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Abstract

We consider the problem of connecting two simple polygons P and @ in parallel
planes by a polyhedral surface. The goal is to find an optimality criterion which
naturally satisfies the following conditions: (i) if P and @ are convex, then the
optimal surface is the convex hull of P and @ (without facets P and @), and (ii) if
P can be obtained from @ by scaling with a center ¢, then the optimal surface is the
portion of the cone defined by P and apex ¢ between the two planes. We provide a
criterion (based on the sequences of angles of the edges of P and @), which satisfies
these conditions, and for which the optimal surface can be efficiently computed.
Moreover, we supply a condition, so-called angle consistency, which proved very
helpful in preventing self intersections (for our and other criteria). The methods
have been implemented and gave improved results in a number of examples.
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1 Introduction

The reconstruction of a three-dimensional object from its cross-sections data is a
problem with many applications like clinical medicine (computerized tomography
and magnetic resonance imaging), biomedical research, computer graphics, anima-
tion, geology, etc., [Sch].

Here is the set-up we want to consider: P and () are simple polygons in parallel
planes hp and hg, respectively. A surface between P and () is a cyclic sequence
of triangles, each triangle is the convex hull of an edge of one of the polygons and
a vertex of the other polygon; consecutive triangles share an edge (connecting a
vertex from P with a vertex from )), and the sequence encounters the edges of P
in the same counterclockwise order as P, and analogously for ). So we ignore the
problems arising from the fact that the cross sections of an object may contain several
polygons (polygons have to be assigned to each other, and ‘branchings’ may occur).
This can be handled by a preprocessing step by other methods, see e.g. [MK], [MSS].
Moreover, we restrict ourselves by not allowing other vertices in the surface but those
in P and Q).

A number of methods have been proposed in the literature. For example there
is the volume based approach [BGLS], [LC], the paper by Barequet and Sharir [BS],
and the work by Boissonnat [B], [BG], based on Delaunay triangulation. Most meth-
ods associate with every potential connecting surface a parameter (usually a real
number), and the surface of choice is one which optimizes (minimizes, maximizes)
this parameter. Examples are: (1) surface of minimum area [FKU], [SP], (2) surface
where the resulting enclosed solid has maximal volume [K], (3) surface, where the
overall edge length is minimal, etc. [WA], [SG]. Other approaches [C], [ChrS], [GD]
start the construction at some point and proceed according to local criteria.

It turns out that these methods have drawbacks, which occur already in simple
natural examples: probably most striking is the case of two regular n-gons P and
(), where the orthogonal projection of P in h¢ is sufficiently far apart from @ (the
optimal surface according to the minimum area criterion is depicted in Figure 1).

Our starting point was to set up general requirements which should be met by
a ‘good’ optimality criterion in a natural way:

Condition C1. If P and () are convex polygons, then the optimal
surface is the convex hull of P and @) (without facets P and Q).

Condition C2. If P can be obtained from ) by scaling with a center
¢, then the optimal solution is the portion of a cone defined by P with
apex ¢ between the two planes hp and hg. Similarly, if P is a translate
of ), then the surface should be a cylindric section.

Surprisingly enough, none of the criteria we found in the literature satisfy both
conditions (Figure 1 demonstrates that the minimum area criterion violates both
conditions). Our method starts with the following simple observation. The sequence
of triangles from a surface defines a ‘merge’ of the edges from P and @, (go through
the sequence of triangles and for each one take the edge which is from P or @), see
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Figure 1: Area-optimal solution for two regular 9-gons.

Figure 2). This sequence yields again a polygon (not necessarily simple!), which has

XL

Figure 2: Merge of two polygons.

also a geometric interpretation in terms of the surface: If all the edges are halved in
length, then we get the polygon obtained by intersecting the surface with the plane
half way between hp and hq. For every such merged polygon we add up the absolute
values of the ‘turning angles’ 6(e, €’) between any pair of consecutive edges e and €.
A surface is called optimal if its associated polygon-merge minimizes this sum. The
intuition is that we try to keep the surface (or, more precisely, its intersection with
planes parallel to hp) as smooth as possible.

In this way we satisty conditions C1 and C2, as we will prove in Section 2. It
may appear to be more appropriate to consider the sum of squares of §(e, ') instead,
but, as it turns out, this violates condition C2.

There is the issue of surfaces with self-intersections — definitely an undesired
effect — which we have not touched so far. This may very well happen for the
optimal surfaces (also for our criterion). As a matter of fact, Gitlin, O’Rourke
and Subramanian [GORS], show that there are instances of polygons which do not
allow a connecting surface (in the way we defined it) without self-intersections (one
polygon may even be chosen as a triangle). (There is a subtle issue what we call a
self-intersection, but we do not elaborate on this; e.g. the surface in Figure 1 has a
self-intersection in the sense of [GORS].)



Section 3 describes the so-called angle-consistency condition for merged poly-
gons. Roughly speaking, this disallows that in the merged sequence between two
edges in P there is a sequence of edges in () which runs into a spiral without ‘resolv-
ing’ it. Experiments show, that the condition prevents self-intersections in many
examples, and we prove that a violation of the condition enforces a self-intersection
(i.e. requiring angle-consistency does not exclude any good solutions).

The algorithmic aspects are dealt with in Section 4. We show that the optimal
angle-consistent solution with respect to our angle criterion can be computed in
time O((dt)* + m + n), where m and n are the numbers of edges of P and @, d is a
parameter that indicates to what extent P or () run into spirals, and ¢ counts the
number of edges of inflection in P and @), (i.e. edges where preceding and succeeding
vertex lie on opposite sides of the line through the edge; e.g., for a convex polygon
this parameter is 0). In many instances, d and ¢ are very small compared to the
number of edges.

We have implemented our method, and some other methods for the sake of com-
parison. The angle-consistency condition has been directly motivated by phenomena
we observed on results of the implementation in simple natural examples.

