
1

SERIE B - INFORMATIK

Abstract. A monad is presented which is suitable for writing concurrent programs in a
purely functional programming language. In contrast to, for instance, the IO monad
[Launchbury, Peyton Jones 94], the primitives added to the functional language are not
represented as built-in functions operating on the monad, but rather by Perry-style
constructors [Perry 90] of a distinguished algebraic data type. Therefore, monadic
expressions representing concurrent computations are not only first-class objects of the
language; in addition, they may even be decomposed.
A number of examples show that decomposability of concurrent code is crucial for the
purely functional construction of more powerful concurrency abstractions like rendezvous,
remote procedure call, and critical regions from the primitives.
The paper argues that this technique helps to remedy a recurrent dilemma in the design of
concurrent programming languages, namely, how to keep the language small, coherent,
and rigorously defined, yet to provide the programmer with all the communication
constructs required.
It is suggested that functional languages are not only capable of describing concurrent
programs, but that in terms of expressiveness they may even prove to be superior to their
imperative siblings.

A Concurrency Monad Based on Constructor Primitives,
or,

Being First-Class is not Enough

Enno Scholz
email: scholz@inf.fu-berlin.de

B 95-1
January, 1995

2

1. Introduction
In order to describe the flow of control and data in
concurrent programs, a number of different communication
constructs like synchronous or asynchronous message-
passing, rendezvous, and remote procedure call exist. For
different applications, different communication constructs
are adequate [Bal et al. 89]. It is well-known that rules can
be given how to reformulate a program using one set of
constructs in terms of another set [Andrews 91]. However,
because such rules take program patterns as their
parameters, in conventional programming languages they
cannot be formulated by the programmer.

Traditionally, it is the designer of a concurrent program-
ming language who is responsible for choosing the required
communication constructs, since they must be built into the
language. The language designer's dilemma is to either
provide a rather limited set of communication primitives in
order to keep the language small, which may severely
restrict the language's application area, or to try and provide
all the communication constructs found to be useful in
concurrent programming, which may result in a complex
language that is difficult to treat formally. An example for
the former case is OCCAM [Inmos Ltd. 84], which provides a
small number of rigorously defined constructs. Whilst
inheriting a large body of theoretical properties from CSP
[Hoare 85], its practical applicability is limited. An
example for the latter case is SR [Andrews et al. 88], which
provides a plethora of communication primitives but reflects
their interrelatedness only in the language syntax.

An alternative explored in this paper is to place the respon-
sibility (and the opportunity!) for designing the required
communication constructs with the programmer. Only a mi-
nimal set of very simple communication primitives with a
rigorously defined operational semantics is built into a
functional language in such a way that concurrent programs
composed of these primitives are not only first-class values
of the language (which means they can be passed as
parameters and stored in data structures), but additionally,
they may be decomposed. We show that this decomposa-
bility is crucial for constructing more powerful concurrency
mechanisms within the functional language, such that they
derive their operational semantics from the primitives. This
seems to be a solution for the above-mentioned dilemma
and suggests that, in some respects, functional languages
may be more expressive than imperative languages.

Decomposability of concurrency primitives is achieved by
representing them as constructors of a distinguished alge-
braic data type in the style of Perry's Result type [Perry 90].
Compared to representing the primitives as built-in func-
tions operating on a monad (as, for instance, in the IO
monad [Launchbury, Peyton Jones 94]), composability
comes for free: being functional data terms, the primitives
can be decomposed using pattern-matching; however, as
demonstrated in [Wadler 92], they can still be considered
functions on a monad and be manipulated accordingly. The
remainder of the paper is organized as follows: Section 2
explains the notation used; Section 3 gives a brief review of
existing approaches to write concurrent programs using
functional languages; Section 4 explains which concurrency
primitives are to be added to the functional language and

what their operational semantics is; Section 5 contains a
concurrent example program in both continuation-passing
style and monadic style; Section 6 sets up the framework for
shifting between both styles; finally, Sections 7 through 10
take the reader through a series of example implementations
of common concurrency mechanisms like rendezvous,
remote procedure call, and critical regions.

2. Notation
The notation used in this paper is essentially the functional
programming language HASKELL [Hudak et al. 92], which is
a proposed standard and the functional programming
community's preferred vehicle of scientific discourse.
However, we assume the following extensions:

1. A type system with constructor classes and special
syntax for monads as documented and implemented in
the functional programming system GOFER, version 2.30
[Jones 94]. As far as these features are prerequisites for
following our presentation, they are explained in
Section 5.

2. The possibility to declare constructors of type synonyms
as instances of constructor classes. There is an
implementation restriction in Gofer saying this is only
possible for type constructors of algebraic data types.

3. A facility for dynamic typing as documented and
implemented in Yale Haskell, version 2.2 [Peterson
94]. It consists of a primitive abstract data type
Dynamic, on which two functions toDynamic and
fromDynamic are defined.

toDynamic :: a → Dynamic
 fromDynamic :: Dynamic → a

toDynamic succeeds for expressions of arbitrary type. It
tags the expression with the type the compiler infers for
type variable a in the context of the application of
toDynamic. fromDynamic checks this tag against the
inferred type for variable a in the context of its own
application. If this type is no less general than the tag,
fromDynamic returns the expression with the tag
removed, otherwise it causes a runtime error.

To make the paper self-contained, an informal description
of functions from the Haskell standard prelude is given
where they appear in the example programs. For their
definitions, refer to [Hudak et al. 92].

