, D). Repeating this process and observing that the
simplified paths converge to B shows that δF (B, D) ≤ δF (B′, D) ≤ ε.

Note that in an open hourglass there always exists (by definition) a shortest
path S between the end chains which is a segment. Thus, if the end chains of an
open hourglass lie in ε-disks around the endpoints of the diagonal – as in Lemma 5.5
– then the Fréchet distance between the segment S and the diagonal is at most ε.
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This holds because the Fréchet distance between two segments equals the maximum
distance of the endpoints.

5.4.4 Fréchet Distances between a Diagonal and Multiple

Hourglasses

In Section 5.4.5 we need to solve the decision problem for the Fréchet distances
between a diagonal and multiple hourglasses that have a common end chain. This
can be done in linear time by choosing an arbitrary vertex on each end chain of the
hourglasses and then using Lemma 5.5 and the following Lemma 5.6.

Lemma 5.6. Given a diagonal, a polygon with m vertices, and a set of m points
w1, . . . , wm on the boundary of the polygon. The decision problems for the Fréchet
distances between the diagonal and the m − 1 shortest paths π(w1, wi) between w1

and wi for i = 2, . . . , m can be solved in total O(m) time.

Proof. We add the points w1, . . . , wm to the vertices of the polygon. Then we run
the linear time algorithm for computing the lengths of all shortest paths from one
vertex of a simple polygon to all others by Guibas et al. [30]. During the algorithm
we decide whether the Fréchet distance between the diagonal and the shortest path
from w1 to wi for i = 2, . . . , m is less than or equal to ε using the free space diagram
and the reachability structure for that problem. This structure can be updated in
amortized constant time as follows.

The algorithm by Guibas et al. [30] computes the shortest paths starting at w1

such that when a new vertex is processed all other vertices on its shortest path to
w1 have already been processed and the previous vertex on the shortest path is
known. Thus, for deciding the Fréchet distance between the shortest path to the
new vertex, we only need to discard some of the last cells and compute the new last
cell of the free space diagram. One cell can be computed in constant time and the
discarding can be done in amortized constant time.

If the previous vertex was not reachable in free space, the new vertex is not
either, and we store this for the new vertex. If the previous vertex was reachable,
we compute the top boundary of the new cell of the free space diagram. For an
original vertex of the polygon which is not one of the wi, we then test and store
whether the top boundary is reachable from the last cell and store the leftmost
reachable point on the boundary. For a vertex wi we also test and store whether
the right corner of the top boundary is reachable which means that the Fréchet
distance is less than or equal ε.

5.4.5 Decision Algorithm

Now we can give our algorithm for solving the decision problem for the Fréchet
distance between simple polygons: Algorithm 4. The objective of the algorithm is
to search for a feasible path in the free space diagram, which by Corollary 5.2 is
equivalent to solving the decision problem for the Fréchet distance between simple
polygons. We first explain the details of the algorithm and then show in Theorem 5.1
that it solves the decision problem for the Fréchet distance between simple polygons
in polynomial time.
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Algorithm 4: DecideFréchet(P, Q, ε)

Input: Simple Polygons P, Q, ε > 0
Output: Is δF (P, Q) ≤ ε?

Compute approximate minimum convex decompositions of P and Q. Let C1

be the smaller of these. Assume without loss of generality that C is a convex
decomposition of P . Let l be the number of diagonal endpoints in C.
Let C′ be the simplified convex decomposition obtained from C. Compute a2

triangulation TC′ of C′.
Compute a single free space diagram of the boundary curves.3