Clearly, the ‘best’ surface will always depend on the specific application, and
there may even occur applications where our conditions Cl and C2 are not appro-
priate. Nevertheless, we believe that our method represents an interesting alterna-
tive to the existing ones. Moreover, merged polygons raise some mathematically
interesting questions. We refer to [GRS] for a paper treating some related aspects.

2 An angle criterion for merging polygons.

We first introduce some simple notation for sequences and polygons.

Notation for sequences. Given two sequences X = (zg,21,...,%,-1) and ¥ =
(Yos Y1y -+ »Ym—1), we say that X and Y are cyclically equivalent, denoted by
X =¢e Y, if n = m and there exists an ¢, 0 < ¢ < n — 1, such that
(s Tigty e ooy X1y L0y Ty e o vy Tim1)=(Y0o Y1y -+ » Ym—1). We adopt the convention that
indices are taken modulo the length of the considered sequence, in particular =, = z.

Let 7 = (z0,21,...,2n-1) be a sequence, and let [ = {iy,ds,...,4:}, 0 < 4y <
iy < ---ip <n—1. The I-restriction, Zj;, of Z is the sequence (z;, zi,, ..., 2, ).

Z is a cyclic merge of sequences X and Y if there is a partition (I,.J) of
{0,1,...,n — 1} such that X =, Zj; and Y = Z;. Note that I and J are
not uniquely determined; in order to be more specific about which elements come
from which sequence, we call Z the (I, .J)-indexed cyclic merge of X and Y.

Polygons. A polygon P is a sequence (po,pi,...,pn—1) of n > 2 points in the
plane, such that p; # p;4q for all ¢, ¢ = 0,1,...,n — 1. Two polygons are considered
equivalent if their defining sequences are cyclically equivalent.
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Figure 3: Edge vectors and turning angles, 6o < 0,61 > 0 etc.

A polygon is simple if n > 3, all points p;, ¢+ = 0,1,...,n — 1, are pairwise
distinct, and each open line segment p;p;71, ¢ = 0,1,...,n — 1, is disjoint from all
pi,J=0,1,....,n—1, and from all p;p;31, 7 =0,1,....n =1, j # .

Every polygon P = (po, p1,...,pn—1) defines

e a sequence of edge vectors Ep = (eg,e1,...,e,-1) € (R* — 0)" where! ¢, =
Pit1 — Pi, 0 = (0,0) is the zero vector;

e a sequence of edge angles Ap = (ag, a1,...,a,—1) € (S')" where a; = e;/|| e ||;

e and a sequence of turning angles Ap = (8(eg,e1),0(e1,€2),...,0(en_1,€, =

o)) € (=, +7) U{L})" where § : (82— o) x (R?—0))" —» ((—, +7)U{L})
and 6(e,e’), is the counterclockwise angle between e and ¢’ in the interval

(—m, +7).

6(€i, €i41), for short 6;, can be seen as the turn of the tangent at point p;41, where a
counterclockwise turn gives a positive value, and a clockwise turn gives a negative

value; see Figure 3. If a; = —a;41, 1.e. €; and €;11 are oppositely directed, then
we define 6(e;, e;41) = L; intuitively, L represents 7. If 6(e;,e;41) = L then
6(eis €iyr)| i=

Given the edge vector sequence Fp = (eg,€1,...,€,-1) of a polygon P we write

6(P) = 6(Fp) := E?:_OI i, provided all é; # L, and undefined, otherwise. We set
S(Ep) := 32720 18| (which is always defined).

Given an edge vector sequence (eg,€q,...,€,-1), an edge vector e; is called
inflection-edge vector it 6;,_1 - 6; < 0. In a polygon, the vertices preceding and suc-
ceeding an edge corresponding to an inflection-edge vector lie on different sides of the
line along the edge. For example eq is an inflection-edge vector in Figure 3. An edge
vector e; is called weak inflection-edge vector if it belongs to a sequence of at least
two edge vectors with the same edge angle bounded by turning angles with different
sign, i.e. there exist 19 < 21 and 19 < ¢ <2y with a;, = ajy41 =+ =a; = -+ = a;,,

le; is not the edge (segment) connecting p; and p; 41, it is the vector from p; to p;41.



and 6;,_1 - 6;; < 0. This means each weak inflection-edge vector e; belongs to a se-
quence of weak inflection-edge vectors e;,, €;,41,...,€;, and if the sequence of weak
inflection-edge vectors were replaced by the sum of the weak inflection-edge vectors
€iy + €ig+1 + - -+ + €, the sum would be an inflection-edge vector.

Note that Ep determines P up to translation, and a sequence (eg, €1,...,€,-1)
in (R* —0)", n > 2, is the egde vector sequence of a polygon iff E?:_Ol e; = 0. We
consider the values in Ap as real numbers and the arithmetic of these values without
equivalence modulo 27.

Observation 2.1 Let P be a polygon with turning angles (éo,61,...,06,-1), all 6; #
L (and hence 6(P) defined and n > 3).

(i) 6(P) is a multiple of 27.
(it) If P is simple, then 6(P) € {27, —2x}.
(tit) If P is convex, then either

(a) 6(P)=2r and 6; >0 forallt =0,1,...,n—1, or
(b) 6(P)= =27 and 6; <0 for all 1 =0,1,...,n— 1.

(iv) ?:_01 |6;| > 27 with equality iff P is convex.

d pi2 |

Figure 4: > 6, =0 for P and > §; = 47 for Q.

Note that 6(P) = 27 and §(P) = —2x discriminates whether we run through a
simple polygon in counterclockwise or clockwise order, respectively. Without loss
of generality, we assume that we run through a simple polygon in counterclockwise
order.

: [/\\\j g Ni

Figure 5: f;i 10k| = [6(e5,€5)]|.
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Observation 2.2 For a sequence of edge vectors (e;, €41, ..., €;) with Ef;i |0k < 7
we have Ef;i 0k = [6(es, €5)]. If, moreover, 6, >0 for all k € 1,i+1,...,5 =1 or
O <0 forallk ev,i+1,...,5 —1, then i: |6k] = |6(€is€5)], (see Figure 5).