We have built an interleaving implementation of the
concurrency monad presented here by extending Mark
Jones's Gofer environment [Jones 94] to handle dynamic
typing and the concurrency primitives. All programs
presented in the course of this paper have been executed
using this implementation.

3. Related Work
The evaluation of past attempts to use the functional
paradigm as a basis for describing the interaction of systems
of concurrent processes shows that this task is not easily
accomplished. The most attractive point in functional
programming, namely equational reasoning, fundamentally
conflicts with the most prominent feature of concurrent
programs, namely nondeterminism [Hughes, O'Donnell 92].
The most obvious approach is to model a process by a

3

recursive function that maps a list of input messages to a list
of output messages. This is called the stream-processing
approach. However, this approach has several drawbacks.
First, since the availability of the messages that a process
receives on its input stream may depend on those it has
output at a previous point in time, the programmer can
easily produce deadlocks by trying to prematurely access
elements of the input stream. Second, the resulting layout of
communication channels between processes is unduly
restricted, making the construction of client-server
applications impractical. Third, this approach only works
for deterministic programs. To enable the stream-processing
approach to handle client-server interactions and nondeter-
minism, various schemes have been suggested. In all of
[Henderson 82], [Broy 86], [Stoye 86], [Turner 87],
[Darlington, While 87] [Jones, Sinclair 89], the functional
language is extended with an additional primitive which
enables nondeterministic functions to be constructed. To
preserve some opportunities for equational reasoning,
however, most of the authors propose schemes for
restricting the usage of the nonfunctional primitive within
the program.

The necessity of introducing some nonfunctional component
into the system has led some researchers to the belief that in
order to faithfully model concurrent systems with functional
languages, equational reasoning has to be sacrificed
completely. Thus, languages like CONCURRENT ML [Reppy
93] and FACILE [Thomsen et al. 93] came into existence,
which allow purely functional and side-effecting
computations to be arbitrarily interspersed. Unfortunately,
formal reasoning about the correctness of programs written
in these languages is about as difficult as in imperative
languages.

In order to preserve equational reasoning, an alternative
approach is to embed a functional language in some kind of
outer layer where nonfunctional computations are possible.
Either a completely independent syntax is chosen for this
purpose, like in [Lock, Jähnichen 90] and in the approaches
based on process algebra (e.g., LOTOS [ISO 87], PSF
[Mauw 91]), or the constructs of the outer layer are
represented as a set of functions on a distinguished data
type. A program with nonfunctional effects is represented as
an object of this type; the evaluation of an object of this type
may trigger the evaluation of purely functional expressions,
but not vice versa. Depending on the laws holding for the
distinguished type, the continuation-passing style (abbrev.
CPS) approach [Karlsson 81], [Perry 90] and the monadic
approach [Wadler 90], [Wadler 92] can be distinguished.
The equivalence of the CPS approach and the monadic
approach have been demonstrated in [Wadler 92] where the
use of the latter style is advocated.

However, the proliferation of concurrency primitives is a
problem shared by all approaches known to us. In [Scholz
95], we have proposed the decomposability of Perry-style
constructor primitives as a possible solution; this work is
extended here to cover the monadic framework.

4. The Concurrency Primitives
The concurrency primitives we introduce to extend the
functional language are based on the paradigm of point-to-

point, unidirectional, order-preserving, asynchronous,
buffered message passing with explicit message receipt
using an asymmetric naming scheme. I.e., sending a
message is non-blocking and requires the sender to know
the name of the receiver. A process wishing to receive a
message explicitly issues an instruction which causes its
execution to halt until a message from an unspecified sender
(whose identity is possibly unknown to the receiver) has
arrived. Messages sent to a process are buffered using an
unbounded message queue. The order in which several
messages were sent by process p1 to process p2 is preserved
in p2's message queue. Each process in the system is
uniquely identified by a process identifier (abbrev. PID).

The operations that a process can perform are: send a
message to another process (Send), wait for the arrival of a
message (Receive), ask the operating system for the
process's own PID (OwnPid), create a child process (Fork),
and terminate (End).

Send takes the receiver process's PID and the data item to be
transmitted as its parameters. Both Receive and OwnPid
take no parameters. OwnPid immediately returns the current
process's PID. In case the process's message queue is
nonempty, Receive immediately returns the message at the
head of the queue, otherwise it blocks until the queue is
nonempty. Fork takes the code of the child process to be
created as its parameter and returns the child process's PID.
End takes no parameters.

4.1. Syntax of the Primitives
The above-mentioned instructions are represented as the
constructors of a distinguished algebraic data type Process
which is defined in Fig. 1. These constructors are called
process constructors. The type Process is exactly analogous
to the type Result in [Perry 90].

data Process = Send Pid Message (() → Process)
| Receive (Message → Process)
| OwnPid (Pid → Process)
| Fork Process (Pid → Process)
| End

Fig. 1: The example language's syntax

Each process constructor corresponds to one operation,
taking one argument for each of the operation's arguments.
With the exception of End, each of the constructors takes an
additional argument representing the continuation process.
The values returned by Receive, Fork and OwnPid are fed
into the continuation process by means of one parameter.

Note that the data type Message is left to the programmer to
be defined and extended according to the application's
requirements. The data type Pid, however, is an abstract
data type which has a representation that dependends on the
language implementation. There are no operations on this
data type visible to the programmer.

4.2. Operational Semantics of the Primitives
In Fig. 2, where the primitives' operational semantics is
defined, the expression <> denotes the empty queue. x^xs
and xs^x denote a queue xs with an element x added at the
front, or at the end, respectively. The operator ⊕ denotes the
union of two sets with empty intersection.

