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Abstract

This paper presents an algorithm that tests the congruence of two sets of n points in

d-dimensional space in O(n[%d] logn) time. This improves the previous best algorithm
for dimensions d > 6.
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1 Introduction

Geometric pattern matching problems have been studied by many papers in computational
geometry, see [9] survey. The simplest pattern matching problem is to decide whether
two patterns are actually the same, in the model considered here: whether two given
point sets are congruent. This problem is well-understood in dimensions at most three,
where there are good algorithms which reach the asymptotic lower bound of (nlogn)
[2, 3, 4, 10, 11, 13]. For higher dimensions, however, the situation is different: only
dimension reduction methods are known, which lead to an O(n?~2logn) algorithm by

Alt et al. [2], a Monte-Carlo O(nL%dJ logn) algorithm by Akutsu [1], a deterministic

algorithm of the same complexity by Matousek [1], and the O(n(%d] logn) algorithm
described below. The exponential dependence on d is rather unsatisfactory, since the only
lower bound is the Q(nlogn) bound which already holds in dimension one. Although
some dimension-dependence is unavoidable, since the congruence testing problem without
dimension restriction is at least as difficult as graph isomorphism, the correct asymptotics
is probably O(nlogn) for fixed dimension d, with a multiplicative constant exponentially
dependent on d. This large gap makes it an interesting problem for further work, especially
since it seems related to characterization problems of highly symmetric point sets, which
are an important research area in connection with aperiodic tilings.

2 Previous algorithms

Given two point sets A and B, of n points each, in RY, we want to test whether a
congruence exists that maps A on B. This congruence consists of two parts: a translation
and a rotation. The translational part is easy to determine, since the image of the centroid
¢(A) of A under that congruence has to be the centroid ¢(B) of B, and the centroid can
be determined fast (in O(n)). So each algorithm preprocesses the sets by translating A
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to A —c¢(A) and B to B — ¢(B), and searches for a rotation around 0 that maps one set
on the other. Also the distances of the points to the centroid have to be preserved, so
we can replace each point by a point on the unit sphere which carries the distance (or an
ordered list of distances) of the point in that direction as a label. So in the following we
have two sets A', B, each consisting of n labeled points (counting multiplicities) on the
unit sphere with center 0, and we are looking for a label-preserving rotation that maps
A’ on B'.

In the two-dimensional case it is easy to reduce this problem to the classical substring
matching problem: The points of A’ are cyclically ordered on the circle, and described
by the pair of their label and the angle to the next point on the circle (which together is
just some symbol in an alphabet). So starting at an arbitrary point and going around the
circle once, we can encode A’ as a string in that alphabet; and going around the circle
twice for B’, we encode that set in another string. Then A and B are congruent if and
only if the string of A’ is a substring of the string for B’, which can be tested in O(n logn)
time.

The algorithm of Alt et al. [2] for the threedimensional case (similar also Sugihara
[13]) involves again the creation of a combinatorial model and solution of the problem on
that: Each of our sets consists of n labeled points on the unit sphere, so their convex hull
is some polyhedron, which we can describe by its edge graph augmented by edge labels
carrying the length of the edge and the angular distance to the next edge around that
vertex. But the isomorphism of (labeled) polyhedral graphs (threeconnected and planar)
can be tested in O(nlogn) time.

For higher dimensions no such direct method is known, but it is possible to reduce
one higher-dimensional problem to a number of alternative lower-dimensional ones. The
underlying idea is that if we know the correct image point b € B’ for some point a € A’,
then the subspace through a is mapped on the subspace through b and the same holds for
their orthogonal complements. Thus we can orthogonally decompose each point of A" and
each point of B’ into a pair of points (one on a line, one on the orthogonal hyperplane),
and these have to be mapped on each other by the congruence. But the point on the line
is uniquely identified by its signed distance to 0 (a, b positive), so we can just append
this number to the label of the point on the hyperplane (additionally to all previous
labels of the original point), and have reduced the original problem to a problem of points
with longer labels which lie in a hyperplane. Thus if we know the correct images of k
linearly independent points, we can reduce the dimension of the space by k, appending k
additional labels (coordinates) to each point.

If we do not know the correct image of any point, the simplest way is to take a fixed
a € A" and try each of the potential image points b € B’ in turn: if we are successful in
one of the lower-dimensional problems, we can extend the solution to a solution of the
original problem (by removing that additional label and adding a (or b) times that label
to each point); if we are not successful for any choice of b, then the sets A and B are
not congruent. This is the algorithm of Alt et al. [2] which runs in time O(n? 2logn),
reducing one d-dimensional problem of n points to n alternative d—1-dimensional problems
in each step.