forall i = 0, . . . , l − 1 do4

Compute RG(i, i +l 1)5

end6

forall diagonals in the convex decomposition C do7

forall placements in the free space do8

Decide δF (diagonal, shortest path)≤ ε? for a shortest path in the9

hourglass of the placement.
end10

end11

forall i = 0, . . . , l − 1 do12

Compute CRG(i, i −l 1) based on TC′ using memoization.13

Compute G =Merge(RG(i −l 1, i), CRG(i, i −l 1), RG(i −l 1, i)).14

Query G for a feasible path starting in [di−l1, di).15

end16

Output true if a feasible path has been found, else output false.17

Lines 1–11 consist of preprocessing. In line 1 we compute a convex decompo-
sition C of P or Q. The size of the convex decomposition will be a multiplicative
factor in the runtime of the algorithm. Therefore we compute an approximate min-
imum convex decomposition of both P and Q and choose the smaller. Then the
size k of the chosen convex decomposition fulfills k ∈ O(min(c(P ), c(Q))), where
c(P ) and c(Q) denote the size of a minimum convex decomposition of P and Q,
respectively. The number l of endpoints of diagonals in C fulfills l ≤ 2k. We assume
without loss of generality that the chosen convex decomposition is a decomposition
of P . If Q has the smaller convex decomposition, we swap the roles of P and Q for
the rest of the algorithm.

Let d0, . . . , dl−1 be the endpoints of the diagonals in C in the given order. In
line 2 we compute a triangulation TC′ of the simplified convex decomposition C′

(see Section 5.4.2). In line 3 a single free space diagram of the boundary curves is
computed. In line 4–6 the reachability graphs RG(i, i +l 1) for i = 0, . . . , l − 1 are
computed. The graph RG(i, i +l 1) is computed by first computing the reachability
structure of the part of the free space between di and and di+l1. The intervals of
this reachability structure are refined to the refinement of the reachability structure
of the double free space diagram. Then the reachability structure is converted to
the reachability graph.

In lines 7–11 we test for all diagonals in C which of their possible placements
in the free space are valid, i.e., map the diagonal to a shortest path with Fréchet
distance at most ε. For this we consider all free intervals on the boundary of Q and
pick one arbitrary point in each interval. Then we apply Lemma 5.6 using these
points and by Lemma 5.5 this solves the decision problem for the Fréchet distance
for any shortest path determined by the placement.

In lines 12–16 we loop over all diagonal endpoints di and search for a feasible
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path that starts in [di−l1, di) on the bottom boundary of the free space diagram.
For this, we compute CRG(i, i−l 1) using the recursive formula of Lemma 5.4 based
on the diagonals of TC′.

In order to avoid recomputation of the same combined reachability graphs we
employ the dynamic programming technique of memoization in which the first re-
cursive call to CRG(i, j) computes and stores the graph, and subsequent calls simply
access the stored graph without any further computation. Hence, we compute and
store all CRG(i, j) for all c-diagonals and t-diagonals. The Combine procedure
used in Lemma 5.4 checks for each edge in the input graph whether the hourglass
between the two intervals contains (only) valid placements for the diagonal (di, dj).
The validity of the placements can be looked up in constant time from the results
precomputed in lines 7–11 for the corresponding hourglass. If a placement is not
valid, then the edge is deleted, otherwise it is kept.

In line 14 we merge RG(i −l 1, i) to the front and to the end of CRG(i, i −l 1).
This results in the graph G whose edges, by Corollary 5.3, encode feasible paths
starting in [di−l1, di). Then, in line 15, we query for feasible paths in G by checking
whether any interval in [di−l1, di) on the bottom boundary is connected by an edge
to the same interval translated by n on the second half of the top boundary. Finally
in line 17, we output “true” if a feasible path has been found starting in one of the
intervals, else we output “false”.

Theorem 5.1. Algorithm 4 solves the decision problem for the Fréchet distance
between two simple polygons P, Q. Its runtime is O(k T (mn)), where T (N) is the
time needed to multiply two N ×N matrices (using O(N2) space), n and m are the
number of vertices of P and Q, and k is the minimum size of a minimum convex
decomposition of P or Q.

Note that T (N) = Ω(N2) and the currently fastest known matrix multiplication
algorithm is the algorithm of Coppersmith and Winograd [18] which is an improve-
ment of Strassen’s algorithm [49] and has a runtime of T (N) = O(N2.376) using
O(N2) space.

Proof. We first show the correctness of the algorithm and then analyze its time
complexity.

