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� Introduction

Throughout our talk� we consider only objects suitable for both computers and logic i�e� vocab�
ularies are 	nite� structures are both 	nite and ordered and sets of structures are closed under
isomorphisms� Parts of the presentation can be applied to other cases� but this does not concern
us�

Furthermore we assume the reader is familiar with the basic methods and results of both 	nite
model theory and complexity theory� In the more formal part of this presentation we shall give
explicit de	nitions of all but the most standard terms we use� but in the introduction and after
thought sections we shall often use terms and results without explicitly de	ning them�

The classical results of 	nite model theory 
B�u�
�Fag���Imm���Sto���AV��� showed that there
is a tight relationship between logics and complexity classes� Namely for most �natural� logics and
complexity classes there are complexity class which captures a given logic and a logic �or sub logic�
which captures a given complexity class�

B�uchi � Monadic SOL on strings captures the REGULAR LANGUAGES�
Fagin � Existential SOL captures NP�
Stockmeyer � Each level of the Polynomial Hierarchy PH is captured by some level of the 	xed

alternation hierarchy of SOL�
Immerman � FOL
DTC�� FOL
TC�� FOL
ATC� capture L�NL� bP �
Abiteboul�Vianu � LFP � IFP captures P and PFP captures PSpace�

Recent results by 
MP���Ste��b�

MP�� � FOL
HEX� captures PSpace�

Stewart FOL
HAM � captures LNP�

while in the same spirit as the above� indicated that in some cases this relationship is very �mod�
ular�� This modularity was made explicit in 
MP��� where it was speci	cally stated�

For Immerman�s logics FOL
DTC�� FOL
TC�� FOL
ATC� further enhancement of the
logic by a Lindstr�om quanti	er for a set K gives a new logic FOL
DTC�K� etc� which
captures the original class relativized to K � for example LK �

Two remarks should be immediately made with respect to this result�

�i� To make these results work one has to use a very precise model of log space oracle computations�
�ii� In the original paper 
MP��� it was WRONGLY claimed that FOL
ATC�K� captures PK�

The complexity class captured is only ALK with a speci	c oracle computation model for AL
in which ALK �� PK for arbitrary K�

The important point of these �modularity� results was not that yet a few more complexity
classes �or logics� where captured� but rather that the capturing is achieved independently of the
semantics of K i�e� if M is some oracle using machine and � is some formula with a QK quanti	er�
such that for a given set K the set de	ned by � equals the set recognized by M � then if we connect
M to an oracle for a di�erent set K� and change the semantics of the Q quanti	er to be that of
K�� the �new� formula de	nes exactly the set recognized by the �new� machine�

The main thesis of this talk is that this modular relationship is not limited to the speci	c logics
Immerman used but rather is true for arbitrary logics� Speci	cally we show that by enhancing
various fragments of SOL with a Lindstr�om quanti	er QK we capture the various relativized
versions of the � and � classes of PH� and this capturing is independent of the semantics of K�

One may now take any logic L which captures some class C� and ask if the class captured
by L
K� is CK� Naturally the answer depends on what we mean by CK � It turns out that in
many cases� speci	cally when L itself already contains a Lindstr�om quanti	er as part of its syntax�
the captured class is di�erent from what is usually understood by CK � Apparently such results
contradict our above thesis�
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To understand why we get such results and why we believe they do not contradict our �thesis�
we look a bit more closely into what constitutes a complexity class�

One usual way to de	ne complexity classes is to consider such a class� say C as the set of
all computation devices �Turing machine� which obey certain restrictions on resources such as
time� space� etc� Under such a de	nition a complexity class naturally includes various �types� of
machines � acceptors� transducers and Turing transducers�

De�nition�� 	 Acceptors are machines which given an input structure either accept or reject
it �typically by entering one of two distinguished states�� An acceptor can recognize a set K �
i�e� accept all members and reject all non�members of K�

	 Transducers are machines which given an input structure produce some other structure as
output� A transducer can reduce a problem �set of ��structures� K� to a problem �set of ��
structures� K� by producing for each ��structure A a � structure B such that A � K� i�
B � K��

	 Turing Transducers or relativized acceptors are acceptors which have access to an oracle� such
that given an input structure they either accept or reject �typically via consulting the oracle
some times during their operation�� A Turing transducer Turing reduces K� to K� if when it
is connected to an oracle for K� it recognizes the set K��

We remark that while it is possible to make the distinction between the three �types� of
machines quite fuzzy� in context they have a clear meaning� For example ifHAM is the set of graphs
having a Hamiltonian path� the statement �HAM �NP� clearly speaks about NP�acceptors� The
statement �HAM is NP�complete to many one P reductions� clearly speaks about P�transducers
�and NP�acceptors� and a question such as �Does the Polynomial Hierarchy collapse �� speaks
about various Turing transducers�

Assume we have some complexity class C which is de	ned to include exactly all acceptors
obeying certain resource bounds� Naively one might assume that determining which transducers
and Turing transducers should �naturally� be included in such a class is a trivial matter� Indeed
these issues where 	rst raised for the class P where there is universal agreement on this matter
and any �natural� suggestion is equivalent to any other�

The problem becomes less obvious when more �di�cult� classes are investigated� For example�
the class L has at least � plausible models of how to de	ne the set of LogSpace bounded Turing
transducers� �Simon�s bounded model� Ladner Lynch�s unbounded model� Wilson and Buss stack
model and Lynch and Buss�s multi tape model� not to mention a 	fth variation suggested by the
authors of this work in 
MP��� � see references therein for the other models��

The second main thesis of this talk is that this di�culty� in de	ning for a given class of acceptors�
its �natural� sets of transducers and Turing transducers is inherent� in the sense that� looking at
complexity classes from the viewpoint of 	nite model theory� there is no �unique choice��

Combining the two lines of thought� if we now understand C to be a class containing a given set
of acceptors� a given set of transducers and a given set of Turing transducers� then if the whole of
C is captured by some logic L �with or without Lindstr�om quanti	ers�� then CK will be captured
by L
K�� and this in a way independent of the semantics of K�

Furthermore if C and D are two �whole� complexity classes captured by some logics LC and
LD both based on the same �pure� logic� then if there is an oracle such that CK �� DK this
implies C �� D� This however is often a very undramatic result� as the distinction might lie in the
classes of transducers or Turing transducers and not in the class of acceptors which is usually the
one of interest�

For example the Baker� Gill and Solovey oracle K such that PK �� NPK does demonstrate
that our �whole� class P is di�erent from the �whole� class NP since it proves that the class of
P Turing transducers is distinctly weaker than the class of NP Turing transducers� But this is a
long way from answering whether the class of P acceptors di�ers from the class of NP acceptors
� which is the �real� P�NP question�
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As we claim that from the 	nite model theoretic point of view the relationship between classes
of acceptors and classes of transducers is �weak�� such separation results teach us very little �if
anything� about those complexity theoretic results which are of interest to us�

Finally we admit that this presentation has a third aim� which is to correct mistakes in the
published version of 
MP���� We shall therefore review the results of that publication in some detail
and point out the errors and corrections where appropriate�

� Enhancing a Logic by a Lindstr�om Quanti�er

The aim of this section is to de	ne L
K� and as we go through the de	nition to show the �logical�
analogons of acceptors� transducers� oracles� and Turing transducers� As we assume the audience
to be familiar with the notion of a logic enhanced by a Lindstr�om quanti	er we allow ourselves
to speak about such logics before they are de	ned� To completely formalize the presentation one
should apply the de	nitions 	rst only to �pure logics� �without Lindstr�om quanti	ers� and then
build the other cases inductively�

We remark that most of our de	nitions are in themselves not new and can be found already
in 
Ebb��� of 
BF���� The only di�erence is that we include vectorization inside our notion of
feasibility �as was done in 
MP���� and that we allow free second order variables where these are
meaningful�

Let L be a logic or a fragment of a logic� As a guiding example consider L as either FOL or
SOL� however the de	nitions apply inductively so that L can already be a logic enhanced with
some Lindstr�om quanti	ers� Also we believe that our de	nitions apply to 	xed point logics such as
LFP � IFP and PFP logics as well� but have not yet veri	ed our de	nitions with respect to these
logics�

The 	rst analogy we draw is that a sentence �or a formula without free variables� is the analog
of an acceptor� � � M i� each ��structure is either accepted by M and satis	es � or is rejected
by M and does not satisfy ��

Clearly the set of all sentences of a logic is then the analog of the set of all acceptors in
a complexity class closed under various basic operations� We observe that the usual notion of
capturing is �for every formula de�ning some set S there is an acceptor for S and for every
acceptor of some set S there is a formula de�ning S�� As this notion speaks only about acceptors
and sentences of the logic� the �classical� results of 	nite model theory about logics capturing
complexity classes� as they are usually stated� are too statements only about classes of acceptors�

One may now ask what is the analog of a formula with free variables � While for such an object
we do not have a clear �complexity theoretic counterpart� if we group some such formulas together
we get the counter part of a transducer� This is done in two steps as follows�

De�nition
 �Feasibility�� Let � � fR�� � � � � Rmg be some vocabulary� For Ri a relation� let
	�Ri� denote its arity� Let 
 � h�� ��� � � � � �mi be formulas of L over a �possibly di�erent� vocab�
ulary �� We say that 
 is k�feasible for � over � if the following hold�

�i� � has k distinguished distinct �	rst order� free variables�
�ii� Each �i has k	�Ri� distinguished distinct �	rst order� free variables�
�iii� It is possible for 
 to have other non�distinguished free �	rst and second order� variables�

These do not have to be distinct among the component formulas of 
�


 is feasible for � over � if it is k�feasible for � over � for some integer k�

Observe that if 
 is feasible for � over �� then it can be regarded as a logical reduction trans�
forming a � structure into a � structure� We formalize this notion as follows�

De�nition� �The structure A��� Let A �with universe A� be a ��structure and 
 be k�feasible
for � over �� Given a substitution Z for all none distinguished free variables of 
 �FO variables to
elements of A and SO variables to appropriate subsets of A�� the structure A� is de	ned as follows�
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�i� The universe of A� is the set A� � f�a � Ak � A�Z j� ���a�g�
�ii� The interpretation of Ri in A� is the set

A��Ri� � f�a � A�
��Ri��k � A�Z j� �i��a�g�

Note that A� is a ��structure of cardinality at most j A jk� hence our analogy works only for
poly�size transducers�

Having the analog of a reduction or transducer� we naturally proceed to suggest the following
as the analog of an oracle query�

De�nition
 �The QK Formation Rule�� Let K be a set of ��structures closed under isomor�
phism and 
 be a set of ��formulas of the logic L� The QK formation rule� states that

QK


is a formula where all the distinguished free variables of 
 are bound� Given a substitution Z to
the remaining free variables of 
� A j� QK
 i� A� � K�

Observe that as with the complexity theoretic notion of an oracle query �or consultation� this
notion is independent of the semantics of K�

We conclude this part of the �story� by suggesting that the analog of the set of Turing trans�
ducers is the set of sentences of L
K� as follows�

De�nition� �The Logic� L
K� � The enhancement of a logic L by a quanti	er for K �L
K�� is
obtained by adding the QK formation rule to the set of formation rules of L and by adding the
interpretation of this rule to the set of interpretation rules of L�

� The Power of L�K� � The First Order Case

We now review� in light of our above analogies� some old and new results about logics of the
form L
K� where L is FOL possibly enhanced by some set of Lindstr�om quanti	ers� We start by
restating the 	rst such results due to Immerman 
Imm����

FOL
DTC� � L FOL
TC� � NL FOL
ATC� � AL � P

We remark that while the 	rst three of these results are obtained in a direct way by mapping the
set of all con	gurations of log space bounded machines to the set of k�tuples of the input structure�
FOL
ATC� � P was obtained indirectly from FOL
ATC� � AL by a theorem of Chandra� Kozen
and Stockmeyer 
CKS� equating the sets of AL acceptors and P acceptors�

One could think of an alternative proof�

�i� Show that the set of L transducers is captured by the set of all 
 vectors of formulas over
FOL
DTC� �say under the Ladner Lynch unbounded model 
LL����� This is easy since one
can map the set of all con	gurations of a log space bounded machine to k�tuples of the input
structure�

�ii� As ATC is a problem P complete for �many one� L reductions� each acceptor in P has an
equivalent formula of the form ATC
 where 
 is in FOL
DTC��

�iii� As FOL
ATC�DTC� can be model checked in P� this logic captures P�
�iv� As DTC is de	nable in FOL
ATC�� P � FOL
ATC�DTC� � FOL
ATC��

In fact a similar proof was used in 
MP��� to show that FOL
HEX� � PSpace� where HEX
is the set of graphs over which player one �the connector� has a winning strategy in the game of
Hex as de	ned in 
GJ����

�i� The sets of L� NL and AL � P transducers are captured by the sets of vectors of formulas 

in FOL
DTC�� FOL
TC� and FOL
ATC� respectively�
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�ii� HEX is PSpace�complete for �many one� L reductions� so each PSpace acceptor is equivalent
to a formula HEX
 where 
 � FOL
DTC��

�iii� FOL
HEX�DTC� can be model checked in PSpace� so this logic captures PSpace�
�iv� DTC is de	nable in FOL
HEX� so PSpace � FOL
HEX��

Similar claims where made about FOL
ATC�A� � �P
i where A is some problem �P

i �complete for
many one polynomial reductions �see 
Joh�
� for examples of such problems��

Remark� �� To prove that the set of AL and P transducers coincide we use the equality of the sets
of acceptors �consider the language L where the input is the set of pairs �structure�number� such
that the bit marked by the number in the output of the transducer is a ��

�� Given that the notion of a L reduction is 	xed� there are two possible notions of what is an
NL reduction is �the usual one and the 
�reduction one� it can be shown �see appendix A� that
they coincide in terms of computational power�

The fact that our results about transducers could be generalized to Turing transducers was

	rst hinted in a paper by Stewart who showed 
Ste��a�Ste��b� that FOL
HAM � � LNP� We note
that while he did not state this explicitly� and while he did rely on the exact semantics of HAM
for his result� the very complexity class he captured indicates this�

The generalization to Turing transducers was 	rst noted �albeit with errors� in 
MP���� The
correct version of these results is�

Theorem�� For arbitrary K the logics FOL
DTC�K�� FOL
TC�K� and FOL
ATC�K� capture
the classes LK � NLK � and ALK respectively�

So that we have that the logics FOL
DTC�� FOL
TC� and FOL
ATC� completely capture the
classes L� NL and AL�

Remark� �� For all the above classes there is no one agreed upon set of �natural� Turing transducers�
Indeed to make our results hold� a very speci�c set of such Turing transducers has to be chosen
� the so called unbounded 	xed stack model� For the L case the oracle computation model �set of
Turing transducers� outlined in 
MP��� is correct as are the proofs for that case� For the NL case
the model as presented in 
MP��� is too weak and the result does not follow� but some rather minor
technical corrections can be made and in the new model the results are correct and the proof is
given in appendix B� For the AL case again a correction has to be made and the proofs are given
in the appendix� but here also we must explicitly state an error in 
MP��� in that WE DO NOT
CAPTURE THE CLASS PK�

One can de	ne the set of Turing transducers of AL in more than one way� and speci	cally there
are two very close models which di�er only in the way they restrict �non�deterministic alternations�
such that in one case

FOL
ATC�K� � ALK but for some K� ALK � PK

and in the other
FOL
ATC�K�� ALK for some K� but� ALK � PK

One may wonder whether other L
K� 	rst order based logics such as FOL
HAM�K� or
FOL
HEX�K� capture interesting classes such as NPK or PSpaceK � Also one might question
whether the above �gap� and our inability to capture PK is not a mere coincidence due to the
incompetence of the authors in de	ning just the right Turing transducer set which achieves both
aims�

We claim this is not the case� and that the answer to the above is negative� Indeed more
speci	cally we claim that the set of Turing transducers of a logic of the form FOL
A�� A� � � �Am�
is in a strong sense bound to the set of logspace bounded transducers as the following theorem
shows�



Oracles and First Order Lindstr�om Quanti�ers �

Theorem�� For any logic L of the form FOL
A�� � � �Am� there is a set of structures K such that
PK �� L
K� �indeed NCK

� �� L
K�	�

Proof� See appendix C �

Note that this is a very di�erent result than what we can obtain for many one transducers�

Theorem�� If L captures C in the usual �acceptor	 sense� than any C many one reduction which
is both functional and polynomial can be captured by a 
 � L�

�� Proof outline� Let M be a C transducer� If it is functional we can map each input structure to
a unique output structure and given an agreed upon encoding scheme to a unique string� Given
that such a �function� exists we can de	ne a language L over pairs of a structure and a number
such that �A� n� � L if on input A the n�bit of the output is a �� If M � C �L � C� then the
acceptor of L is also in C and we have a formula over a dictionary which extends that of the input
structure by some constants needed to represent n� If the reduction is polynomial we can replace
them but a tuple of free variables over the input structure and we get the reduction formula� �

We conclude this section by investigating the relationships between classes C� D� CK and DK

where C ��D� Speci	cally returning now to Stewart�s result� theorem � shows that

FOL
HAM � � FOL
DTC�HAM � � FOL
TC�HAM � � FOL
ATC�HAM �

and hence that

LNP � NLNP � ALNP

� �Where ALK uses the weaker model�� Actually this is true for any quanti	er which can express
all three reachability relations �such as HEX��

In a more general setup we can show

Theorem� �ABC�� Let A� B� C be three sets of structures such that FOL
A�C� �� FOL
B�C�
then FOL
A� �� FOL
B�

Proof� See appendix D� �

As a corollary we get that

Corollary��� LetD and C be two of L�NL� AL� then if there is an oracle K such thatDK �� CK

�under the appropriate transducer models	 then D �� C�

For the L vs� NL case this result was 	rst claimed by Wilson 
Wil��� for his slightly di�erent
model� for a model where the oracle tape is within the space bound it was proven even earlier�

A second corollary is

Corollary��� If there is a problemNP�complete �PSpace�complete	 for many one P reductions�
which is provably not NP�complete �PSpace�complete	 for many one L reductions then L �� P�

Note that if we had that PK � FOL
ATC�K�� theorem �� together with the oracles of Buss

Bus��� or Wilson 
Wil��� separating NLK from PK would imply NL �� P 

Similarly for FOL
HAM � and FOL
HEX� and the appropriate oracles separating NP and
PSpace from lower classes�
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� The Power of L�K� � Beyond the First Order Case

In the literature one 	nds many cases of classes such that D ��C is a long standing open problem
while there are oracles K such that DK �� CK � Besides the above mentioned LK �� PK example�
the most important examples are the results of Baker� Gill and Solovey � 
BGS���� � PK ��
NPK � and further works along this line �see Ko 
Ko��� and references therein� which show oracles
which separate the polynomial hierarchy at any desired level and also from P and PSpace �where

��P
n���

K is de	ned as NP��P
n �

K

��
Our theorem � gives hope that if one succeeds in capturing a complexity class in �whole�� one

might be able to utilize results about the relativized class to learn more about the unrelativized
class� One the other hand our theorem � shows that for most interesting cases enhancements of
FOL are not powerful enough� we hence focus our attention on logics with a more powerful syntax�
speci	cally on SOL�

Well known results by Fagin� Meyer and Stockmeyer 
Fag���MS���Sto���GJ��� show that each
level of the polynomial hierarchy �PH� is captured by some fragment of SOL and that the entire
PH is captured by SOL� Our results here are that for each such fragment of SOL which captures
a level of the polynomial hierarchy� enhancing that fragment with a quanti	er for K captures that
level of the polynomial hierarchy relativized to an oracle for K� Furthermore� the entire polynomial
hierarchy relativized to K is captured by SOL
K�� As a by product of our proof method we obtain
�non constructively� that every formula of SOL
K� has an equivalent in prenex normal form�

We note that as NPK is captured by an enhancement of existential SOL with some quanti	er
and not by an enhancement of FOL� one cannot directly deduce from PK �� NPK results much
about the notorious Pvs�NP question� in fact the conclusions to be drawn are of an opposite
!avor� It is possible to have two logics L� and L� such that L� � L� while L�
K� �� L�
K�
provided the base syntax is di�erent � viewed in complexity theoretic terms� this means that one
can consistently de	ne two complexity classes which contain the same set of acceptors but di�erent
sets of transducers� while retaining the natural closure properties one expects of a complexity class�

� Sub�Logics of SOL�K� and Proofs

De�nition�
� �Sub logics of SOL
K��

�i� INSOL
K� is the restriction of SOL
K� to formulas where all second order quanti	ers appear
outside any QK quanti	er� �The closure of FOL
K� to the formation rules of SOL��

�ii� NFSOL
K� �normalized extended SOL� is the restriction of SOL
K� to formulas where all
second order quanti	ers appear outside any other elements of the formula�

�iii� �SOL
K� ��SOL
K�� � existential �universal� extended SOL � is the restriction of SOL
K� to
formulas �R� ��R�� where � does not contain any second order quanti	ers�

�iv� In general� for X a string of ��s and ��s� we denote by XSOL
K� the restriction of
NFSOL
K� to formulas where the �alternating� quanti	ers form a sub pattern of X� For
example ����SOL
K� can contain formulas of three alternations of SO quanti	ers of the form
�R��R��R��R�� and formulas with � or less alternations starting with either � or ��

We note that from the de	nitions it is not clear that for arbitrary K NFSOL
K� � SOL
K�
and even for K�s where it is so the �transformation rules� which produce an NFSOL
K� formula
given an arbitrary SOL
K� formula� might be K�speci	c�

Lemma��� �Syntactic Lemma	 Every formula in INSOL
K� has an equivalent formula in
NFSOL
K��

Proof� De	ne all formulas of NFSOL
K� as elementary� Clearly every formula of INSOL
K� can
be generated by applying some inductive rules of SOL to a set of elementary formulas� We show
that after each application of such an inductive formation rule the resulting INSOL
K� formula
has an equivalent NFSOL
K� formula� The lemma follows by induction�
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The inductive formation rules of SOL are� �� 	�
� First order quanti	cation and second order
quanti	cation�

	 By de	nition we have that �R� and �R� are in NFSOL
K��
	 For �� the equivalent formula is obtained by �pulling� the negation inside while changing each
���� quanti	er on the way to �����

	 For � 	 � �� 
 �� we rename relation variables to ensure that no quanti	ed relation variable
appears in both � and �� and then �pull� out all quanti	cations of second order variables�

	 For 	rst order quantization we observe that an �x�R� is semantically equivalent to �R�x��
For �x�R� where R is of arity n we observe that the formula � �R�x� is semantically equivalent
if �R is a relation of arity n" � and � is obtained from � by replacing any appearance of R�y�
with �R�x�y�� We also observe that �x�R� � �R�x� and that �x�R� � � �R�x� where � is
obtained as above� Hence a 	rst order quanti	er can always be �pulled� before a second order
quanti	er at the cost of increasing the arity�

By a 	nite number of applications of the above rules we obtain the desired NFSOL
K� formula�
�

To prove equivalence between a �sub� logic and a complexity class we must prove two direction�

	 Model Checking � that every set of structures de	nable by a formula in the logic is recognizable
by a machine in the complexity class�

	 Expressibility � that every set of structures recognizable by a machine in the class is de	nable
by a formula in the logic�

��� Model Checking

Lemma�
� Every formula in FOL
K� has a model checker in PK �even in LK	�

Proof� Every formula if FOL
K� is also a formula of FOL
ATC�K� �FOL
DTC�K�� and the
proof follows from the model checking theorems of 
MP���� �

Theorem��� Every formula in �SOL
K� has a model checker in NPK � for every X every for

mula of XSOL
K� has a model checker in ��P

n �K or ��P
n �K where �P

n or �P
n is the level of the

polynomial hierarchy capturing XSOL� every formula in NFSOL
K� has a model checker in PH�

Proof� For � � �R� a formula in existsSOL
K�� let M be a machine in NPK which operates as
follows� First it nondeterministically generates the relation R and then using it as a substitution
simulates the machine in PK which model checks � �where � is regarded as a formula on an
extended vocabulary � � fRg�� As R is polynomial in the input structure and so is the model
checking the operation takes polynomial time�

For arbitrary X we work by induction on the quanti	ers� For � � �R� we note that this
formula is equivalent to ��R��� As model checking �R�� is in NPK � model checking of � is in
CoNPK �

Induction hypothesis� For every sequence of alternating quanti	ers �X ��X� of length n model
checking of �XSOL
K� ��XSOL
K�� can be done is ��P

n �K ���P
n �K��

Inductive step� From the induction hypothesis we get that for every sequence of alternating
quanti	ers ��X ���X� of length n " �� model checking of �XSOL
K� ��XSOL
K�� can be done
in ��P

n �K ��P
n �K��

Let the model checker of � � ��XSOL
K� guess a substitution for the outer most quanti	ed
existential relations� using this as a substitution copy the extended structure to the oracle tape
and ask the oracle in ��P

n �K � As a nondeterministic step was done and an oracle for ��P
n �K was

used� this is a machine in ��P
n���

K �
For � � ��SOL
K� we observe that � � ��X� can be written as ��� �X��� As model checking

of this formula is just the complement over all � structures of the set of models ��X�� which is
in ��P

n���
K this problem is in ��P

n���
K �

For every � in NFSOL
K� there is some X such that � � XSOL
K� hence it has a model
checker in the appropriate level of PHK � �



��

��
 Expressibility

The proofs below are given as outlines� the details are similar to the proofs for the unenhanced
logics�

Theorem��� �SOL
K� is as expressive as NPK �

Proof� Let M be a machine in NPK � then there is a number d such that for any input of size n�
M makes no more than nd moves� Without loss of generality we can assume that the 	rst nd��
moves of M non�deterministically generate a string of bits on a special tape which we shall call
the non
det tape� while the second nd�� moves M performs deterministically� using the bits on the
non�det tape to resolve any non�determinism in its tables�

Claim� The predicate ORDER�R�� saying that a given relation R is an order relation on �tuples
of� the universe elements of a structure is 	rst order de	nable�

Using an arbitrary order relation we can encode steps of the computation of M as d�tuples
over the universe of the input structure�

Observe that as nd is a bound on the amount of information on a tape of M we can use a
d�tuple of elements over the input structure also to represent a tape position� Therefore a d�ary
relation can describe the state of a tape of M if the alphabet is binary� If the alphabet is larger or
if we wish to encode the head position too� this can be achieved via a d " ��ary relation� Hence
a �d" ��ary tuple can represent the evolution of the tape contents during a computation of M �
Using � such relations Rstate� Rinput� Rnon�det� Rwork and Roracle we can represent the complete
evolution of a computation of M � �Actually Rinput and Rstate can be of arity d" ���

Claim� The answer of the oracle for K at a given computation step� is de	nable by a FOL
K�
predicate over Roracle where the QK quanti	er is outer most�

Claim� The predicate V ALIDM over the � relations saying that these relations indeed represent
the evolution of the computation of M is FOL
K� de	nable� Note that this includes saying that
all � relations are valid encodings of their appropriate objects� For each step j each tape position
has a unique and valid value� each tape has only one head position� and only one state is active at
a time� It also includes saying that for step zero Rinput encodes the input and the work and oracle
tape are empty� all heads are properly positioned and M is in its initial state� Finally� we have to
say that the computation states indeed evolve according to the transition table of M � Here we use
the fact that M acts deterministically as we cannot represent non�determinism while insisting on
each tape cell having a unique value using 	xed arity relations� Also here we use the QK quanti	er
�for those transitions which are oracle consultation��

Claim� The predicate ACCEPTING�x� saying that a d " ��tuple of 	rst order variable x
represents an accepting state of the computation is 	rst order de	nable�

The set of all structures accepted by a machine M � NPK can be represented as an �SOL
K�
formula�

�Rorder� Rinput� Rstate� Rnon�det� Rwork� Roracle� �xORDER�Rorder�	

	V ALIDM �Rorder � Rinput� Rstate� Rnon�det� Rwork� Roracle� 	ACCEPTING�x�

�

Theorem��� For every X XSOL
K� is as expressive as ��P
n �K or ���P

n �K where �P
n or �P

n is
the level of the polynomial hierarchy captured by XSOL�

Proof� For �SOL
X� the result follows as ��P
� �K � CoNPK is all sets of structures whose

complements are in NPK hence they can be written in SOL
K� as �� where � � �SOL
K� but
by the syntactic lemma above this formula is equivalent to an �SOL
K� formula�

Induction step� Assume the theorem to be true for all levels � n of the relativized hierarchy�
We show this implies that the theorem holds for the n" ��st level�
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For ��P
n���K � one can view a machine M � ��P

n���
K as having access to an oracle in ��P

n �K �

��P
n �K � Following similar arguments to the proof for NPK we get that the set of structures

accepted by M can be de	ned via a formula

�Rorder � Rinput� Rstate� Rnon�det� Rwork� Roracle� �xORDER�Rorder�	

	V ALIDM �Rorder � Rinput� Rstate� Rnon�det� Rwork� Roracle� 	ACCEPTING�x�

Where the predicate V ALIDM now contains an expression for oracles answers in ��P
n �K � ��P

n �K �
By the induction hypothesis in this expression all second order quanti	ers are outside any QK

quanti	er� hence the formula we obtained is in INSOL
K�� By the syntactic lemma we can replace
this formula with an equivalent NFSOL
K� formula without increasing the number of alternations
of second order quanti	ers� �

Theorem��� NFSOL
K� is as expressive as PHK

Proof� Let M be some machine in PHK by de	nition it belongs to some level of that hierarchy
hence there is a NFSOL
K� formula which de	nes the set of structures it accepts� �

��� Proof of Main Results

Putting the above theorems together we get�

Theorem��� �Capturing the relativized polynomial hierarchy�

�i	 �SOL
K� captures NPK �

�ii	 For every X XSOL
K� captures the appropriate level ��P
n �K or ��P

n �K of PHK where �P
n

or �P
n is the level captured by XSOL�

�iii	 NFSOL
K� captures PHK �

Theorem
�� SOL
K� � NFSOL
K� and hence SOL
K� captures PHK and has a prenex normal
form�

Proof� NFSOL
K� � SOL
K� by de	nition� As NFSOL
K� captures PHK it remains to show
that every formula in SOL
K� has a model checker in PHK � We prove by induction�

Basis� Let � be a formula containing no QK quanti	ers� then model checking of � can be done
in PH � using results by Meyer�Stockmeyer�

Inductive steps� �� Assume 
 be a set of formulas feasible for K such that each sub formula of

 has a model checker in PHK then QK
 has a model checker in PHK � Proof� Generating the
structure A� can be done via a polynomial number of model checkings �see 
MP���� 
MP����� As
each model checking of a sub formula of 
 can be done in PHK the whole operation is in PHK �
A single query to the K oracle then completes the model checking�

�� Assume � and � are formulas having model checkers in PH then every formula obtained
from them via one application of an SOL formation rule also has a model checker in PHK � Proof�
For negation use the fact that the PH is closed to complement� For 
 �	� apply the model checkers
of the components and accept if either �both� accept� For 	rst order quanti	cation iterate over all
elements of the universe of the input structure� This increases the complexity of the model checking
by no more than a factor of jAj� hence the resulting model checker remains in PHK � For existential
second order quanti	cation � non�deterministically produce the required relation and perform the
model checking for � using this relation as a substitution� For universal SO quanti	cation use
closure to negation� �



��

	 After Thoughts

What have we achieved so far � Mainly we have shown support for our thesis that extending a
logic with a Lindstr�om quanti	er for a set K� is analogous to relativizing a complexity class to an
oracle for K� Speci	cally we have shown this for the Log�space bounded classes L� NL and AL
and for each � and � level of the polynomial hierarchy� Moreover in those cases where we have
such results� they are obtained uniformly independent of the semantics of the oracle used�

In this thesis there are still two large �gaps��
One is that we have not captured the important class PK � We conjecture that the natural

transducer class for P is captured by an appropriate version of 	xed point logic �LFP or IFP
logic� and hence this logic enhanced by a 	rst order Lindstr�om quanti	er for arbitrary K will
capture PK �

The other is that we have not captured the class PSpaceK with poly�size transducers� Again
we conjecture that the PFP logic enhanced by a 	rst order Lindstr�om quanti	er for arbitrary K
would do the trick� However we also do not yet rule out the possibility that SOL
HEX�K� will
be su�cient� This however would lead to some dramatic results�

	 SOL
HEX� � FOL
HEX� � PSpace�
	 SOL
HEX�K� � PSpacebK where the b indicates that the size of each query is subject to

the poly�space bound�
	 As we have oracles such that PSpacebK �� PHK an appropriate version of our theorem � will

show that HEX �� PH and hence PSpace �� PH�

Given the di�culty of the PSpace ��PH question we suspect that step two of this approach will
fail�

Disregarding these �gaps�� what can we conclude from our results�
For example� we may inquire into the relationships between the logic FOL
HAM � and �SOL

and the logic FOL
HEX� and full SOL� It is known that FOL
HAM � � LNP while �SOL � NP
hence we have