If we use the fact that any closest pair in A’ has to be mapped on a closest pair in
B’, and that the number of closest pairs is only linear in n (for fixed dimension d: since
the degree of the graph of closest pairs is bounded by a constant, the ‘kissing number’ or
‘Newton number’ which grows exponentially in d [12, 14]), we can reduce the problem in
each step by two dimensions to O(n) alternative d — 2-dimensional problems. This is the

algorithm of Matousek [1] which runs in O(nL%dJ logn) time.

At this point a difficulty arises which is caused by the inner symmetries of our point
set: since the point-k-tuples which define the alternative reductions are themselves defined
by metric properties, the set of all these alternative reductions will be closed under inner



isometries of the point set. But for dimension d > 4 this set can be quite big, since
rotation subgroups in orthogonal planes are possible. So e.g. in dimension four the set
consisting of two regular §-gons with common center 0, but in orthogonal planes, allows
"Tz rotations, and any fulldimensional triple of points (that could be used to reduce the
dimension by three) will generate an orbit of 2(n?) other possible reductions. Similar
constructions work also in higher dimensions. This big number of alternative reductions

is not really needed, since they all give the same result, but they have to be recognized.

3 The new algorithm

Our solution to this problem is to recognize whenever the point set lies in orthogonal
subspaces (which can be matched independently), and use an extended version of the
smallest distance graph in the other cases, in such a way that we get a dimension reduction
of three with a linear number of alternatives in each step.

For this purpose we add for each point a € A’ the antipodal point —a labeled as ‘new’,
if it is not already in the set A’ (in the following always the same for B'). Then the
smallest distance occuring between two antipodal pairs p, —p, ¢, —q on the unit sphere is
at most, \/5, and v/2 is reached if and only if p is orthogonal to g. We can extend this
from two antipodal pairs to larger point sets by constructing a graph with the extended
set as vertices, which has in the beginning the antipodal pairs as connected components.
Any graph containing this graph as subgraph has the property that the smallest distance
occuring between points of distinct connected components is at most /2, and reaches this
value if and only if the connected components lie in orthogonal subspaces. So we start from
the antipodal pairs graph (in the following, edges between two antipodal points will be
called antipodal edges, whereas the remaining edges will be called strong edges; two points
sharing such an edge will be called strongly adjacent or strong neighbours), and extend
in each step the graph by all those edges between points of distinct components that are
of minimum length among all such point pairs. Then we either find after some steps a
connected component which spans a subspace of dimension at least three, which allows
a dimension reduction, or we find that all the connected components lie in orthogonal
subspaces, which can be treated independently. The algorithm is show in figure 1.

Note that — for the sake of simplicity — we omitted several sanity checks that are
performed in the course of the algorithm, e.g. testing whether the two graphs have the
same number of connected components all the time, etc. If any of these checks fail, the
algorithm gives a negative answer.

3.1 Correctness

The correctness of our algorithm is obvious if d < 3; also the claimed time bound follows
immediately in that case. To prove the correctness as well as the time complexity for the
general case, we will show that the following invariants hold throughout the algorithm,
just before dmin is recomputed and edges are added (and components are merged) as long
as no dimension reduction is found and dy;, is smaller than /2:

1. Each connected component is planar, i.e. it consists of points distributed on a great
cycle of the unit sphere.

2. Each point has at most two strong neighbours in its component and one antipodal
neighbour; i.e. a connected component consists of two paths of the same length (i.e.
number of vertices) and each vertex of a path is connected to its antipodal vertex
on the other path via an antipodal edge.



Algorithm Congruencetest(A, B, d)

Input: Two sets A, B, of n labeled points each, in R?.

Output: Decides whether there is a labelpreserving congruence that maps A on B.

>If the dimension is at most three, use one of the known O(nlogn)-algorithms to decide the
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problem.

>Preprocess A and B to A" and B’ by moving the centroid to 0 and projecting each point on the
unit sphere around 0, with the projection distance appended as an additional label.

>Construct the extended sets A” and B" by adding for each point a € A’ and each point b € B’
the antipodal points —a, —b, labeled as ‘new’, if they were not already contained in the set.
Construct the initial graphs for both sets by joining each point to its antipodal point.

repeat

if there is only one component left

then (x

else

dimA" =dimB" =2 x)

>Compute for A” and B” the coordinates of the points in the linearly subspaces
spanned by the sets, and apply one of the known O(n logn)-algorithms to decide the
twodimensional problem.