Ly-optimal merge. We call Z = (20, 21,...,2,-1) an Ly-optimal cyclic merge of
edge sequences X and Y if Z is a cyclicmerge of X and Y and 8(Z) = Y7 |6(24, 2i11)|

is minimal among all cyclic merges of X and Y.

Lemma 2.3 For any cyclic merge Z of edge sequences X and Y , we have max{5(X),8(Y)} <
8(7).

Proof.  Note that adding an edge into a sequence of edges cannot decrease its
d-value (recall Observation 2.2 ). Since we can obtain Z from X by successively
adding the edges from Y, it follows that §(X) < §(Z). Analogously, we can obtain
7 starting from Y which gives 6(Y) < §(Z), and the lemma follows.

With this lemma we are ready to prove the main property of Li-optimal cyclic
merges.

Lemma 2.4 (i) If X and Y are edge sequences of convex polygons, then every Li-
optimal cyclic merge of X and Y is also convex.

(i) If X and Y are sequences of edge vectors of simple polygons and their sequences
of

edge angles are cyclically equivalent (w.lo.g. x;/||x:|| = vi/||yi|| for alle € 0,1,...n—
1), then
7 = (%0, Yo, T1, Y1y -+ - Ty, Yn—1) s an Li-optimal cyclic merge of X and Y. Any
Ly-optimal merge can be obtained from 7 by successively swapping consecutive edge
vectors e and €' with e = Xe/, A > 0.

Before we proceed with the proof, let us remark that (i) implies that condition C1
is satisfied. If X can be obtained from Y by scaling, then Z as described in (ii)
corresponds to the cone section as required by condition C2. Since the swappings
described do not change the actual surface (only its associated triangulation), this

shows that C2 is also fulfilled.

Proof. (i) X comes from a convex polygon, if its angles are cyclically sorted. Two
cyclically sorted sequences can be merged to a cyclically sorted sequence, which
again describes a convex polygon. Since the d-values of all these sequences are
equal 27, Lemma 2.3 or Observation 2.1 imply the claimed assertion. (ii) Since
8(7) = 6(X) = 6(Y), the optimality of Z follows immediately from Lemma 2.3.
It remains to give the proof that any [Li-optimal merge can be obtained from Z
by successively swapping consecutive edge vectors e and ¢ with e = Ae/; A > 0.
This fact is somewhat more subtle, as it is perhaps witnessed by the fact that the
statement becomes wrong, if we drop the assumption that X and Y come from
simple polygons! As we will show at the end of the proof we can restrict ourselves
to sequences of edge vectors without turning angles with value 0, i.e. §(x;, ¢;41) # 0



for all © € 0,1,....,n — 1. If X is convex the claimed assertion follows directly
from (i). Now we consider simple non-convex polygons X and Y. X must contain
inflection-edge vectors otherwise all turning angles must be positive and since X is
not convex, 6(X) > 2x, a contradiction to X simple (Observation 2.1).

First observation: Since 6(Z) = &(X) = §(Y) and Lemma 2.3, deleting z;,
j€0,1,...,2n — 1, from Z cannot decrease 6(7).

It follows that there is no inflection-edge vector in Z. It also follows that there
is no undefined turning angle 6(z;,z;41) in Z. In this case deleting one of the edge
vectors z; or z;41 would decrease 8(Z). |6(z;,zi11)| + |6(2i41, 2j42)| = 7 in §(Z)
because |6(z;, zj+1)| = 7. Say zj41 is deleted. Then |6(zj, zj41)| + [6(2j41, zj42)| is
replaced by |6(z;, ;42| which is smaller than 7. Since §(Z) = §(X) = §(Y), z; and
Zjto are from different polygons and z; and z;41 are from different polygons and
hence z;41 and z;42 are from the same polygon with the same turning angle. This
contradicts to our assumption é(x;, x,41) # 0 for all e € 0,1,...,n — 1 and therefore
|6(2/, zj+2)| cannot be 7.

Directly from the first observation follows a second observation: Let Z be an
(I,.J)-indexed cyclic merge of X and Y and ¢ < j be two consecutive indices
in I or two consecutive indices in J. Then z;, 2;41,...,2; 1s a convex sequence,
ie. 0(zp,2pq1) = 0 forall i@ <k < j—1or 8(zp,2041) <0 forall e <k <
j — 1 and Ef;i 0(zk, zk41) = 6(z4,2;) because from E(Z) = E(X) we know that

i—1

pmi 16020, zk) | = |6(21, 7).

Let 27 < 2 < 13 be consecutive in [ and z; corresponds to an inflection-edge
vector in X. From the second observation it follows that z;,...,z; and z;, ..., 2,

are convex sequences of edge vectors and 6(z;,, z;) - 6(zi, z;,) < 0. Thus z; must be
a weak inflection-edge vector in Z because it cannot be an inflection-edge vector in
7 (see above). This means that there is an adjacent edge vector, w.l.o.g. z;_1, with
index from J, 2 — 1 € J, has the same turning angle and is a weak inflection-edge
vector in Z. Analogously, it corresponds to an inflection-edge vector in Y. The
reason is if j3 < ¢ — 1 < jy are consecutive in J then z;,..., %1, overlapping
with z;,..., 2, and 2,_4,...,2;,, overlapping with z;,..., %, are convex sequences
of edge vectors and with 6(z;,,2i) - 6(zi,2i,) < 0 also 6(zj,,2i-1) - 6(zi—1,2j,) < 0.
A sequence of weak inflection-edge vectors cannot be longer than 2 because of our
restriction to sequences X without turning angles of value 0.

We argue analogously for each inflection-edge vector from Y. We conclude that
there are no inflection-edge vectors, but pairs of weak inflection-edge vectors with
the same turning angle, one from X and one from Y, and they correspond exactly
to the inflection-edge vectors in X and Y.

Look at the sequence of inflection-edge vectors (2o, iy, .« -y i, ) I X, (Yigs Yiys - - -

in Y. If the pairs of weak inflection-edge vectors in Z are x;,, y;,, 0 <1 < k—1, then
the proof can be completed using ideas analogously to (i) for the identical convex
parts between x;, and x;_, and y;, and y;_,.