4

ds ⊕ { (pid, m^ms, Receive p)} ⇒ ds ∪ { (pid, ms, p m) }

ds ⊕ { (pid, ms, OwnPid p) } ⇒ ds ∪ { (pid, ms, p pid) }

ds ⊕ { (pid, ms, End) } ⇒ ds

ds ⊕ { (pid, ms, Fork p' p) } ⇒ ds ∪ { (pid', <>, p'),
 (pid, ms, p pid') }

where pid' ≠ pid ∧ ∀ (pid'',x,y) ∈ ds: pid' ≠ pid''

ds ⊕ {(pid, ms, Send pid' m p)} ⇒ {f d | d∈ ds ∪ {(pid, ms, p ())}}
where f (pid'',ms,p') = (pid'', ms^m, p') if pid''= pid'

 (pid'', ms, p') otherwise

Fig. 2: The example language's operational semantics

The operational semantics of the primitives is given by a
nondeterministic transition relation on states of the world.
In order to capture the behaviour of processes, we model the
world as a set of process descriptors ds. Each process
descriptor describes a point in the execution of one process.
A process descriptor has three entries, namely, the process's
PID pid, its message queue ms, and a term of type Process
representing the code which remains to be executed.

Similar to the execution of a functional program, which is
initiated by specifying a top-level expression to be
evaluated, the execution of a concurrent program is started
by specifying a data object of type Process. To run a process
p with an arbitrary PID pid, a world is created with an
initial state that contains the process descriptor (pid, <>, p)
as its only element. Repeatedly, from the rules given in Fig.
2, one that matches the current state of the world is selected
nondeterministically and applied to the current state of the
world, yielding a new state. This procedure is repeated until
the world reaches a state such that there is no matching
rule.

We have now completed the definition of the concurrency
primitives' syntax and operational semantics. Obviously, the
underlying communication paradigm is of utmost
simplicity. In the sequel, we show that that the primitives
provided are not merely suitable for the construction of
serious programs, but can indeed serve as a building-blocks
for customized communication mechanisms which are
considerably more powerful.

5. An Example Program
In this section, we present an example program in CPS
form. We then introduce the monad P that corresponds to
the type Process. We show how each object of type Process
can be transformed into an equivalent object of type P (),
and vice versa. Finally, the example program is
reformulated in monadic style using the special syntax for
monads.

5.1. CPS Version
The first step in constructing a collection of concurrent
processes is to define the types of messages they use to
communicate. Here we need messages containing either a
list of integer values or a single integer value.

data Message = .. | IntList [Int] | Int Int

The process addUp receives a list of numbers (wrapped in
constructor IntList) from a client and returns their sum
(wrapped in constructor Int) to the client. addUp takes as a

parameter the PID of its client, i.e., the process which is to
receive the result of its computation.

In the following code for addUp, note that the construct
\v → e is Haskell syntax for the lambda abstraction λv.e.
The operator ($) and the functions splitAt and length are
defined in the standard prelude. The operator ($) denotes
function application. The only reason for using ($) is that it
saves a lot of parentheses: in Haskell, infix operators have
lower precedence than prefix operators, thus we can write f
$ g $ h $ j x instead of f (g (h (j x))) and f $ \x → g x instead
of f (\x → g x). The function splitAt n breaks a list at
element n, and length calculates the length of a list.

addUp :: Pid → Process
addUp client =

Receive $ \(ListInt ns) →
case ns of

 [n]→ Send client (Int n) $ \() →
 End
 _ → OwnPid $ \self →

 let (ns1,ns2) = splitAt (length ns / 2) ns in
 Fork (addUp self) $ \server1 →
 Fork (addUp self) $ \server2 →
 Send server1 (ListInt ns1) $ \() →
 Send server2 (ListInt ns2) $ \() →
 Receive $ \(Int n1) →
 Receive $ \(Int n2) →
 Send client (Int (n1 + n2)) $ \() →
 End

Initially, addUp waits for the arrival of the list of numbers
to be summed up. In case this list consists of one number
only, this number is returned to the client. Otherwise, it is
split in two halves of approximately equal length. The
current process then creates two additional addUp
processes, which are supplied with the current process's
PID, i.e., the current process acts as their client. The two
halves are sent to the child processes. The current process
waits for their results, then returns their sum to its client
and terminates.

This process uses addUp to compute the sum of the list
1,2,..,20:

addUpMain :: Process
addUpMain =

OwnPid $ \self →
Fork (addUp self) $ \server →
Send server (ListInt [1..20]) $ \() →
Receive $ \(Int n) →
End

The CPS version of the addUp program has two flaws: its
syntax is clumsy, and a Process cannot return a value. This
will be remedied shortly.

5.2. Process Continuations are Monads
Although a Process cannot return a value, it can apply a
continuation process to a value.

This programming technique is illustrated by a CPS
factorial function, which has an (admittedly rather
contrived) side effect, namely, forking an arbitrary process
named px.

5

fac :: Int → (Int → Process) → Process
fac 0 c = Fork px $ _ →

c 1
fac n c = fac (n - 1) $ \res →

c (n * res)

In addition to the number n for which the factorial is to be
computed, fac takes a continuation process c which is to be
applied to the result of this computation. In case n = 0, the
result is 1; process px is forked and the fac process
continues by applying the process continuation to 1. In case
n ≥ 0, fac (n - 1) is executed. However, it cannot be passed
the original continuation since this expects to be applied to
the result of fac n, not to the result of fac (n - 1). The correct
continuation for fac (n - 1) multiplies the result of fac (n - 1)
with n and applies the original continuation c to it.