Correctness By Corollary 5.2 the Fréchet distance between simple polygons is
less than or equal to a given value ε if and only if there is a feasible path in the
free space diagram. Thus it suffices to show that Algorithm 4 correctly determines
whether such a feasible path exists.

Lines 1–11 of the algorithm are preprocessing steps. Lemma 5.5 proves that
the loop in lines 7–11 correctly solves the decision problem for the Fréchet distance
between a diagonal and any shortest path in a certain hourglass.

In the main part of the algorithm, lines 12–16, we search for a feasible path
in the free space. A feasible path has to start in in one of the intervals [di−l1, di),
where di is a diagonal endpoint, and we loop over all such diagonal endpoints. For
each di we compute CRG(i, i−l 1), merge RG(i −l 1, i) to the front and to the end,
and query for a feasible path in the resulting graph G. By Corollary 5.3, edges in
G encode feasible paths.

Time Complexity Computing the approximate minimum convex decomposi-
tions in line 1 takes O(m log m + n logn) time. The triangulation TC′ in line 2

can be computed in O(k) time by fan-triangulating every convex face in the convex
decomposition C′ which is of size O(k).

The free space diagram in line 3 can be computed in time O(mn). For computing
all reachability graphs in lines 4–6, we first compute the reachability structures for
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all parts of the free space between neighboring diagonal endpoints. These reacha-
bility structures can be computed in O(

∑l
i=1 mni log(mni)) = O(mn log mn) time,

because each free space part consists of m×ni cells for i = 1, . . . , l and
∑l

i=1 ni = n.
The refinement of the reachability structure of the double free space diagram can be
computed in O(mn log mn) time. From this refinement and the partial reachability
structures, the reachability graphs RG(i, i+l1) can be computed in total O(k(mn)2)
time.

In lines 7–11 we test for all diagonals of C which of their possible placements
in the free space are valid. For a fixed diagonal endpoint this can be done in O(m)
time using Lemma 5.6. Thus, testing the placements for one diagonal can be done
in O(m2) and for all diagonals in O(km2) time.

In the loop in lines 12–16 each CRG(i, j) is computed exactly once using a
recursive call as described in Lemma 5.4. A CRG(i, j) is computed for all c- and
t-diagonals of the triangulation TC′ which has l = O(k) vertices. Thus, O(k)
combined reachability graphs are computed and stored. Each recursive call involves
at most one Merge and one Combine, and line 14 adds another Merge, for a
total of O(k) Merge and Combine operations. The triangles incident to (di, dj)
that are needed during a recursive call to CRG(i, j) (cf. Lemma 5.4) can be found in
constant time, assuming that TC′ is given in an appropriate graph-representation,
such as a doubly-connected edge list.

We merge the combined reachability graphs by multiplying their adjacency ma-
trices (using boolean operations). Thus, merging two combined reachability graphs
takes the time to multiply two O(mn) × O(mn) matrices.

A Combine operation involves exactly one diagonal and the correct placing of
this diagonal is checked for each of the O((mn)2) edges by looking up the precom-
puted results of lines 7–11 which takes O((mn)2) time. In total, the complexity
of the loop in lines 12–16 is therefore O(k T (mn)), where T (N) is the time to
multiply two N × N matrices and k is the size of the convex decomposition. Note
that looping line 13 over all diagonal endpoints (lines 12–16) does not increase
the complexity because we store and re-use the combined reachability graphs of
subresults. In line 15 we query for a feasible path, which can be done in amortized
O(mn) time for the loop in lines 12–16.

In total, the time complexity of the algorithm is dominated by the time com-
plexity of the main loop in lines 12–16 which is O(k T (mn)).

The space complexity of Algorithm 4 is O(k(mn)2) since it stores O(k) com-
bined reachability graphs and O(k) reachability graphs which each have complexity
O((mn)2).

5.5 Computing the Fréchet Distance

For computing the Fréchet distance we proceed as in the case of polygonal curves [6]:
we search a set of critical values for ε using the decision algorithm in each step. The
set of critical values is a candidate set for the Fréchet distance, i.e., a set of values
that the Fréchet distance may attain. For this we first give the set of critical values
in Lemma 5.7 and use this set of critical values to compute the Fréchet distance in
Theorem 5.2.