Assume z;, is adjacent to y;,,  for every [ and a fixed integer constant ¢, 0 < ¢ <

k. This means 6(x;—1, ;) = i:ﬂ 6(2ky 2k41) = 6(Yiryo—1. Y3y, ), this follows from

7yik—1)
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the fact that inflection-edge vectors from X and Y are exactly the weak inflection-
edge vectors in Z and 6(7) = 6(X). Therefore §(7) = 6(X) = 2x. The sum of

turning angles ¢ times passing Z gives ¢ - 2x. This is

2n—1 ck—1141—-1
c: § 5(Zj72j+1) = § § 5 J?],J?]_H
J=0 =0 j=y
c—1 411 2c—1%41—1
= YD lapap)+ Y Y Slagaia) +
=0 j=u l=c j=14

ck—1 411
+ § : § : 5 J?],J?]_H
I=k(c—1) J=%u
= k-1-27

with 7 € Z because the sum of turning angles between z;, and x;, . must be 7 - 27
since they have the same edge angle. We get ¢ = ¢/k which is a contradiction since
0 < ¢ < k and ¢ is an integer.

It remains to show how to handle sequences X with turning angles with value
0. Assume 8(x;y, Zig+1) = 0 for some 19 € 0,1,...,n — 1. A sequence of edge vectors
X' is constructed by successively replacing pairs of consecutive edge vectors of X
which have the same edge angle value (z;,/||%i,|| = @ip+1/||Tio+1||) by their sum
(i, + Tig41), i.e. the corresponding sequence of edge angles is constructed by suc-
cessively deleting edge angles where the preceding edge angle has the same value.
Using Observation 2.2 and §(Z) = §(X), it is easy to see that in an L;-optimal
cyclic merge of X and Y x;, and x,,41 may be consecutive or there are only edge
vectors of Y with the same edge angle (as the one of x;, and x;,41) in the sequence
from x;, to x;,41. It is not possible that in the sequence from z;, to ;11 in the
Ly-optimal cyclic merge of X and Y an edge angle with another value appears. So

X can be reduced to X’ and if the claim holds for X’ then also for X.

It the polygons are convex then the Li-optimal cyclic merge corresponds to the
Minkowski sum of the polygons. No such correspondence exists as soon as the
polygons are not convex (e.g. the Li-optimal merge is in general not unique).

Lo-optimal merge. A cyclicmerge 7 = (20,21, -« Zmtn—1) of X = (2o, 21, .. Tpo1)
and Y = (Yo, Y1, .- - Ym—1) 18 Lo-optimal if Em+n Ls (ZZ',ZH_l)z is minimal.

Lemma 2.5 [f X and Y are sequences of convex polygons then an Lo-optimal cyclic
merge of X and Y s also convex.

Proof. The proof of Lemma 2.5 is not as simple as the one for Lemma 2.4, because
adding an edge vector to a sequence may actually decrease the sum of squares of
turning angles.
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Let 7' = (20,21, ..., Znym—1") be a convex cyclic merge of X and Y, and 7 =
(205 215« -+ » Zngm—1) any non-convex cyclic merge of X and Y. We want to show
m4n—1 m4+n—1
2 2
Y b(zz) > > 6z )
=0 =0

We say that a (directed) interval z,, z, covers an interval z., zq if the edge angles
of z. and z;4 lie in the range of edge angles from z, to z,. Every interval z;, z;41,
0 <j3 <n+4+m-—1, covers a non-empty sorted sequence of edge vectors of 7', i.e.
16(25, zj41)| = E?:—ki 0(2, zip1") and z; = z," and zj41 = 2,/ or vice versa, z; = 2,/

and zj41 = z,". So we get

n+m—1 nt+m—1 ;=1 nt+m—11;—1
S e = Y (LA 2 Y 6w
7=0 7=0 =k J=0 i=k;

If 6(7) > 27 or 6(Z) < —2x there exists an index j for each interval z;/, z; 41" with
Zj, Zjp1 covers z;', zipq'.

n+m—1 l]_l n+m—1
! n2 ! N2
§ § 0(2,2i41")° > E 6(2, zi41)
J=0 i=k; =0

The only possibility that equality holds is k; = {; — 1 for all 7,0 <73 <m+4n —1,
which means 7 = 7'.

If 6(7Z) = 0 we cannot guarantee that each interval z;/, z; 11" is covered by an interval
2j,zj+1. But Z defines a polygon and therefore the union of all intervals z;, 2,44,
0 <j<n+m-—1,is connected and touches each z,’. There is at most one index
1 €0,1,...,n+m—1, with interval z;/, z;41" is not covered by any interval z;, z;41.
The idea of the proof is to show that 8(z/,z;41)* is replaced by a larger value.
All intervals building the subdivision of the remaining interval z;4,’,2; in 7' are
covered by intervals in Z. They are already covered by positive intervals, i.e. pairs
of consecutive edge vectors in Z with positive turning angle. We will show that
there are additional costs of negative (which guarantees that they are additional)
intervals in Z which are larger than 6(z/, z;41')*. Two cases are possible: z;/, 24’
both come from one edge vector sequence, w.l.o.g. X, or one is from X and one
from Y.