Obviously, the CPS equivalent of a function returning an
object of type a is a function returning an object of type
(a → Process) → Process. We therefore introduce a type
synonym P.

type P a = (a → Process) → Process

Following [Wadler 92], we can consider P a monad by
defining two functions result and bind. In Gofer, this can be
done by declaring P to be an instance of the constructor
class Monad.

instance Monad P where result a = \c → c a
 bind pa f = \c → pa (\a → f a c)

This is the simplified interface of constructor class Monad.

class Monad m where result :: a → m a
bind :: m a → (a → m b) → m b

Now, functions passing Process continuations can be
rewritten in monadic style. Especially, note that the
concurrency primitives, except for End, can be considered
functions on the P monad. The type of Fork, for instance, is
Process → P Pid; Send's type is Pid → Message → P ().
Functions with result type P () are called commands.

Here is the monadic version of fac. Note that, in Haskell, a
function identifier enclosed in backquotes serves as an infix
operator.

fac :: Int → P Int
fac 0 = Fork px `bind` _ →

result 1
fac n = fac (n - 1) `bind` \res →

result (n * res)

Using the special syntax for monads suggested by Mark
Jones and implemented in the Gofer system, this can be
written more legibly:

fac :: Int → P Int
fac 0 = do Fork px

 [1]
fac n = do res ← fac (n - 1)

 [n * res]

In general, this syntax is defined as follows: an expression
of type m a, where m is a monad type constructor, is started
by keyword do followed by a nonempty list of entries, of
which the last must be of type m a and is called tail
expression. The others are called qualifiers. The rules for

turning a do expression into one using `bind` are given in
Fig. 3.

do { Pat ←← Exp; Rest } ⇒⇒ Exp `bind` \Pat →→ do { Rest }
do { Exp; Rest } ⇒⇒ Exp `bind` _ →→ do { Rest }
do { let { .. }; Rest } ⇒⇒ let { .. } in do { Rest }
do { Exp } ⇒⇒ Exp

Fig 3: Special syntax for monads

Note that, in contrast to a qualifier, a tail expression is not
changed. Furthermore, the equivalence of [x] and result x
in the list monad is adopted to hold for arbitrary monads in
this syntax.

Monadic expressions of type P () are equivalent to "raw"
processes. One can be transformed into the other by means
of toP and fromP.

toP :: Process → P ()
toP End = [()]
toP (Receive p) = do m ← Receive; toP (p m)
toP (Send pid m p) = do Send pid m; toP (p ())
toP (OwnPid p) = do self ← OwnPid; toP (p self)
toP (Fork p' p) = do pid ← Fork p'; toP (p pid)

fromP :: P () → Process
fromP f = f (\() → End)

Because, in general, we are going to think in terms of
monadic functions, and not in terms of processes, we need a
version fork of the Fork constructor that takes an object of
type P () as the parameter it is going to fork.

fork :: P () → P Pid
fork p = Fork (fromP p)

5.3. Monadic Version
The example program addUp which was previously presen-
ted in CPS syntax can now be rewritten in monadic syntax.

addUp :: Pid → P ()
addUp client =

do ListInt ns ← Receive
 case ns of
 [n] → do Send client (Int n)
 _ → do self ← OwnPid
 let (ns1,ns2) = splitAt (length ns / 2) ns
 server1 ← fork (addUp self)

 server2 ← fork (addUp self)
 Send server1 (ListInt ns1)
 Send server2 (ListInt ns2)
 Int n1 ← Receive
 Int n2 ← Receive
 Send client (Int (n1 + n2))

addUpMain can now be written as a function on the P
monad which returns the sum of the elements of its list-
valued argument.

addUpMain :: [Int] → P Int
addUpMain xs =

do self ← OwnPid
 server ← fork (addUp self)
 Send server xs
 Int n ← Receive
 [n]

6

6. Modifiers
Until now, it is not obvious why we take the trouble of
defining the Process data type and its constructor functions
Send, Receive, OwnPid, Fork, and End as primitives,
instead of providing the monad P and a set of (non-
constructor) functions send, receive, ownPid, and fork as
primitives. The reason is that, this way, monadic
expressions can be decomposed by functional means.

We will use this property to extend our power of expression
beyond the narrow scope of the built-in primitives, defining
so-called modifiers, which decompose a piece of code and
rebuild it in a modified way. As was demonstrated in the
previous section, a command may be manipulated either as
an object of type P () or as an object of type Process. For
composing pieces of code, type P () is more pleasant, since
monadic syntax can be used. For decomposition, however,
objects of an algebraic data type are required, i.e., they must
have type Process. This is why modifiers have the following
type.

type Modifier = Process → P ()

Command modify applies a modifier to the current process's
continuation.

modify :: Modifier → P ()
modify f = \p → fromP (f (p ()))

A simple, yet useful, example for a modifier is delay.

delay :: P () → Modifier
delay c End = [()]
delay c (Send pid m p) = do Send pid m; c; toP (p ())
delay c (Receive p) = do m ← Receive; c; toP (p m)
delay c (OwnPid p) = do pid ← OwnPid;c; toP (p pid)
delay c (Fork p' p) = do pid ← Fork p'; c; toP(p pid)

As is the case with all modifiers, the effect of delay can
either be explained from a static perspective or from a
dynamic perspective. From a static perspective, modify
(delay c) inserts a command c into the remaining code at
the position after the next command, if this exists. Thus, in
a context where m and pid are defined,

do modify (delay (Send pid m))
 self ← OwnPid

Send self m

is equivalent to

do self ← OwnPid
Send pid m
Send self m

From a dynamic perspective, modify (delay com) delays the
execution of com until after the next instruction. As the
remainder of the paper will show, the most natural
perspective to the user of a modifier is, in general, the
dynamic perspective.