>Determine the smallest distance dp,;, between two points of distinct connected

components.
if dmin = \/5
then

else

>Decompose each A” and B" in their connected components, computing the
coordinates of the points in the linear subspaces spanned by the components.
for each matching of the A"”-components to the B"-components
do
for each component pair («, 8) in the matching
do
>Apply one of the known O(nlogn)-algorithms for the
twodimensional case to decide whether « and 8 are con-
gruent.
if there is a matching such that each matched pair is congruent
then
A and B are congruent
else
they are not congruent.
(* dmin < \/5 *)
>Add all edges of length d,;n that join points in distinct connected compo-
nents to the graph.
if there is a triple (point, neighbour,, neighbour,) of A" that spans a linear
subspace of dimension three
then
for all triples (point,neighbour,,neighbour,) of B” that span a
linear subspace of dimension three
do
>Perform the dimension reduction, and call recursively
Congruencetest for the d — 3-dimensional problem.
if one of the potential image triples from B’ gives congruent sets
then
A and B are congruent
else
they are not congruent.

35. wuntil a reduction is found, or the set is decomposed in orthogonal subproblems.

Figure 1: Algorithm Congruencetest
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The proof proceeds by induction: In the beginning the invariants obviously do hold.
Now assume that each connected component is planar, dmin is computed, dmin < V2 and
we add all minimum length edges between vertices in distinct connected components. We
show that either a dimension reduction is found (i.e. the graph now contains three points
spanning a threedimensional subspace) or the invariants also do hold after the merging
step.

We will look at two connected components ¢; and ¢y that are merged in this step'.
The two great circles C7 and C5 containing these components either do coincide or they
share exactly two vertices.

If they coincide, then the resulting point set is clearly planar. Since the minimal
distance between the two merged components is larger than the distance between any two
strongly adjacent vertices, the new edges can only join vertices of degree one. Therefore
the maximal degree remains two.

If the great circles differ, we will either establish a strong adjacency between ¢; and a
point p € ¢ — Cy or all the points in ¢; minimizing the distance to ¢; do lie on C. In the
first case, the new graph contains three points spanning a three dimensional subspace. In
the second case the new edges join the points {p, —p} = Co N C; C ¢3 to ¢;. Now either
co = {p, —p} and we can argue as before to see that the resulting point set is planar and
the maximal degree remains two?, or #c; > 2 and p has at least one strong neighbour
q € ¢, since we assumed that Cy # C7. In that case it will span a threedimensional
subspace together with ¢ and its new neighbour from ¢ .

The correctness of the algorithm immediately follows from these invariants. If we
find a dimension reduction at some point, then the correctness follows by induction over
the dimension, as was argued in the introduction. If we end up with a single connected
component, the problem is actually only twodimensional, and if we end up with a set of
connected components of pairwise distance v/2 we have decomposed the original problem
into twodimensional orthogonal subproblems that can be solved independently.

3.2 Analysis

To facilitate the analysis of the algorithm, we have to specify the implementation in some
more detail. We store the edges of the complete graph on the point set (except the edges
connecting antipodal vertices) in a minimum heap %, using the distance between two
points as the key. The initialization time for this structure is O(n?logn). Furthermore
we use a union-find data structure C to store the points in each connected component.
This structure is initialized with n sets, each containing two points (namely a point along
with its antipodal point, i.e. C = {Cp|p € A} and Cp, = {p, —p}); this initial step takes
O(n) time. Finally we keep the n x n adjacency matrix G of the smallest distance graph.
It can be set up in O(n?) time as Gp,, = [¢ = —p].

Throughout the algorithm C), will contain exactly those points connected to p, and H
will contain all non-edges of length more than dpin, ie. e = (p,q) € H < G,,=0
and |p — ¢q| > dpin-

In order to determine the new minimal intercomponent distance in step 9., we find the
smallest key of . This can be done in O(logn) time. If d,;n = v/2 we have decomposed
the original problem in orthogonal and our data structures need not be updated anymore.
Otherwise we have to make sure that our invariants do hold in the next step. To do
so, we extract all edges of length d,,;, from #H and store them in a list Ep,. If [
denotes the length of this list, the time for this step is bounded by O(llogn). For all

'Note that due to the antipodal vertices, the process is symmetric, i.e. if vertex u becomes adjacent to
vertex v in the merging process, then also the antipodal vertices u’ and v' become adjacent in the same step.

2If #kco = 2, the great circle containing cs is not uniquely determined. Since we assumed ¢z C C; we can
take Co = C in that case.



edges (p,q) € Emin we first check whether C, = C,, i.e. if they join points in the
same connected component before edges are added. If not, we make them adjacent in G.
After that we update C by merging two different components in case we just added edges
between them. The procedure we just described requires at most [ find queries to C and
at most [ union operations on C, so the overall time required is of order O(llog* n).

Now, although I can be as large as O(n) (see below), we see that the amortized cost
for determining the minimal intercomponent distances in step 9. and maintaining the
data structures H and C in step 24. is of order O(n?logn), since each edge is ‘touched’
at most once in the course of the algorithm.

The task of projecting a set of points to the linear subspace it spans and computing a
basis for that space, along with the appropriate coordinate computation can be done in
linear time.