First case: 2/, 241 = j, 7,41, w.0.l.g. 7 = 0. We have to compare to 6(zg, x)?
the additional costs of negative intervals of a solution omitting the interval xg, z;.
Let yo,y1 be edge vectors of Y such that there is no edge vector of Y between g
and z¢ in Z and no edge vector of Y between 1 and y; in 7, see Figure 6a). (In
Figure 6, edge angles are displayed as points on the unit circle). 0 < é(xg,x1) < 7
and 0 < 6(yo,y1) < 7 because X and Y are convex. In Z there must be edge
vectors of Y between xg and @1, Toyryrs1 ... yix1, [ > k, with —7 < 8(xo,yx) < 0
and —7 < &(y;,21) < 0, see Figure 6a). 8(wo,yx)* + 8(ys, x1)? > 72/2 because
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yl

: . ! ! ! !
Figure 6: a) 2/, zi41' = xo, 11 b) z/, zix1' = xo, 01

O(xo, yr)+6(y1, x1) < —7. Also there must be edge vectors of X between yo and y; in
7 since Z does not cover the interval xg, 1. Assume the sequence of edge vectors of
Z from xq to oy is part of the sequence from yg to y;. This is a contradiction because
in this case yr = y1, but 0 < 8(yo,y1) < ® and 0 > é(yo,yx) > —7, or y; = yo and
0 > 6(yi,y1) > —n. It follows that there is a sequence yoxg ... 2py; not containing
xg or xq in Z with two negative intervals yg, v and zp, y1. yo, Tp 1s negative because
otherwise z¢ would be part of the sequence; ., y; is negative because otherwise x
would be part of the sequence. For this sequence we also get additional costs of at
least 72/2. The additional costs sum up to at least 7% > §(xq, x1)*.

Second case: z,z;11" are from both polygons, one from X and one from Y,
w.lo.g. z/.z:41 = wo,y1. In Z there must be edge vectors of Y between zg
and @1, ToYrYkt1 ... yix1, [ > k, see Figure 6b). 6(xo,yx) < 0 and 6(y;, x1) < 0.
Let —zg be the edge angle with direction of o — 7, —y; the edge angle with di-
rection of y; —w. If §(y;,21)* > &(—z0, —y1)? then Z is not Lq-optimal. Using
this fact together with 0 > é(xo,yx) > —=, we conclude that yg,y; is covered by
—xg, —y1 and since &(zo, yx) + 6(y1, v1) < —m, 8@, yr)? + 8(yr, x1)? > 72/2. Anal-
ogously in Z there must be edge vectors of X between yo and vy, yo, xgr, ..., 21, Y1,
with interval zy, ) covered by —x¢, —y; and analogously we get additional costs
8(yo, v )* 4 S(zp, 1) > 72 /2. We conclude that Z cannot be an Ly-optimal cyclic
merge.

Condition C1 is obeyed, but Ls-optimal solutions may violate condition C2. To
this end consider the example of two stars in Figure 7. Let the acute angle in
the polygons be ¢, 0 < ¢ < 7/2. Then the Ly-value of the L; optimal solution is
4((m — €)? + (7/2 — €)?). The alternative merge (given by a program as the L,-
optimal merge for € &~ 7/5) has an Ly-value of 4(2(7/2 — €)* + (7/2 + €)? + €%).
As ¢ approaches 0, the first value converges to 572, while the second one converges
to 372. So for some ¢ small enough (¢ < (v/2 — 1)7/2), the solution suggested by
condition C'2 will not be Ly-optimal.
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L

Figure 7: Li-optimal merge and Ly-optimal merge of two cyclically equivalent poly-
gons

3 Angle consistency

Let us right go back to the examplein Figure 7. The solution suggested as Ls-optimal
obviously leads to a surface with self-intersections, since the merged polygon 7 is
not simple; even without looking at the picture, we could compute 6(7) = —4x, a
value which contradicts the simplicity of the underlying polygon (no matter what
the lengths of the edge vectors are). In this section we will suggest a criterion which
eliminates such obviously bad solutions.

Before we start with the key definition, we want to point out that a cyclic merge
7 of two edge vector sequences X and Y does not necessarily determine the surface.
However, the surface is determined if we give Z as an indexed merge?, when it is
clear which vector in Z comes from X and which one comes from Y.

Let Z = (20,21, ..., 2n-1) be an (I, J)-indexed merge of two edge vector sequences
X and Y with 6(X) and 6(Y) defined. Let ¢ < j be two consecutive indices in [I.
We define 5£§) = 6(zi,2;), and 52(5) = Ef;i 6(zk, zr+1); analogously, we define 52(?;)
for consecutive indices in J. Moreover, we agree on the obvious cyclic extension for
indices ¢ > j, where ¢ is the largest index in [ and j is the smallest index in I (and
similar for .J).

We say that Z is angle consistent, if ¢ for all pairs of

() _ 520 and 600 — 50
27] 27] 27] 27]
cyclically consecutive indices in [ and J, respectively.

Figure 8: A cyclic merge which is simple but not angle consistent.

Note that if 0 < ¢ <27 < ---45_1 < n — 1 are the indices in I, and X comes

2Recall definition in the beginning of Section 2.
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from a simple polygon, then

k—2

27‘(’ = 5(X) = 25(Zil7zil+1) —|— 5(Zik_172i0)-

(=0

This sum equals 6(7), if Z is an angle consistent merge; and hence 6(7) = 2.
However, it may very well be that §(Z) = 2x (it may even be simple), but it is not
angle consistent, see Figure 8.

Although, a cyclic merge which is not angle consistent may be simple, the re-
sulting surface will always contain self-intersections (as will be shown below). So
it 1s justified to exclude such merges for our surfaces. This will eliminate also self-
intersections for our Lq-angle criterion; see Figure 9 for an example where an [Lq-
optimal merge violates angle consistency, and go back to Figure 2 for the Ly-optimal
angle consistent merge.

Figure 9: Li-optimal cyclic merge which violates angle consistency.

Theorem 3.1 An indexed cyclic merge of edge vector sequences of two simple poly-
gons which is not angle consistent leads to a surface with self-intersections.

Proof. Let us assume that P lies in the zy-plane, and () lies in a parallel plane at
height 1 (i.e. in the plane z = 1). We have argued before in the introduction, that
the cyclic merge Z defined by a surface is the intersection of the surface with the
plane at height 1/2, scaled with a factor 2. Let us be more specific, saying that
Z = (20,215 - - Zn—1) 1s the (I, J)-indexed cyclic merge of the edge vector sequences
of P and (). If we consider now the intersection of the surface with a plane at height
A, 0 < XA <1, then this can be obtained from Z by multiplying all edge vectors from
P (with index in I) by 1 — A, and the edge vectors from @ (with index in .J) by A.
This gives a family of polygons with edge vector sequences 7). The surface is free
of self-intersections, if all polygons Z, are simple.