7. Guarded Receive
The communication primitives built into our example
language are rather simple-minded. For instance, using
Receive, a process must process all messages in the order of
their arrival. For many applications, this is fine. In others,
however, a process may need to wait for the arrival of a

specific message in order to be able to process other
messages which possibly arrived earlier.

In principle, this behaviour can be implemented by
successively executing Receive and storing the messages
received in a temporary buffer until the arrival of the
desired message. All subsequent applications of Receive
must then be replaced by instructions that take messages
from the temporary buffer until this is empty. Unfortunately,
if the concurrency primitives like Receive are merely first-
class, but not decomposable, there is no way to do this.
Hence, the well-known interrelatedness of the various
communication paradigms cannot be exploited: a new
communication primitive must be provided, or the
programmer has to think of an ad-hoc work-around. With
decomposable primitives, though, the replacement of
Receive statements can be accomplished by a suitable
modifier.

In this section, we will define a more comfortable receive
operation which allows the user to specify a guard, i.e., a
predicate that is required to hold for the message received.

7.1. Interface
The operation guardedReceive takes a predicate guard on
messages as a parameter.

guardedReceive :: (Message → Bool) → P Message

guardedReceive buffers all incoming messages until the
arrival of a message m for which its argument predicate
guard evaluates to True. Then, it puts the buffered messages
back into the queue, preserving their order, and returns m.

7.2. Implementation
As a first step, we define a modifier pushQueue. From a
dynamic perspective, modify (pushQueue m) places a
message m at the beginning of the current process's message
queue.

pushQueue :: Message → Modifier
pushQueue m (Receive p) =

do toP (p m)
pushQueue m other =

do modify (delay (modify (pushQueue m)))
 toP other

This effect is produced by recursively traversing the current
process's continuation until the first Receive operation is
found. Message m is then fed into the first Receive
operation's continuation.

Using modifier pushQueue, guardedReceive can be defined.

guardedReceive :: (Message → Bool) → P Message
guardedReceive guard =

do m ← Receive
if guard m then

 [m]
 else
 do m' ← guardedReceive guard

 modify (pushQueue m)
 [m']

The correctness of guardedReceive is best seen by induction
over the position n of the first element in the message queue
for which the predicate guard holds. For n = 1,

7

guardedReceive returns immediately. Otherwise, given that
the message queue is in the right order after execution of m'
← guardedReceive guard, the only thing left to do to ensure
that the message queue will be in the correct order after
termination is to use pushQueue to place the message m,
which arrived first of all, at the beginning of the queue.

8. Rendezvous
As mentioned in Section 4, the naming scheme imple-
mented by the built-in primitives is asymmetric, i.e., a
receiver is not able to specify the sender's identity. We will
now present a mechanism for symmetric communication
called rendezvous.

8.1. Interface
The symmetric counterparts to Send and Receive are called
put and get.

put :: Pid → Message → P ()
get :: Pid → P Message

put has the same signature and (to the user) the same
behaviour as Send. get takes the sender's PID as an extra
argument. In contrast to Receive, it does not return the first
message in the message queue, but buffers all incoming
messages until the arrival of a message m from the chosen
sender. Then, it puts the buffered messages back into the
queue, preserving their order, and returns m.

8.2. Implementation
A symmetric naming scheme can easily be implemented on
top of an asymmetric one: each message is tagged with the
sending process's PID. To that end, a message constructor
From is introduced.

data Message = .. | From Pid Message

put tags the message being sent with the sender's PID:

put :: Pid → Message → P ()
put pid' m =

do self ← OwnPid
Send pid' (From self m)

get uses guardedReceive to wait for the arrival of a message
which is wrapped in a From constructor tagged with the
sender's PID.

get :: Pid → P Message
get pid =

do From _ m ← guardedReceive guard
 [m]

where
guard (From pid' _) | pid' == pid = True
guard _ = False

8.3. Application
Using these rendezvous constructs, we present a generic
concurrent divide-and-conquer process divAndConq. It
waits for a problem contained in a message with constructor
Unsolved and returns a solution wrapped in constructor
Solved to its client:

data Message = .. | Unsolved Problem | Solved Solution

divAndConq takes its client's PID and a quadruple of
functions (named isTrivial, trivial, divide and merge) as its
arguments. On receiving a problem p, it tests whether it is
trivial (using isTrivial). In this case, the solution (obtained

by applying trivial) is returned to the client immediately.
Otherwise, the problem is divided into two subproblems
(using divide), which are solved by two child processes. The
corresponding subsolutions are composed (using merge) and
returned to the client.

divAndConq::(Problem → Bool,
 Problem → Solution,
 Problem → (Problem,Problem),
 Solution → Solution → Solution) → Pid → P ()

divAndConq (fs @(isTrivial,trivial,divide,merge)) client =
do Unsolved p ← get client

if not (isTrivial p) then
do let (p1,p2) = divide p

self ← OwnPid
child1 ← fork (divAndConq fs) self
child2 ← fork (divAndConq fs) self
put child1 (Unsolved p1)
put child2 (Unsolved p2)
Solved s1 ← get child1
Solved s2 ← get child2
put client (Solved (merge s1 s2))

 else
 do put client (Solved (trivial p))

Note that the use of get in divAndConq ensures that the
answers from child1 and child2 are processed in this order,
independently of the order of their arrival. This is crucial
for the algorithm's correctness.