By Corollary 5.2 the Fréchet distance between simple polygons equals a value ε
if and only if there is a feasible path in the free space for parameter ε and there is
no feasible path in the free space for any parameter ε′ < ε. Such a value of ε is an
example of a critical value.

Alt and Godau [6] distinguish three kinds of critical values for polygonal curves.
Each type of critical value corresponds to a combinatorial change in the free space
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diagram and can be described geometrically. For their Algorithm 2 these are:

(a) The critical value is the distance between corresponding endpoints – the cor-
ners of the free space diagram become free.

(b) The critical value is the distance of a vertex on one curve to a segment of the
other curve – a cell boundary becomes non-empty.

(c) Two vertices on one curve have the same distance, the critical value, to a
point on the other curve – a passage through several cells may open.

For closed curves the critical values of type (c) refer to passages in either one of
the double free space diagrams (with either curve doubled). Now we can give the
critical values for simple polygons.

Lemma 5.7. Given two simple polygons with m and n vertices, respectively. Their
Fréchet distance equals one of O(m2n + mn2) critical values. The set of critical
values can be computed in O(m2n + mn2) time.

Proof. Recall from Section 5.4.1 that a feasible path has two properties: (1) it
realizes a Fréchet distance less than or equal ε on the boundary curves and (2) it
maps diagonals to shortest paths with Fréchet distance less than or equal ε. A
critical value for the Fréchet distance between simple polygons is therefore either
(1) a critical value for the Fréchet distance between the closed polygonal boundary
curves, or (2) a critical value for the Fréchet distance between a diagonal and a
shortest path, or both.

Equivalently, the critical values for simple polygons can be derived by comparing
the decision algorithm for the Fréchet distance between the polygons with the deci-
sion algorithm for the Fréchet distance between the boundary curves (Algorithm 1
in [6]). In addition to the critical values for the boundary curves, critical values for
simple polygons can occur in lines 7-11 of our Algorithm 4. In these lines we test
whether the Fréchet distance between a diagonal and a shortest path is less than
or equal ε.

There are O(m2n + mn2) critical values for the Fréchet distance between the
closed polygonal boundary curves, each of which can be computed in constant
time [6]. It remains to compute the critical values for the Fréchet distance between
a diagonal and a shortest path. Even though there are infinitely many shortest
paths in a simple polygon, we will see that a polynomial number of these critical
values suffice.

Each type of critical value for polygonal curves involves at least one vertex of
one of the curves. For the Fréchet distance between a diagonal and a polygonal
curve it has to involve a vertex of the curve. This is true because the free space
of a diagonal and a polygonal curve consists only of one column. Thus a path in
the free space does not pass through any vertical cell boundaries, and the critical
values of type (b) and (c) can be restricted to horizontal cell boundaries.

Thus, we can restrict the critical values for the Fréchet distance between a
diagonal and a shortest path to the critical values of type (a) and the critical values
of type (b) and (c) for inner vertices of the shortest path. The critical values of
type (a), i.e., the distances between endpoints, are distances between the boundary
curves, which we already consider in the critical values of type (b) for the boundary
curves. Therefore, as critical values for the Fréchet distance between a diagonal
and a shortest path, it suffices to compute the critical values of type (b) and (c) for
inner vertices of the shortest path.

A shortest path in a simple polygon is a polygonal curve with arbitrary first and
last vertex on the boundary and all inner vertices are reflex vertices of the polygon



5.6. DISCUSSION 61

boundary, i.e., they have an interior angle larger than π. There are k ≤ n diagonals
and at most m reflex vertices in Q.