Assume Z contains an undefined turning angle and for this reason Z is not angle
consistent. In this case no Z, is simple for 0 < A < 1. In the following we only
consider sequences Z with 6(7) defined.

For the remaining proof let us multiply the length of the edges in Z,,0 < A <1
by 1/X to obtain edge vector sequences Z} where the edge vectors from ) have
constant length, and the edge vectors from P are multiplied by (1 — A)/A.
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Consider now a violation of angle consistency, i.e. a pair ¢ < j of consecutive
indices in [ where 52(]‘) +* 52(]‘) (other cases of violation are symmetric). Hence,
the sequences 7! contain as a subsequence S, = (pz;, Zig1,- .., Zj—1, ftz;) With g =

(1—)\)/)\—>ooas)\—>0.

10 < 6 < mlet v, = —(pzitzip1t+ A zjo1Fpz;), e (120 Zigts ooy Zj—1, 125, Vp)

]
is the edge vector sequence of a polygon, unless v, = o; if v, = o, then this im-
mediately reveals a self-intersection. Let y — oo, v, only intersects pz; and pz;
in the polygon. If the polygon is simple then 5£§) = 52(5)

to the assumption. Otherwise there is a part of Z, which is not simple and which

which is a contradiction

yields a self-intersection. In a similar way the case 52();) = 0 can be handled (let

)

vi + vi = —(pzi+ zig1+ - + zj—1 + pz;) and 5(1)}”1)2) =c—0.)
If X = (xo,21,...,20-1) and Y = (Yo, ¥1, - - . , Ym—1) are edge vector sequences of sim-
ple polygons then there always exists a cyclicmerge Z = (2o, ..., iy Yo, Y1y - -« y Y1y Tig1y - -

of X and Y which is angle consistent. For example take the leftmost vertex of X
(or the uppermost of these if there are more than one) as the i-th vertex and the
rightmost (the lowermost of those) of Y as the (m — 1)-th then 6(7) = 27 and it
directly follows from the construction that angle consistency is fulfilled.

Angle consistency does not concern conditions Cl and C2. If an optimal cyclic
merge fulfills the conditions then also the optimal among the angle consistent fulfills
the conditions.

4 Algorithm

If one polygon is convex it is easy to find an Li-optimal cyclic merge.

Lemma 4.1 An angle consistent Ly-optimal cyclic merge Z of an edge sequence X
of a convex polygon with n vertices and an edge sequence Y of a simple polygon with
m vertices can be constructed in O(n 4+ m) time.

Proof. The angles of X are cyclically sorted. Edges of X can be successively inserted
into the edge sequence of Y without increasing its é-value because 6(Y) = 2r. If
this is done in a greedy way (insert as soon as possible), angle consistency is guar-

anteed.

If none of the polygons is convex the problem can be formulated as a shortest path
problem in a directed graph.

Description of the algorithm:
Every possible triangle in a connecting surface (defined by an edge of one polygon
and a vertex of the other) is represented by a node in the graph. The node set
of the graph has cardinality 2 - m - n. A node is labeled (¢,7,0) if the triangle is
defined as the convex hull of the edge between the (¢ — 1)-th and ¢-th vertex of

. 7$n_1)
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polygon P and the j-th vertex of polygon @; (7,7,1) is defined analogously by the
t-th vertex of P and the j — 1-th and j-th of (). Arcs in the graph connect nodes of
consecutive triangles which share an edge connecting P and (). The graph is a torus
graph. Indegree and outdegree of a vertex are 2. Arc weights are assigned according
to the absolute value of the turning angle between the polygon edges of the two
consecutive triangles. Fixing a starting triangle (w.l.o.g. (0,J,-)), we are looking
for a cycle of minimum weight passing node (0, j,-) containing n + m triangles.
A global optimal solution is the minimum among all minimum weight cycles in
the torus graph passing (0, 0,0),(0,0,1),(0,1,0),(0,1,1),(0,2,0),...,(0,m—1,0) or
(0,m —1,1), respectively. For a fixed starting triangle, w.l.o.g. (0,0,0), we regard a
subgraph of the torus graph which is a directed acyclic graph with 2-(n41)-(m+1)
nodes (7,7,0) and (¢,7,1); 0 < ¢ < n, 0 < j < m, where (n,m,-) is a copy of
(0,0,-). A minimum weight cycle in the torus graph passing (0,0,0) corresponds to
a shortest path from (0,0,0) to (n,m,0) in the subgraph. A shortest path can be
computed in O(n - m) time since the subgraph is a directed acyclic graph of this
size. But we have to compute a shortest path for each of the 2-m starting triangles
(0,0,0),(0,0,1),(0,1,0),...,(0,m — 1,1). So the overall running time to compute
the value of an L;-optimal cyclic merge is O(n - m?) and space requirements are
O(n-m) (the number of nodes of the union of the subgraphs is 2 (n+1)(2m)). The
Ly-optimal merge itself can be obtained by backtracking through the graph.

Theorem 4.2 An Li-optimal merge of two polygons with n and m vertices can be
computed in O(n - m?) time.

The algorithm can be used to compute other angle dependent optimal merges like
the Ly-optimal merge.

Remark. This solution is based on two papers, one of the first papers written
on contour triangulation [K], it employs a smaller directed graph to compute a
maximal volume contour triangulation; Fuchs, Kedem and Uselton [FKU] refined
the modeling of the graph to accelerate the algorithm. They gave a faster algorithm
with running time O(n-m-logm) but they need graph planarity and our subgraphs
are not planar. Sloan and Painter [SP] also used this approach and suggested a
heuristic to improve the graph search.

The Li-optimal merge produced by the algorithm may not fulfill angle consistency.
To guarantee that the solution is angle consistent we have to extend the algorithm.