Taking lists of integers to be the problem and solution
domain, the following use of divAndConq yields a popular
sorting algorithm.

type Problem = [Int]
type Solution = [Int]

quickSort :: [Int] → P [Int]
quickSort p =

do self ←OwnPid
child ← fork (divAndConq(isTrivial,id,divide,(++)) self)

 put child (Unsolved p)
 Solved s ← get child
 [s]
where
isTrivial = (<=1) . length
divide (x:xs) = let as = [x' | x' ← xs, x' ≤ x]

 bs = [x' | x' ← xs, x > x] in
if null as then ([x], bs) else (as, x:bs)

The standard prelude functions head, null, and (++) return
the first element of a list, test a list for emptiness, and
concatenate two list, respectively.

8.4. Remarks
This is a simple example of how different layers in a
message-passing protocol can be isolated against each other.
For instance, processes communicating via get and put do
not need to know how the layer that tags and untags
messages with information about the sending process is
implemented.

Unfortunately, Haskell's type system does not provide any
means to extend the (public) data type Message with
additional (private) constructors. Therefore, the rendezvous
mechanism cannot be made completely opaque.

8

9. Remote Procedure Call
The next communication mechanism we wish to model is
the remote procedure call. Given the purely functional
definition of an abstract data type (abbrev. ADT), we
provide a mechanism for defining multiple server processes,
each with a unique identity, offering the ADT's operations
as remote procedures to arbitrary client processes. This is
accomplished without recoding the ADT's interface in terms
of concurrency constructs (the importance of avoiding this
was pointed out, with reference to ADA, by [Andrews 88]).

9.1. Interface
The interface of the remote procedure mechanism consists
of two operations spawn and (?).

spawn :: a → P (Ref a)
(?) :: Ref a → (a → (b,a)) → P b

The function spawn takes an object, creates a server for it,
and returns a reference to the server. The function (?) takes
as its parameters a reference ref to a server for an object of
type a and a state transformer f on type a returning an object
of type b. The command ref ? f causes f to be sent to the
server process, which applies f to its state, updates its state
accordingly, and sends an object of type b back to the client.

9.2. Implementation
The client and the server communicate via dynamically
typed objects. In the sequel, wrapping an object means
applying toDynamic to it and unwrapping it means applying
fromDynamic.

data Message = .. | Dynamic Dynamic

To ensure that only state transformers of the appropriate
type are sent to a server, a reference to a server for an object
of type a, which is implemented by the server's PID, is
associated with a's type. In Gofer, the following definition
of the reference type Ref does the trick:

data Ref a =Ref Pid -- Gofer

Note that in Haskell, we would have to make a definition

data Ref a = Ref Pid a -- Haskell

which forces us to always pass a dummy parameter around
at run-time in order to get the types right at compile-time.

This ensures that an attempt to invoke a procedure on a
server for an object of a non-matching type is rejected by the
compiler as a type error. Only the implementation, which is
correct, makes use of the type-unsafe features. Since the
interface of the remote procedure call mechanism is
completely typesafe, no run-time errors can occur.

spawn a is implemented by forking a server process for a
and returning a typed reference to the server process, which
is done by wrapping its PID in constructor Ref.

spawn :: a → P (Ref a)
spawn a =

do pid ← fork (server a)
 [Ref pid]

A server process server a for an object a waits for a message
containing the client's PID and a (dynamically typed) state

transformer f. On the arrival of a request, f is unwrapped
and applied to a. The state transformer's result value b is
wrapped and sent to the client. The server then updates its
state and resumes waiting.

server :: a → P ()
server a =

do From client (Dynamic f) ← Receive
let (b, a') = (fromDynamic f) a
put client (Dynamic (toDynamic b))
server a'

Invoking a remote procedure using (?) consists of wrapping
the state transformer f, sending it to the server process
designated by the PID stored in the server reference, waiting
for the server's reply b, unwrapping it, and returning it.

(?) :: Ref a → (a → (b,a)) → P b
(Ref server) ? f =

do put server (Dynamic (toDynamic f))
Dynamic m ← get server

 [fromDynamic m]

9.3. Application
Consider the following ADT Dictionary which offers
dictionary services. Its interface consists of one generator
function createDictionary and four operations add, set,
delete, and lookUp. (Their definitions are omitted here.)

createDictionary :: [(String, Int)] → Dictionary

set :: String → Int → Dictionary → ((), Dictionary)
add :: String → Int → Dictionary → ((), Dictionary)
delete :: String → Dictionary → ((), Dictionary)
lookUp :: String → Dictionary → (Int, Dictionary)

The following process rpcClient illustrates the creation and
use of an RPC server for objects of type Dictionary.

rpcClient :: P ()
rpcClient =

do let dict1 = createDictionary [("Peter", 10000)]
 dict2 = createDictionary [("Paul", 300),

 ("Mary", 850)]
richPeople ← spawn dict1
poorPeople ← spawn dict2
balance ← poorPeople?lookUp "Mary"
poorPeople?delete "Mary"
richPeople?add "Mary" (balance + 2000)

9.4. Remarks
We have assumed that the functions defining an ADT a
were defined as state transformers (i.e., functions having
result type a → (b, a) for arbitrary b). However, most
functions either do not return a value or they do not alter the
argument. In these cases, some glue code is needed which
adds one dummy entry to the function's result.

10. Critical regions
Our last and largest example is a language mechanism
called critical regions. Given a set of processes in which
parts of each one's code are marked as critical, the
mechanism ensures that, at any time, at most one of the
processes executes critical code.