The parts of the algorithm that handle the case d < 3 (step 1.), the case of all
points lying on plane (step 7.) and the case of orthogonal subproblems (steps 12.-22.),
respectively, are called at most once during the execution of the algorithm. Step 1. as
well as step 7. takes O(nlogn) time. In steps 12.-22. there are at most d components
in each set, since the components are mutually orthogonal, so we have to try at most
d! = O(1) possibilities for the matching, and for each matching we have to solve at most
d = O(1) twodimensional subproblems; the total time required for these steps is therefore
O(nlogn), too.

The repeat loop is executed O(n?) times and in each step O(n) edges are added (see
below). But since each edge will be used only once in this process, the overall time spent
for finding minimum length edges and merging components is bounded by O(n?logn), as
argued above.

The number of recursive calls of the algorithm in step 34. is bounded by the number of

triples in the nearest neighbour graph. To prove the O(n(%d] logn) time bound, we have
to show that not too many recursive calls are generated. To be more precise, we prove
that steps 24.-34. generate only O(n) possible reductions. For this we look at the last
time that d;, was recomputed and edges were added. We know that before the edges
were added, each connected component was planar, i.e. the points of the component were
distributed on a great cycle of the unit sphere, and each point had at most two strong
neighbours in its component. Now consider the graph that has the connected components
as its vertices and that has an edge between two components iff they are merged in this
step. This is a smallest distance graph, and therefore its degree is bounded by the kissing
number k4 of dimension d, which is less than 3 = O(1). This implies that a vertex from a
component can only have new neighbours in at most k; = O(1) components. Furthermore
it has at most two neighbours in each of these components, since a sphere around that
point intersects the great circle containing the other connected component in at most two
points, unless the center of the sphere is in the subspace orthogonal to the plane spanned
by the circle. But this is not possible, since dmin = /2 in that case, which we excluded in
steps 12.-22. We see that at most O(n) edges were added in this merging step and that
each vertex has degree at most O(1) and therefore the number of triples in the nearest
neighbour graph is bounded by O(n).

The time T'(n,d) that algorithm Congruencetest needs to decide the congruence of a
d-dimensional n-point set, can be estimated as T'(n,d) < O(n?logn) + O(n)T(n,d — 3),
where the first term accounts for the time spent in the loop and for the code parts that
handle the initialization and the base cases. We see that T'(n,d) = O(n!%/?1logn), which
proves our claim.



4 Final Remarks

We presented a new dimension reduction technique which allowed to test the congruence
of two d-dimensional n-point sets in O(n[%‘ﬂ logn) time, essentially by factoring out
possible symmetries which otherwise prevent dimension reduction beyond two by causing
many spurious alternative reductions. To reach a dimension reduction of four by the same
method, one will have to overcome the problem that the degree in the constructed graph
is not anymore bounded by a constant, and we do not doubt that a dimension reduction
by five, although possible, will present further technical difficulties. So although the
algorithm presented here is the currently fastest, we do not believe that a refinement of
the dimension reduction techniques will lead to what we ultimately believe possible, an
O(nlogn)-algorithm for each fixed dimension d.

Instead we suggest further attention to a different line of attack, which is based on the
reduction of the underlying point set, as it was used in the three-dimensional algorithm
by Atkinson [4]. For if we can distinguish different ‘sorts’ of points, based on some local
criterion, so that any point of A has to be matched to a point of the same sort of B,
when we can replace A and B by subsets of at most half as many points which have to be
matched to each other, and whose matching we can extend to the original sets. Repeating
this procedure, we finally stop with sets which are undistinguishable by our local rule. If
we could show for some easy criterion (that can be checked in O(nlogn)) that this local
undistinguishability already implies a global transitive symmetry (with at most some
simply classified exceptions), then we had an O(nlogn) algorithm for testing congruence
in that dimension. This same problem, criteria for ‘local’ symmetry implying global
transitive symmetry, is also very interesting in the study of geometric crystallography and
aperiodic tilings [7], but the criterion given in [6] can unfortunately not be applied here.
Counterexamples, i.e. sets on the sphere in which some big neighbourhood of each point
looks the same, but the set is not transitively symmetric, would be a kind of ‘spherical
aperiodic tiling’ which is not known up to now. This is again probably a difficult problem,
since even a threedimensional version, whether it is possible to tile a sphere by congruent
pieces of arbitrarily small diameter, is an old open problem of Ruziewicz (see [5], problem
C8). Another related open problem is the classification of metrically homogeneous sets
[8], i.e. sets in which for each point the same multiset of distances to other points arises:
this would imply the existence of an O(n?logn) time algorithm, but this is only known
in dimension two where metrically homogeneous sets are sets with a transitive symmetry.
So this problem is related to a number of interesting open problems in discrete geometry.
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