Suppose starting vertex (0,0,0) is fixed. (We proceed analogously for all 2m
starting vertices.) Guaranteeing angle consistency, the algorithm successively com-
putes shortest paths to all vertices of the graph. Reaching a vertex we test if the
path represents an angle consistent part of a solution. For example if the vertex
corresponds to a triangle with a polygon edge from edge vector z; with y in I and

t < j consecutive indices in [, we test if 5£§) = 52(5). To do this test in constant time
per vertex we compute two entries §* and 6Y at every vertex. Reaching a vertex

corresponding z;, 6% denotes 5,(€Zj) with £ is the largest index in [ smaller than j, and

6¥ denotes 51(5) with [ the largest vertex smaller j in J. 6% and 6" are computed
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and updated in constant time per vertex. If j is from [ then 52(5) is given by 6%, If
J is from J and ¢ < j preceding j in J then we have to test if 52(?;) = 52(5) and 52(5)
is given by &V

For every vertex (7, j,0) [(¢,7,1)] in the graph the shortest angle consistent path
from (0,0, 0) passing (7, j,0) [(¢,7,1)] to (¢+1,7,0) and (¢,57+1,1) is computed. This
means that we check what will happen if the next edge vector from X or from Y is
taken. It is easy to compute these angle consistent paths for i = 0 or j = 0 (assuming
5,(:;) = 5,(“21) with z; = yo and z; = y1). Now we compute the paths to (¢, 7,.) vertex by
vertex in rows, what means before j is increased all values for (¢, 7,.) for all0 < ¢ <n
are computed. At every vertex the shortest angle consistent paths are computed as
the shortest paths in the algorithm above; only if the shortest angle consistent paths
passing (7,7,0) [(¢,7,1)] to (2,5 +1,1) [( + 1,7,0)] are computed angle consistency
may be violated. Suppose angle consistency is violated at (¢, j,0), i.e. passing (¢,7,0)
taking the arc to (z,5 4 1,1). Only the pair of edge vectors y;(= zx) and y,41(= z;)
violates angle consistency, 5,(:;) +* 5,(5). The shortest angle consistent path we are
looking for contains a shortest angle consistent subpath passing (¢',7,1) taking the
arc to (¢/ +1,7,0) which we already computed for all «" < i. For each ¢" compute
the length of the path passing (¢/,j,1), (¢/+1,7,0),...,(¢,5,0),(7,5+ 1,1) and test
if 5,9/[) = 5,&,21) where 7 is the merge corresponding to the path and z; = zp. All
together for all ¢’ this can be done in O(n) time and also finding the shortest angle
consistent among these O(n) paths takes the same time. With this algorithm we
find the shortest angle consistent path, we guaranteed angle consistency for all pairs
of consecutive indices in [ and J but k,l with z; = yo and z; = y; (see above). But
5,(:;) = 5,(5), because §(X) =6(7) =27 =) 52(5) with summation over all pairs ¢, j
of consecutive indices in J.

At each vertex we spend at most O(n) time. The resulting running time for
a fixed starting vertex is O(n? - m) time, the overall running time to compute an
Ly-optimal angle consistent merge, i.e. Lqi-optimal among the angle consistent, is
O(n?* - m?) time.
For many polygons it is possible to compute an Li-optimal angle consistent merge
in less time. We exploit the degree of convexity of a polygon in a similar way to
Lemma 4.1. Given an edge vector sequence X = (xq, ¢1,...,2,-1), we define

d(X) = max; ;{ i;: |6k|| with 6 >0forall ked,i+1,....5—1or
op<Oforal keie+1,...,5—1}

The distortion dx of X is defined as dx := |d(X)/x|. (This is a notion related e.g.
to the winding number in [GRS].) Recall the definition of an inflection-edge vector
in the beginning of Section 2. The number of inflection-edge vectors and sequences
of weak inflection-edge vectors describes the degree of "convexity” of an edge vector
sequence and the distortion describes how ”spiral” it is.

Theorem 4.3 Let X and Y be edge vector sequences of two simple polygons with n
and m points and d is the mazimum of their distortion. t is the number of inflection-
edge vectors plus the number of sequences of weak inflection-edge vectors of X and
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Y. Then an Li-optimal angle consistent cyclic merge of X and Y can be constructed

in O((dt)* +n +m) time.

Proof. X = (xg,21,...,2,-1) and Y = (yo,¥1,...,Ym—1) are the edge vector
sequences of two simple polygons. If X or YV is an edge vector sequence of a con-
vex polygon then Lemma 4.1 proves the statement of this theorem. Similarly to
Lemma 2.4 we assume that X and Y do not contain turning angles with value 0.
Therefore we also assume that ¢ is the number of inflection-edge vectors. The reason
is given at the end of the proof.

X decomposes into maximal convex chains, i.e. subsequences (x;, ¥i41,...,2;)
with 6 > 0 for all k € {s,s+ 1,...,5 — 1} with ;-1 < 0 and 6,41 < 0, or 6, <0
forall k € {¢,0+1,...,5 — 1} with 6,1 > 0 and 6,41 > 0. (Y analogously). Notice
that the number of maximal convex chains in X and Y is ¢.

We will proceed as follows: First X and Y are reduced to at most dt edge
vectors. Then a partial solution for the reduced problem is computed with the
algorithm above in O((dt)*) time. In the second step the removed edge vectors are
merged into the partial solution in O(n + m) time and we get an Lq-optimal angle
consistent cyclic merge of X and Y.