9

10.1. Interface
The interface of the critical regions mechanism consists of a
command CR and a command crRun.

CR :: Mode → P ()
crRun :: [P ()] → P [Pid]

CR takes a parameter of type Mode.

data Mode = On | Off

CR On and CR Off mark the beginning and the end of a
critical region, respectively. Note that a critical region
cannot be delimited by only one command with type P () →
P (), since this would imply that variables bound within a
critical region could not be used outside it. crRun takes as
its argument a list of commands which are to be executed
concurrently such that it is guaranteed that only one at a
time can be in a critical region.

10.2. Implementation
Mutual exclusion is ensured using a token ring algorithm.
All the processes are arranged in a virtual ring such that
every process only knows the PIDs of its predecessor and its
successor. A special message, called the token, circulates
between the processes. Only the process holding the token
may execute critical code. If a process terminates, it sends
messages to its predecessor and its successor, telling them
that they are now connected.

The types of messages required for the implementation of
this algorithm are

data Message = .. | Token | NewPred Pid | NewSucc Pid

CR is implemented by extending the Process data type.

data Process = .. | CR Mode (() → Process)

However, note that the number of primitives is not
augmented: CR has no associated primitive. Executing it
causes a runtime error. CR On and CR Off only serve as a
markers which are interpreted and removed by a modifier
crMod.

From a static perspective, crMod is used to transform
processes containing occurrences of command CR into
processes that are suitable to be started and arranged in a
virtual ring by crRun. From a dynamic perspective, a
process that is part of a token ring carries additional state
information which is managed by crMod. This state
information consists of a parameter sm of type Mode, which
indicates whether the process is currently within a critical
region, the PID sp of the current process's predecessor in the
token ring, and the PID ss of its successor.

Since the code for crMod is slightly longer than that of the
examples encountered so far, we have divided it into
numbered sections to make it easier for the reader to match
code and explanatory remarks.

 [1] crMod :: Mode → Pid → Pid → Modifier
 crMod Off sp ss End =

do crMod Off sp ss (CR On (\() → End))
 crMod On sp ss End =

do Send sp (NewSucc ss)
Send ss (NewPred sp)
Send ss Token

[2] crMod Off sp ss (CR On p) =
do m ← guardedReceive (\m→ or[isToken m,

isNewPred m,
isNewSucc m])

case m of
 Token → do crMod On sp ss (p ())
 NewPred sp'→ do crMod Off sp' ss (CR On p)

 NewSucc ss'→ do crMod Off sp ss' (CR On p)
[3] crMod On sp ss (CR Off p) =

do Send ss Token
crMod Off sp ss (p ())

[4] crMod sm sp ss (CR sm' p) =
do crMod sm sp ss (p ())

[5] crMod sm sp ss (Receive p) =
do m ← Receive

case m of
 Token → do Send ss Token

 crMod sm sp ss (Receive p)
 NewPred sp'→ do crMod sm sp' ss (Receive p)
 NewSucc ss'→ do crMod sm sp ss' (Receive p)
 _ → do crMod sm sp ss (p m)

[6] crMod sm sp ss other =
do modify (delay (modify (crMod sm sp ss)))

toP other

The modifier crMod gives special attention to constructors
End, CR and Receive.

[1] In order to terminate, a process must first get hold of
the token. In case several processes want to terminate
simultaneously, this precondition ensures the correct
reconfiguration of the token ring. On the arrival of the
token, the process sends messages to its predecessor
and its successor, introducing them to each other and
connecting them. Its final action is to pass the token on
to its successor.

[2] To begin a critical region, a process must wait for the
arrival of the token. However, correct reconfiguration
requires that all NewPred or NewSucc messages that
arrive before the token are processed before the token is
passed on. The predicates isToken, isNewPred and
isNewSucc are assumed to hold exactly for messages
with constructor Token, NewPred, and NewSucc,
respectively. The standard prelude function or maps a
list of booleans to True if at least one of them is True.

[3] If a process leaves a critical region, it must pass on the
token.

[4] Within a critical region, occurrences of CR On are
ignored, likewise occurrences of CR Off outside a
critical region.

[5] Every occurrence of Receive in a mutex process has to
be guarded against the arrival of one of the "system"
messages SetPred, SetSucc, and Token. The unexpected
arrival of the token can only happen while the process
is outside a critical region; the token is then passed on.
Messages SetPred and SetSucc are processed as above
by updating the process's state.

[6] All other operations are ignored by crMod.

10

The function crRun starts the list of processes for which the
mutual exclusion of critical regions is to be ensured. It uses
crMod to handle occurences of CR On and CR Off in the
processes and to initialize their state.

crRun :: [P ()] → P [Pid]
crRun ps =

do pids ← parallel [do modify (crMod Off undefined
 undefined)

 p | p ← ps]
 let sp_pids = tail pids ++ [head pids]
 ss_pids = [last pids] ++ init pids

parallel [do Send pid (NewPred sp)
Send pid (NewSucc ss) |

(pid, sp, ss) ← zip3 pids sp_pids ss_pids]
 Send (head pids) Token
 [pids]

where
parallel :: [P()] → P [Pid]
parallel [] = [[]]
parallel (p:ps) = do pid ← fork p
 pids ← parallel ps

[pid:pids]

Initially, none of the processes is within a critical region,
and the PIDs of their predecessors and successors are
invalid. Each one waits for a message from crRun telling it
the PIDs of its predecessor and its successor. Finally, crRun
hands the token to the first process.