For a fixed diagonal we compute the critical values for all shortest paths as
follows. The critical values of type (b) are the distances of a reflex vertex to the
diagonal. These are O(m) values each of which can be computed in constant time.
The critical values of type (c) occur when two reflex vertices have the same distance
to a point on the diagonal. This point is the intersection of the diagonal with the
bisector between the two reflex vertices. These are O(m2) critical values, each of
which can again be computed in constant time. In total, for each diagonal we
compute O(m) critical values of type (b) and O(m2) critical values of type (c)
in total O(m2) time. This yields O(km2) critical values for the Fréchet distance
between a diagonal and a shortest path which can be computed in time O(km2).

Remark. As critical values for the second property of a feasible path we use
critical values for the Fréchet distance between a diagonal and a shortest path. We
could reduce these critical values to the Fréchet distances between a diagonal and
a shortest path which are attained at an inner vertex of the shortest path. This,
however, would increase the time for computing these critical values and would not
reduce the number of critical values asymptotically. For computing these critical
values we would compute for all of the k diagonals in P and a shortest path between
reflex vertices (r1, . . . , rl) in Q the Fréchet distance of the diagonal (di, dj) and the
polygonal path (di, r1, . . . , rl, dj). This would also yield O(m2k) critical values but
to compute them would take O(m3k log m) time.

Using the above lemma we can compute the Fréchet distance between simple
polygons in polynomial time.

Theorem 5.2. The Fréchet distance between two simple polygons P and Q can be
computed in O(k T (mn) log(mn)) time, where T (N) is the time needed to multiply
two N×N matrices, (using O(N2) space), n and m are the number of vertices of P
and Q, and k is the minimum size of a minimum convex decomposition of P or Q.

Proof. We use Algorithm 1 with Algorithm 4 as decision algorithm and the critical
values given in Lemma 5.7. The correctness of the resulting algorithm follows from
Theorem 5.1 and Lemma 5.7.

The run time of computing the critical values is O(m2n + mn2) and of sorting
them is O((m2n + mn2) log(mn)). The binary search has an O(k T (mn) log(mn))
run time which dominates the total run time.

The space complexity of this algorithm is dominated by the space complexity of
the decision algorithm in the binary search, which is O(k(mn)2).

Note that the algorithm for polygonal curves [6] searches the set of critical values
using Cole’s [17] technique for parametric search [39] based on sorting. In their case
this yields a better run time than a binary search. For curves the run time for a
binary search is dominated by the time for computing and sorting the critical values.
In our case the run time is always dominated by the actual binary search, due to
the higher run time of the decision algorithm. Thus, parametric search would not
improve the run time of our algorithm.

5.6 Discussion

In this chapter we have given an algorithm for computing the Fréchet distance
between simple polygons. This is the first polynomial time algorithm for computing
the Fréchet distance for a non-trivial class of surfaces. For this we showed that the
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set of realizing maps can be restricted to a set of “nice” maps which we can handle
algorithmically.

As discussed in Section 3.6, an interesting open problem is whether such a
restriction of the feasible set of homeomorphisms is possible for the general case of
triangulated surfaces. In particular, we would like to find other classes of surfaces for
which the set of feasible homeomorphisms can be restricted such that computability
or even polynomial time computability can be shown. A promising next step might
be to extend the results for simple polygons to more general polygons such as
polygons with holes, self-intersections, or folds.

The NP-hardness proof [29] shows that it is NP-hard to decide the Fréchet
distance between a triangle and a selfintersecting polygon. The selfintersecting
polygon is given by a non-injective parameterization f : [0, 1]2 → R

2. It can be
expanded to a non-selfintersecting surface in R

4. For this, consider the function
graph of the parameterization with scaled parameter value, i.e., consider f ′(t) =
(δt, f(t)) where δ is the scaling parameter. The function f ′ is injective and for δ
tending to 0, f ′ comes arbitrary close to an embedding of f . Thus, the NP-hardness
holds also for non-selfintersecting surfaces in R

4. In this chapter, we have shown
that the Fréchet distance is polynomial time computable if the parameterizations are
required to be injective in R

2, i.e., the polygons are simple. It remains open, whether
it is NP-hard to decide whether the Fréchet distance between non-selfintersecting
surfaces in R

3 is less than or equal ε.