Reduction of X to X’ and Y to Y’: X’ contains all inflection-edge vectors of X, these
are the first and last edge vectors of the maximal convex chains, together with some
additional edge vectors which witness the spirals of the polygon. Suppose z; and z;
are the first and last edge vector of a positive maximal convex chain (consecutive
inflection-edge vectors) and 327~} §(xy, 2541) > 7. A negative maximal convex chain
will be handled analogously. Beginning with z; = z;, (walking in direction ;)
We'take from X the next pqssible edge vector z;, with 221:_2; O(xk, xpy1) < 7 and
E;lzio (g, xpyr) > 7. If Ei;il o(xk, xp41) > 7 then beginning with z;,, we take the
last possible edge vector z;, with EZ‘;} O(xk, xp41) < 7 etc. until we have taken x;,
with Ef;z Op(xh, ¥pg1) < m. (Y analogously). In X’ and Y’ we have added at most
d edge vectors per inflection-edge vector. With the above algorithm an L;-optimal
angle consistent cyclic merge 7' of X’ and Y’ is computed. Assume 7 is the L;-
optimal angle consistent cyclic merge of X and Y. 6(Z') < §(Z) because X' C X
and Y' C Y. More precisely: Let Z"” be generated from Z by deleting the edge
vectors lying in X but not in X’ and those lying in Y but not in Y. §(Z") < §(%)
(Observation 2.2) and §(Z') < §(Z") because 7' is the Li-optimal angle consistent
cyclic merge of X’ and Y’ and Z” is an angle consistent cyclic merge of the same
edge vectors.

Merging step: The edges removed from X, X — X, consist of sorted sequences which
are merged into 7' in a way described in Lemma 4.1 such that the ordering of the
edge vectors relative to X is preserved. For the resulting cyclic merge Z% it holds:
8(Z%) = 8(Z'). The edge vectors of Y — Y’ are merged into Z% in the same way
and we get Zyy. 6(Z%y) = 6(Z') < 8(Z) and also 6(Z) < 6(Z%y ) because of the
optimality of Z. It follows 6(Z) = 6(Zy ).

It remains to show why we can restrict ourselves to sequences X and Y without
turning angles of value 0. For each sequence of consecutive turning angles with
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value 0 we replace the edge vectors defining those turning angles by their sum. The
modified sequences X and Y do not contain adjacent edge vectors with the same
edge angle. Each sequence of weak inflection-edge vectors becomes an inflection-
edge vector in the modified sequence, i.e. ¢ remains the same. The L;-optimal
solution Z of the modified sequences induces an Li-optimal solution Z of X and YV
by backwards replacing the sums of edge vectors by the corresponding sequences.
7 is an Li-optimal cyclic merge for X and Y since the value of the solution, §(7),
remains the same as for the modified sequences, 5(2) 8§7Z) > E(ZN) since the se-
quence of edge angles of X resp. Y is a subsequence of edge angles of X resp. YV and
restricting Z to X and Y cannot give a better value than §(Z) (Observation 2.2) .

5 Experimental results

VRS

Figure 10: Synthetic example.

We have implemented the algorithm on a SUN Sparc 10 in C. The software of
the algorithm consists of about 3000 lines of code and additional 6000 lines of code
which contains an editor for creating synthetic examples, support for the graphics
output and additional code for other optimality criteria. To compare the constructed
surfaces we have implemented four optimality criteria. An area-optimal surface, L:-
optimal and Ls-optimal solutions, and a ‘smoothest’ surface can be computed. A
smoothest surface is a surtface where the sum of the absolute values of angles between
normal vectors of consecutive triangles is minimized. A similar criterion is used in
the context of reconstructing surfaces from a given set of points in R® [ChShYL],
[DLR]. Although considering the smoothest surface is intuitively appealing neither
condition C1 nor condition C2 can be guaranteed by the smoothest surface.

To get an impression of the performance and characteristics of the algorithm
using angle criteria we present some specific examples, in the beginning two synthetic
examples to demonstrate the characteristics of Li-optimal solutions:

Figure 10 represents the top view of two oval contours which have to be connected
by a surface. An adequate solution is given by the Li-optimal merge. Since the
polygons are convex the connecting surface corresponding to the L1- or Ly-optimal
merge is convex. In comparison the area-optimal solution is shown in the right part
of the Figure.
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Figure 11: Synthetic example.

Figure 11 shows an Lj-optimal and an area-optimal solution of two rectangles
with ‘peaks’ on the same side but at a different position. Since the Li-optimal
solution does not depend on edge lengths (but on edge angles only) the two peaks
are connected. Some of the triangles of the resulting surface are slanted. (We have
a natural example of a face where this leads to undesired effects.) The area-optimal
solution depends very much on the position of the two polygons, it connects the
peaks to the nearest point in the other polygon. Without knowing the application it
is difficult to decide which solution is the better one. It could be desirable to connect
special similar features of the polygons, for instance if the cross-sections represent
2D animation.

The following examples are results from the execution of the algorithm on medical
data.

Figure 12: Cross-sections from the lungs.

Figure 12 shows two consecutive cross-sections from the lungs. In each cross-
section two polygons are displayed, the two lobes of the lungs. The Li-optimal is
depicted in the upper right part of Figure 12 and the Lj-optimal solution in the
lower left. While the Li-optimal surface represents an adequate solution, the Lo-
optimal and the ‘smoothest’ surface which is similar to the Ls-optimal are twisted
surfaces where large portions of one polygon are connected to one point of the other.
In the lower right part of Figure 12 we can observe the effect of adding the angle
consistency condition, it shows the Ls-optimal among the angle-consistent. In the
right lobe of the lungs there remains no self-intersection and the surface is ‘intuitively
correct’. Although the solution is angle consistent, in general we cannot guarantee
that there is no self-intersection; consider the left lobe of the lungs, we see that the
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sharp turning angle of the lower polygon is connected to a sequence of edges of the
upper polygon because the value of the sharp turning angle in the merge is reduced
by inserting edges of the other polygon.

Figure 13: Reconstructed heart.

The next example, Figure 13 shows the set of contours of a heart and a shaded
and a Gouraud-shaded display of the reconstruction.

Cross- CPU

sections | points | contours | time

heart 30 1280 65 2.6 s
lungs 34 3121 88 22.4 s
hip 34 1739 39 11.2s

head 17 856 26 6.2 s

Table 1: Some experimental results.

Table 1 sums up the running time for computing the L;i-optimal angle consistent
solutions of some experiments. We observe that the running time of course depends
on the number of points and number of contours but most important is the shape,
i.e. the degree of convexity of the cross-sections. For example the heart consists
of large convex parts whereas the data of the head contain many concavities and
the running time for the reconstruction of the heart is less than half of time for
reconstructing the head although there are 50% more points.
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