�SOL � FOL
HAM �

Also� it is known that FOL
HEX� � PSpace while SOL � PH hence we have

SOL � FOL
HEX�

We now ask�

Question� What happens to these containment relationships when both �sides� are enhanced with
the same arbitrary quanti	er QK�

On aesthetic grounds one might like to conclude that the containment relationship remains�
however besides being WRONG it also implies an easy proof of P �� NP�

Consider K to be the Baker� Gill and Solovey � 
BGS���� oracle such that PK �� NPK � Clearly

FOL
ATC�K� � PK �� NPK � �SOL
K�

If �SOL
K� � FOL
HAM�K� then we can deduce FOL
ATC�K� � FOL
HAM�K� and using
theorem � show that the HAM quanti	er is not expressible in FOL
ATC�� hence P �� NP 
Similarly the oracle separating PHK from PSpaceK can be used to show that SOL
K� �
FOL
HEX�K� implies PH �� PSpace 

The correct observation is that we can have logics L� and L� such that L� � L� but L�
K� ��
L�
K� if in the original inclusion the weaker logic had the richer syntax� Speci	cally �SOL
K� ��
FOL
HAM�K� and SOL
K� �� FOL
HEX�K��

A proof of this for the FOL vs� SOL is a slight variation of the proof of theorem � as given in
appendix C�

What does this mean in terms of complexity classes� Taking FOL
HEX� and SOL as an
example we see that we captured two classes where one has a possibly richer set of acceptors while
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the other has a provably richer set of transducers� As if the set of transducers is somehow �tied� to
the syntax while the set of acceptors can be enhanced via Lindstr�om quanti	ers �in truth adding
a quanti	er also increases the class of transducers but not by as much as we could expect��

One might claim that this �independence� of the acceptors and transducers is an undesirable
consequence of using �noncomputational methods� to de	ne �computational complexity classes��
however we believe the problem is inherent in the way we think about complexity classes� In
support of this belief we bring up the rich controversy as to how one should de	ne the set of
transducers for space bounded complexity classes� and also a recent result by Chor� Goldreich
and Hastad 
CGH� which shows that IPK �� PSpaceK for a random oracle� This together with
Shamir�s result � 
Sh���� that IP � PSpace� Shows that even when de	ning complexity classes by
�purely computational devices� it is possible to obtain �natural� classes which contain the same
set of acceptors but di�erent sets of transducers�

We conclude by observing the sad consequence of this line of reasoning� The conclusion one
can draw from the separation or collapse of relativized complexity classes about the unrelativized
classes� are only as meaningful as the relationships between the acceptors and transducers in the
class� If for the same class of acceptors di�erent sets of transducers can be �naturally� chosen �
relativized results can tell us very little about the set of acceptors�



��

A When �
reductions � functional reductions�

De�nition
� �The relation computed by a device�� Let M be some computing device and
let x denote an input for M �

�i� The string relation computed by M � denoted M �x�� is obtained by ignoring the F output for
those inputs which have an alternative output� M �x� � F if M returns only F for this input
and s �M �x� if M can return s �� F � For consistent devices s� if exists� is unique hence M �x�
is a function�

�ii� Let w be a 	xed invertible encoding scheme such that w maps structures to strings and w
��

maps strings to structures �see 
MP��� for a discussion on encoding schemes�� Without loss of
generality we assume that every possible string over �� corresponds under w to some structure�
�We choose w such that those strings which don�t 	t are mapped to the empty structure�� The
��� relation computed by M �denoted by R�x� or by abuse of notation as M �x�� is obtained
from the string relation computed by

A� � w
��M �w�B� ��

For a transducer R�x� is a relation between ��structures and ��structures and for an acceptor
it is a relation between ��structures and the set f
� �� Fg�

De�nition

 �D�Reduction	Relations�� Let � and � be two vocabularies�

�i� A ��� reduction relation is a relation R from ��structures to ��structures� �For consistent
devices this is a function��

�ii� Let K� be a set of ��structures and K� be a set of ��structures� Let R be a reduction� We say
that R 
�reduces K� to K� if for every B� �A�B� � R implies A � K� i� B � K��

�iii� Let T be a set of computing devices and D�T � be a relational complexity class� We say that
K� is D�
�reducible to K�� �denoted K� 
�D K�� if there is a transducer M � T whose ���
relation reduces K� to K��

Note that our de	nition is equivalent to the usual notion of 
�reductions �see 
Joh�
� or 
GJ����
as the requirement there that each �string� input must have at least one non failing computation�
is expressed here in the fact that the F output is also mapped to some ��structure �which is either
in K� or not��

We wish to investigate the classes C�T � of Turing machines for which the following proposition
is true�

Proposition
�� Let K��K� be sets of structures� Then K� 
�D K� i� K� 
D K��

De�nition

 �Self Re�ecting Machines�� Let M be a Turing machine �without loss of gen�
erality having one work tape�� Then M � is called the self re�ecting version of M � if M � simulates
M with the addition that after each step in the operation of M � M � records on a �without loss of
generality� separate work tape the current computation state of M �this includes machine states�
work tape contents� head positions and any other info� necessary to simulate M �� When the next
step of M is performed� the new computation state overwrites the previous computation state�

De�nition
� �Self Re�ecting Class of Machines�� T is self re�ecting if for every M � T � its
self re!ection version� M �� is also in T �

De�nition
� �Time�Multiplicative classes�� A class T of bounded resources Turing machines
is time multiplicative if for every function f�n� such that T ime�M � � f�n� satis	es the time bounds
of T it is also true that T ime�M � � f�n� � f�n� satis	es the time bounds of T �

Question� Can we prove D regular and time bounded implies D multiplicative �
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Examples of multiplicative classes include P� NP the polynomial hierarchy� EXPTIME and
more�

Lemma
�� Let T be a set of space or time bounded turing machines such that T is time multi

plicative and L � C�t�� then T is self re�ecting�

Proof� Observe that the space required for machine states is constant� space required to duplicate
the work tape is equal the space of the work tape and space required to duplicate the position of
the work tape head is logarithmic in the size of the tape��This leads to the L limitation as recording
the position of the input tape head requires LogSpace��

Also observe that the time required for machine states is constant� the time required for tape
contents is the size of the work tape which is bounded by the time invested so far in computation
which also bounds the time required for head positions� Hence if M is bounded by time O�f�n��
then M � is bounded by time O��f�n����� For time multiplicative classes we are still left inside the
class�

As we have not used any other resources �such as random bits� oracle consultations etc�� any
bound on such resources does not e�ect this property� unless more information has to be encoded
into the computation state � such as contents of oracle tapes or auxiliary push down automata� �

Note some classes which are not self re!ective�

	 LogSpace classes enhanced with a pushdown stack � as the stack contents cannot be recorded
in LogSpace and adding an extra stack would throw us out of this complexity class�

	 Linear time � as it is not multiplicative�

Lemma
�� Let T be a set of self re�ective� time multiplicative Turing machines� Let M � T � Let
S be the set of valid string inputs for M and s � S and let S��s� denote the set of strings encoding
feasible computation states of M when invoked with s as input� Then the set

V alidPairs � �s�� s�� s�t� s� � S and s� � S��s�

is recognizable in T � Let NotFail�s� denote the subset of S��s� whose members encode computation
states which can lead to a non failing computation of M � Then

NonFailPairs � �s�� s�� s�t� s� � S and s� � NotFail�s�

is also recognizable it T �

Proof� For the 	rst part use Mm a modi	cation of the self re!ecting version of M such that
Mm operates using only the 	rst element of the pair as input and after each recording of the
computation step� the recorded string is compared to the second element of the pair� If a match is
found Mm accepts and stops�

For the second part use a modi	cation of the above Mm which instead of stopping continues to
simulate M until it stops� To this compose the machine which maps F to F and all other outputs
to ��

note that the added time complexity is multiplicative� and the added state complexity is that
of recording the position of the input tape head� Hence the modi	cation is in T � �

Theorem
�� Let K��K� be sets of structures� Let D�T � be self
re�ective� time multiplicative and
closed under negation then K� 
�D K� implies K� 
D K��

Proof� Let M� � T be the transducer generating the 
 reduction� Without loss of generality we
can assume a full ordering of the transition table of M� � Let M be a machine which simulates the
self re!ective version of M� with the following changes� Whenever M� performs a non�deterministic
step� M chooses among feasible transitions as follows� If all transitions lead to failing computations
M fails� If there are transitions which lead to non�failing computations M continues with the
smallest �according to the order� among these�

Note that if D is closed under negation than by lemma �� NonFailPairsM has a full recognizer
in D�t� and hence identifying the minimal non fail transition is in D�T � and Thus M �D�T ��

Clearly M computes a functional reduction of K� to K�� �
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B Correct proofs of NL
 AL results from MP��

B�� Prerequisites

De�nition�� The nf �normal form� convention� We say that an Oracle using Turing ma�
chine M obeys the nf convention if it accesses its oracle in the following form�

	 Access to the oracle is via a stack of oracle tapes which is initially empty�
	 M has a set of distinguished machine states denoted by Sstart such that whenever M is in a

state s � Sstart a new oracle tape is pushed into the stack� This oracle tape is write only and
one way and initially it contains only blank symbols which are not part of the alphabet of M �

	 During its operation� M can write symbols only on the topmost oracle tape of the stack� �If
the stack is empty no symbols can be written� This has the e�ect that prior to any writing on
the oracle tape M must pass through a state from Sstart��

	 There is a set of distinguished machine states denoted by Sanswer such that whenever M enters
a state s � Sanswer the following happens in a single time unit� �� The topmost oracle tape is
popped� �� The machine moves into some state pnext�s� if the contents of the popped oracle
tape �those symbols which where not blank� are a string in the oracle set� and it moves into
some state nnext�s� if this string is not in the oracle state� �w�l�o�g� given s� pnext�s� and
nnext�s� are unique�� If M enters a state s � Sanswer when the stack is empty M immediately
stops and rejects its input�

	 Time is counted for M in the usual way� Speci	cally� moving from a state of Sanswer to its s�
or s� �an oracle query� takes one unit of time� and entering a states of Sstart �pushing a query
tape� takes one unit of time� �Writing a symbol on the oracle tape takes no additional time as
it is counted as part of a regular transition��

	 Space is counted for M as follows� If t�� t� � � � tm are the string contents of the stack of oracle
tapes� then the space used by this oracle stack is

Pm

i��Max��� log�jtij� �where jtij denotes the
length of string ti��

	 M may be subject to additional bounds regarding its access to the oracle beside those which
follow from the way we count space and time�

Notation��� When an oracle computation model explicitly allows the use of a stack we denote
by �i� and ��� the cases when the oracle stack is bounded by i and when the oracle stack is �xed
to a constant which is dependent on the machine but not on the input size� Without any additional
notation� the model assumes that the depth of the stack is bounded only as a consequence of the
restrictions on size and time by the nf convention�

De�nition�
 Con�gurations and Full Con�gurations� A con�guration of a machine M is
an encoding of its input� its work tapes� its head positions and its 	nite control state� A full
con�guration of a machine M includes additionally the contents of the oracle stack tape of M �

Notation��� We denote con�gurations of M by c� thus C is the set of all con�gurations� Canswer

the set of all con�gurations with s � Sanswer� cinitial is the initial con�guration of M and caccepting
is the accepting con�guration� For a con�guration c � Canswer pnext�c� and nnext�c� are the
�unique	 next con�gurations and CNEXT �c� is the set of next con�gurations of an arbitrary
con�guration c�

W�l�o�g� we assume a single accepting con�guration caccept and a single rejecting con�guration
creject
 i�e� when it is clear that M should accept or reject it �in P time and logarithmic space	
erases all its tapes and move all its heads to their initial positions before announcing the acceptance
or rejection�

We denote a full con�guration by a pair �x� t� where x is a con�guration and t is the contents
of the oracle tape� �when it is clear that the oracle tape is empty we shall abuse the notation and
denote a full con�guration by its non oracle tape part�
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De�nition�
� Let G be a graph where each node describes a full con	guration and there is a
directed edge between two nodes �x�� t�� and �x�� t�� if M can in one step move from �x�� t�� to
�x�� t���

	 We de	ne RTC to be a relation over full con	gurations such that x� t � RTC i� the full
con	guration x� t is reachable from cinitial�

	 We de	ne RATC to be a relation over full con	gurations such that x� t � RATC i� the full
con	guration x� t is ATC reachable from cinitial�

B�
 The Case of LK

The proofs for this case in 
MP��� are correct and hence are not repeated� A slightly di�erent proof
can be obtained by adopting the proofs of the more complex NL case�

B�� The Case of NLK

De�nition�� The q model� We say that M is oracle using via the q model if RTC�x� t� is a
function from x to t� that is Given x if there is a t such that RTC�x� t� then this t is unique�

De�nition�� NLqK � We say that M is in NLqK if M is nondeterministic� uses space logarithmic
in input size� has access to an oracle set K� and RTC�x� t� is a function from x to t�

Theorem��� If � � FOL
TC�K� with quanti�er nesting bounded by n� then � has a model�

checker in NLq�n��K��

Proof�

Lemma��� Let 
 � h�� ��� � � � � �mi be � formulas k�feasible for � in L
K� each having a model

checker in NLq�i�K � Then the formula QK
 has a model checker in NLq�i���K �

Proof� We generate the structure A� on the oracle tape and accept or reject according to the
oracle answer� Since given a structure A each bit in the encoding structure A� is unique� as these
bits are written� in each step the contents of the oracle stack is uniquely determined �provided the
model checkers of 
 are all of the q model��

The structure is generated as follows� First generate A� the universe of A�� This is done by
iterating over all k tuples of A� using each tuple as a substitution for the free variables in �� A
model checking of � determines if this tuple is in A� �in this case a counter counting the number
of elements in A� is increased by ��� At the end of this step the number of elements is written on
the oracle tape�

Next the relations are produced� For a relation of arity r we iterate over all r� k �tuples� Each
tuple is checked if it belongs to the universe� If a tuple belongs� then we invoke the model checker
of �i �using this tuple as a substitution�� and write a � or a 
 on the oracle tape depending on if
the model checker accepts or rejects�

Note that to ensure we are within the q model in both above steps we must seek evidence for
our decision� If a model checker accepts we write a � but if the model checker rejects we have to
invoke a �co�model checker� �one which rejects all non satisfying structures but might reject some
satisfying structures� before we write a 
 or conclude that a tuple is not in the universe of A��
This can be done as NL is closed to negation�

Also note that in these steps we increase the stack size by �� �As things are already written on
the oracle tape a model checking of �i in depth i results in a total depth of i " ��� The space we
use is that of the various model checkers� plus that of writing tuples of 	xed arity and hence the
whole operation is in NLmpK � �



��

De�nition��� Let � � FOL
TC�K� be a ��formula which contains a sub�formula � of the form
� � QK
 such that � is not nested inside a QK quanti	er� Let � � � � � fRg be the vocabulary
formed by adding to � a relation symbol R of arity i� where i is the number of free variables in ��
We de	ne �� � the �
reduced equivalent of � as the � ��formula which is formed by replacing every
appearance of the sub�formula � in � by the relation symbol R �over the free variables of ���

Lemma
�� Let �� � and �� be as above� If both � and �� have model checkers of complexity
NLq�i��K�� then so does ��

Proof� Let M�� the model checker of �� simulateM�� the model checker of �� with the modi	cation
that whenever M�� consults the relation R on its input tape� M suspends its simulation of M��

and starts simulating M	 the model checker of �� Upon the termination of M	� M� resumes its
simulation of M�� using the acceptance or rejection by M	 as the required bit� Note that as R
is not nested within any QK quanti	er� when M	 is invoked� the oracle stack is empty and it is
empty again when M�� is resumed� hence M� uses a stack depth of no more than i and we are
guaranteed to remain in the q model as all �new� full con	gurations have an empty oracle stack�

�

The proof is now completed via an induction on depth of the QK quanti	er� For depth 
 we just
have FOL
TC� formulas and the theorem holds� For the inductive step we apply the two lemmas
above� �Lemma �� for sub�formulas where the quanti	er is syntactically outer most and lemma �

when it is not�� �

Corollary 
�� FOL
TC�K� �NLq���K �

Theorem

 Expressibility� Let M � NLq���K be a Turing machine which recognizes a set
of ��structures A� using an oracle for K �a set of ��structures	� Then there is a formula in
FOL
TC�K� which de�nes A�

Proof�

Basis� 
Imm��� If M requires no oracle consultations than A can be de	ned by a formula of
FOL
TC��
Inductive Step� Assume every set of structures recognizable by a machine M of stack depth
bounded by i can be de	ned by a formula of FOL
TC�K� with �i alternations of the TC and K
quanti	ers� then for every A recognized by an M which uses a stack of depth i " �� there is a
de	ning formula which uses at most �i" � alternations of the TC and K quanti	ers�

Claim
�� The predicates E	�x� y�� PNEXT �x� y�� NNEXT �x� y� saying that y is reachable from
x in one step� without oracle consultation� with an accepting oracle consultation and with a rejecting
oracle consultation� can be written as formulas of FOL
TC��

De�nition

� We de	ne the languages L	� L� and L� which are composed of tuples of the form�
a � structure� a con	guration in Canswer and for L� and L� an integer representing a position on
the oracle tape�

�i� A� y � L	 i� on input A there is a con	guration x � Cstart of M such that starting with an
empty oracle stack and in con	guration x� the machine M �recognizing A� can eventually reach
con	guration y via a valid path of depth i�

�ii� A� y� j � L� i� A� y � L	 and when y is reached the oracle tape contains exactly j bits�
�iii� A� y� j � L� i� there is a k � j such that A� y� k � L� and when y is reached the j�th bit on

the oracle tape is ��

Claim
�� L	� L� and L� are all in NLq�i�K �
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In all three cases let the recognizing machine guess x and simulates M from con	guration x keeping
track of the validness of the path by counting excess of opening over closing parenthesis� During
this simulation nothing is written for the bottom most query� For L� and L� we also keep track of
the head position and for L� when the j�th position is written� its contents are remembered�

If during this simulation� the parenthesis count drops below � �the query started by x was
answered� or rises above i before y was reached � reject� If y is not reached also reject� If y is
reached stop the simulation� For L	 accept� for L� accept if the �tape position counter� matches
j and for L� accept if the �tape position counter� is greater or equal j and the remembered bit is
a ��

Corollary
�� There are formulas V ALIDPi�A� y�� SIZEi�A� y� j� and R�i�A� y� j� which de�ne
L	� L� and L��

Notice that the vocabulary for these formulas extends � by appropriate tuples of constant
symbols�

Claim
�� The formulas


string�y� � h�j�a � j� 	 SIZEi�y� j�� R�i�y� b�i

where a� b are tuples of distinguished free variables� j is a tuple of bound variables� and y is a tuple
of constant symbol� is feasible �over � extended by a tuple of constant symbols	 for the vocabulary
binary strings with R�i de�ning the unary relation of the bits which are ����

Claim
�� For y such that V ALIDPi�A� y�� the formulas Phistring�y� de�ne t the string on the
oracle tape at con�guration y�

Observe that this claim is meaningful only as t is unique �RM �y� t� is a function��

Claim
�� The formula
ANEXTi�y� c� � V ALIDPi�y� 	 �

�QK
string�y� 	 PNEXT �y� c�� 
 ��QK
string�y� 	NNEXT �y� c���

where y and c are tuples of free variables� says that there is a con�guration x � CStart such that if
M is invoked in x it can eventually reach y via a valid path of depth i and then in a single oracle
consulting step move to con�guration c� �Notice that we added one alternation here	�

To de	ne the set A recognized by M of stack depth i" � we wish to de	ne the graph G of full
con	gurations of M and apply to it the TC quanti	er� Note however that it is su�cient to consider
a sub graph of G which includes only those full con	gurations reachable from cinitial� For these�
our q model guarantees that given a con	guration x there is a single reachable full con	guration�
therefore we can encode the contents of the oracle tape by the con	guration� For nodes which do
not require oracle consultation this is su�cient� For nodes which do require oracle consultation we
must be able to produce the oracle tape contents as a formula to which the QK quanti	er can be
applied to determine the out going edges� This is done as follows�

Writing a formula in FOL
TC� encoding all valid con	gurations is done as in 
Imm���� We
write E as

E�x� y� � E	�x� y�

i

W

k�	

ANEXTi�x� y�

To de	ne the set recognized by M we say that cinitial is connected over this graph to caccepting

ACCEPT � TCcinitial
caccepting
x
y V �a�� E�b� c�� x� y

Note the use of the TC quanti	er� thus giving �i " � alterations� �



��

B�
 The ALK Case

De�nition�� ALqK � We say that M is in ALqK if M is alternating� uses space logarithmic in
input size� has access to an oracle set K� and if RTC�y� t� and y is a query answering con	guration
then also RATC�y� t��

The proof of the model checking theorem is as for the NL case �as the reproduction of the
structure for the QK quanti	er always obeys the additional restriction�� The expressibility theorem
also follows on similar lines� as via the restriction we get that if c� is reachable from c� via c� than
c� is reachable from c� and c� is reachable from c�� Hence L	� L� and L� are all well de	ned and
in ALq�i�K � �Without the restriction they are not well de	ned for the AL case��

C PK cannot be captured by a FOL
based logic

Theorem��� There is an oracle using machine M which runs in polynomial time� such that if
L�K� is the language recognized by M where the semantics of K is a parameter �L�K� is a function
of K the oracle used	� then there is no one formula � � FOL
ATC�K� where the semantics of K
is a parameter� such that for all K � de�nes L�K� �

Intuitively the proof of this follows Buss� example which separates NLK from PK � the details
are given below�

De�nition�
� For an arbitrary oracle K� let S�K� be the following in	nite binary string� s� �
the 	rst bit of S�K� is � if �
�� � K and 
 otherwise� si � the i�th bit � is � if s� � � � si�� � K and 

otherwise�

De�nition��� For an arbitrary oracle K� the language L�K� is de	ned as follows� x � L�K�
i� the jxj�th bit of the sequence S�K� is �� �Alternatively one can de	ne L�K� only over unary
strings��

Lemma�
� There is one oracle using machine M which runs in polynomial time� such that when
M is connected to an oracle K it recognizes L�K��

Proof� M keeps one tape T reserved for the bits of S�K�� In the 	rst step it writes on this tape

� It then iterates the following procedure� copy the contents of T to the oracle tape and query
the oracle� if it accepts add a � to T else add a 
� In each iteration the head over the input tape is
moved one position to the left� when all the input is scanned accept if the leftmost bit of T is a ��

�

De�nition��� For any number n� we partition the set of all oracles into �M�n��equivalence classes
by de	ning any two oracles K�� K� to be in the same class i� M �K�� and M �K�� give the same
answer to all inputs of size less than n�

Lemma��� There are exactly �n �M�n��equivalence classes�

Proof� Clearly one cannot have more than �n such classes and for any binary string of length n
one can 	nd a K such that this string is the pre	x of S�K�� �

De�nition��� Let � be a formula of FOL
ATC�K� with K a parameter �the semantics of K are
as yet unde	ned� but its vocabulary is 	xed�� For any number n� we partition the set of all oracles
�of this 	xed vocabulary� into ��� n��equivalence classes by de	ning any two oracles K�� K� to be
in the same class i� � A j� ��K�� i� A j� ��K��� for all structures A of size less than n �over the
appropriate vocabulary��

Lemma��� There is a �xed integer d such that there are no more than nd ��� n��equivalence
classes�
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Proof� We prove by induction on the formation rules of �� If � is an elementary formula then the
number of equivalence classes is exactly � �as QK is not used��

Assume the theorem to be true for any � with less than i formation rules� then it is also true
for any � with i formation rules �w�l�o�g� we assume only � formation rules��

�i� Assume � of the form �� with nd bounding the number of ��� n��equivalence classes� Then
the number of ��� n��equivalence classes is also bounded by nd�

�ii� Assume � of the form �	� with nd� bounding the ��� n��equivalence classes and nd� bounding
the number of ��� n��equivalence classes� Then the number of ��� n��equivalence classes is
bounded by nd��d� �

�iii� Assume � of the form �x��x� with nd bounding the number of ��� n��equivalence classes �when
x is interpreted as a constant�� Then the number of ��� n��equivalence classes is bounded by
nd���

�iv� Assume � of the form ATC� with nd bounding ��� n��equivalence classes for all � � � � Then
the number of ��� n��equivalence classes is bounded by n�k��d� where k is the vectorization
index� �nk � nd possibilities of di�erent V and A and n�k � nd of di�erent E � to actually get
new possibilities the free variables have to be in the scope of a QK quanti	er��

�v� Assume � of the form QK� with nd bounding the ��� n��equivalence classes for all � � � �
Then the number of ��� n��equivalence classes is bounded by �� nd�k � nd�k���

Since each � has only 	nitely many formation rules there is some 	xed d such that there are
no more than nd ��� n��equivalence classes� �

Proof of theorem� Let M be as above and assume there is a � such that ��K� de	nes L�K��
Let d be a constant such that there are no more than nd ��� n��equivalence classes� Let n be a
number such that nd � �n�

There are two oracles K� and K� such that both are in the same ��� n��equivalence class but
in di�erent �M�n��equivalence classes� For these oracles there is a number m � n such that for all
inputs of size m M accepts with one oracle and rejects with the other� but either both satisfy or
dissatisfy �� A contradiction to the assumption that ��K� de	nes L�K�� �

D The ABC Theorem

Theorem��� Let A�B�C�K be sets of structures over possibly di�erent vocabularies� such that
K is de�nable in FOL
B�C� but not in FOL
A�C�� Then B is not de�nable in FOL
A��

Proof� Let �K denote the FOL
B�C� formula which de	nes the set K� Over all possible sets of
structures de	nable in FOL
B�C� but not in FOL
A�C�� let K be the set of structures such that
�K has a minimum number of formation rules� �any FOL
B�C� formula requiring less formation
rules has a semantically equivalent formula in FOL
A�C�� where w�l�o�g� we assume FOL
B�C� to
have only the 	ve formation rules �� 
� �x� QB and QC �

Clearly �K cannot be a term and cannot be of the forms �� and �� 
 ���

Claim��� �K cannot be of the form �x��x�

Proof� Let � be the vocabulary of �K� Consider the formula ��c� over the vocabulary �� which
extends � with one constant symbol c� If the set of ���structures de	ned by ��c� cannot be
de	ned in FOL
A�C� we contradict the minimality of �K and if it can be de	ned by some formula
���c� � FOL
A�C� then �x���x� de	nes K where ���x� is formed from ��c� by substituting the
variable x for the constant symbol c� thus contradicting the unde	nability of K in FOL
A�C�� �

Claim��� If �K � Qh�	� ��� � � � � �mi �where Q is either QB or QC	 then for each of the �i
subformulas there is an equivalent formula in FOL
A�C� such that for every possible substitution
of the free variables the two formulas describe the same set of structures�
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Proof� Assume the contrary� then by replacing the free variables of �i with constant symbols over
an extended vocabulary� we de	ne in FOL
B�C� a set of structures not de	nable in FOL
A�C��
But �i uses less formation rules than �K � a contradiction� �

Corollary �
� �K cannot be of the form QC
�

Claim��� �K is of the form QBh�	� ��� � � � � �mi where all the �i�s are terms�

Proof� That �K is of the form �K � QB
 follows by elimination of all other formation rules�
Assume that some �i is not a term and consider the formula

QBh�	� ��� � � � � �i��� Ri� �i��� � � � � �mi 	 �xiRi�xi� �� �i�xi�

over a vocabulary �� extending � with the relation symbol Ri of arity equal the number of distin�
guished free variables �i� This new formula de	nes a set of ���structures K �� If K� is de	nable by
some � � FOL
A�C� then so is K� substitute the FOL
A�C� equivalent of �i in place of Ri in the
formula �� �By claim �� such an equivalent to �i exists�� Hence K� is unde	nable in FOL
A�C��
But as

�xiRi�xi� �� �i�xi�

can be de	ned in FOL
A�C�� we conclude that the set of structures de	ned by

QBh�	� ��� � � � � �i��� Ri� �i��� � � � � �mi

cannot be de	ned in FOL
A�C�� thus contradicting the minimality of �K � �

Therefore� the set of structures de	ned by QBhR	� R�� � � � � Rmi cannot be de	ned in FOL
A�C�
and hence cannot be de	ned in FOL
A�� �

Remark� Similar arguments prove the following variations of the above theory�

�i� When FOL is replaced by SOL�
�ii� When FOL is replaced by �i or �i for arbitrary i�
�iii� When FOL is replaced by L where L is either FOL� SOL� �i or �i enhanced by some

quanti	ers� If for some sets K� � � �Km and L� � � �Ln we have L
K� � � �Km� �� L
L� � � �Ln� then
there must be some Li not expressible in L
K� � � �Km��

�iv� When FOL
A�B� and FOL
A�C� are restricted to formulas where the QC quanti	er cannot
be nested within itself�

References

�AV��� S�Abiteboul and V�Vianu� Fixpoint extensions of �rst order logic and Datalog	like languages� In
Proc� ��th IEEE symp� on Logiuc in Computer Science� pp ��	��� �����

�BF��� J� Barwise and S� Feferman� editors� Model�Theoretic Logics� Perspectives in Mathematical Logic�
Springer Verlag� �����

�BGS��� T�Baker� J�Gill and R� Solovay� Relativization of the P�NP question� In SIAM J� comp� Vol� �
pages ���	���� �����

�B�u��� J� R� B�uchi� Weak Second Order arithmetic and �nite automata� Zeitschrift f�ur mathematische

Logik und Grundlagen der Mathematik� ����	��� �����
�Bus��� J�F� Buss� Alternations and space�bounded computations� Journal of Computer and System

Sciences� ����������� �����
�CKS� A�K�Chandra� D�C� Kozen and L�J� Stockmeyer� Alternation� In Journal of the ACM vol� �� No�

�� pp� ���	���� �����
�CGH� B� Chor� O� Goldreich and J� Hastad� The Random Oracle Hypothesis is False� Technion dept�

of CS TR � ��� �����
�Ebb��� H�D� Ebbinghaus� Extended logics� The general framework� In Model�Theoretic Logics� Perspec	

tives in Mathematical Logic� chapter �� Springer Verlag� �����



Oracles and First Order Lindstr�om Quanti�ers ��

�Fag��� R� Fagin� Generalized �rst	order spectra and polynomial time recognizable sets� In R� Karp�
editor� Complexity of Computation� volume � of American Mathematical Society Proc� pages ���
��� Society for Industrial and Applied Mathematics� �����

�GJ��� M�G� Garey and D�S� Johnson� Computers and Intractability� Mathematical Series� W�H� Freeman
and Company� �����

�Imm��� aN� Immerman� Languages that capture complexity classes� SIAM Journal on Computing�
��
����������� Aug �����

�Joh��� D�S� Johnson� A catalog of complexity classes� In J� van Leeuwen� editor� Handbook of Theoretical
Computer Science� volume �� chapter �� Elsevier Science Publishers� �����

�Ko��� K�I�Ko� Relativized Polynomial Time Hierarchies Having exactly k levels� SIAM j� Comp� Vol ��
pages ���	���� �����

�LL��� R�E� Ladner and N� Lynch� Relativization of questions about log�space reducibility� Mathematical

Systems Theory� ��������� �����
�MS��� A�R�Meyer and L�J�Stockmeyer� The Equivalence problem for regular expressions with squaring

requires exponential time� Proc� ���th Ann� Symp� on Switching and Automata Theory� IEEE�
Long Beach CA� pages ���	����

�MP��� J�A� Makowsky and Y�B� Pnueli� Computable quanti�ers and logics over �nite structures� To
appear in �Quanti�ers� Generalizations� extensions and variants of elementary logic�� M� Krynicki�
M� Mostowski and L�W� Szczerba eds�� Kluwer Academic Publishers� �����

�MP��� J�A� Makowsky and Y�B� Pnueli� Oracles and Quanti�ers LNCS ��� pp� ���	���� Springer �����
�Sh��� A� Shamir� IP � PSpace� Journal of the ACM� ��������	���� �����
�Ste��a� I�A� Stewart� Logical characterizations of bounded query classes I� Logspace oracle machines�

Fundamenta Informaticae� ��������� �����
�Ste��b� I�A� Stewart� Logical characterizations of bounded query classes II� Polynomial�time oracle ma	

chines� Fundamenta Informaticae� ���������� �����
�Sto��� L� Stockmeyer� Classifying the computational complexity of problems� Journal of Symbolic Logic�

��
�������� �����
�Wil��� C�B� Wilson� Parallel computation and the NC hierarchy relativized� In Structure in Complexity

Theory� volume ��� of Lecture Notes in Computer Science� pages �������� Springer Verlag� �����

This article was processed using the LaTEX macro package with LLNCS style