Note that the standard prelude functions head and last
return the leftmost and the rightmost element of a list,
respectively, while tail and init remove them. undefined is
the standard prelude function representing ⊥. zip3 merges
three lists into a list of triples.

10.3. Application
The application mutexMain spawns a server for a
Dictionary object with keys "Peter" and "Paul". A reference
to this server is passed to two worker processes which are
started with crRun. Each of these worker processes expects
an amount with which to credit Paul's account. In order to
make this read-and-update operation atomic, the critical
region construct is employed.

mutexMain :: P ()
mutexMain =

do let dict = createDictionary [("Peter", 10000),
 ("Paul", 11000)]

 dataBase ← spawn dict
[pid1,pid2] ← crRun [mutexWorker dataBase,

mutexWorker dataBase]
Send pid1(Int 100)
Send pid2 (Int (- 100))

mutexWorker :: Ref Dictionary → P ()
mutexWorker dataBase =

do Int amount ← Receive
CR On
balance ← dataBase?lookUp "Paul"
dataBase?set "Paul" (balance + amount)
CR Off

10.4. Remarks
Note that, in Haskell, the introduction of an additional
constructor CR makes it necessary to add one line to the
definitions of modifiers toP and delay, breaking their
encapsulation. This is not necessary, however, for modifiers
implemented on top of toP and delay. Moreover, note that
the programmer is responsible for always using crRun to
start processes containing occurrences of CR. Haskell's type
system is not strong enough to enforce this. In a type system
where a supertype Process' of Process could be defined,
which extends Process with constructor CR, the typechecker
could type processes containing occurrences CR with type
Process' to prevent errors.

To end on a positive note, note that the application code and
the token ring algorithm are completely separated: processes
using CR On and CR Off are neither required to cope with
the extra state information needed to ensure mutual
exclusion, nor do they have to handle the messages used for
synchronisation and reconfiguration.

11. Conclusions
We have presented a technique for writing concurrent
programs in a purely functional programming language.
Concurrency primitives were introduced in continuation-
passing style but manipulated mainly in monadic style. By
representing the concurrency primitives as constructor
functions we made processes decomposable, which is a
significantly more powerful property than simply being
first-class.

By means of a series of examples of increasing complexity
we have demonstrated that having decomposable processes
significantly enhances the possibilities for reusing and
refining existing concurrent code. Powerful communication
mechanisms can be defined entirely within the functional
framework, deriving a rigorously defined operational
semantics from the built-in primitives. Thus, there is no
need to introduce new primitives to accomodate specialized
application demands. Instead, the fact that many
communication constructs are just variations of each other
can to a large degree be exploited by the programmer.
Moreover, code designed to be used in a sequential program
can be reused at the concurrency level with a minimum of
glue code.

We have devoted considerable attention to the pragmatics of
our technique. The point was not to demonstrate that coding
concurrent programs using a functional language is
possible, but that it is elegant and worth-while. It seems
that, shifting between the continuation-passing style
perspective and the monadic perspective according to need,
common concurrent programming idioms can be expressed
in a natural way and in a pleasant and concise syntax that
avoids the awkwardness of existing stream-based and
continuation-based techniques.

We have shown that different layers of a computer's
concurrent software, which are traditionally implemented in
different languages either at the operating system level, or
at the compiler level, or at the program level, can all be
constructed using one formalism, namely, a functional
language.

11

Acknowledgements
I wish to thank Manuel Chakravarty, whose diligent proof-
reading and insightful comments at various stages of this
paper were extremely helpful. Thanks to Mark Jones for
providing information about the Gofer implementation.

References
[Andrews et al. 88] G.R. Andrews et al.: An Overview of
the SR Language and Implementation, ACM Transactions
on Programming Languages and Systems, Vol. 10, No.1,
1988

[Andrews 91] G.R. Andrews: Concurrent Programming -
Principles and Practice, Benjamin/Cummings, 1991

[Bal et al. 89] H.E. Bal, J.G. Steiner, A.S. Tanenbaum:
Programming Languages for Distributed Computing
Systems, ACM Computing Surveys, Vol. 21, No. 3, Sept.
1989

[Broy 86] M. Broy: A Theory for Nondeterminism,
Parallelism, Communication, and Concurrency,
Theoretical Computer Science 45, pp 1-61, 1986

[Darlington, While 87] J. Darlington, L. While:
Controlling the Behaviour of Functional Language
Systems, Conference on Functional Programming and
Computer Architectures, Portland, Oregon, 1987

[Henderson 82] P. Henderson: Purely Functional
Operating Systems, in J. Darlington, P. Henderson, D.
Turner: Functional Programming and its Application: An
Advanced Course, Cambridge University Press, 1982

[Hoare 85] C.A.R. Hoare: Communicating Sequential
Processes, Prentice-Hall, 1985

[Hudak et al. 92] P. Hudak, S. Peyton Jones, P. Wadler
(editors): Report on the Programming Language Haskell:
Version 1.1, ACM SIGPLAN Notices, 27 (5), May 1992

[Hughes, O'Donnell 92] J. Hughes, J. O'Donnell:
Expressing and Reasoning About Non-Deterministic
Functional Programs, Proceedings of the 1992 Glasgow
Workshop on Functional Programming, Ayr, 1992

[Inmos Ltd. 84] Inmos Ltd.: Occam Programming
Manual, 1984 Prentice-Hall International

[ISO 87] LOTOS, A Formal Description Technique Based
on the Temporal Ordering of Observable Behaviour,
International Organization for Standardization, 1987

[Jones, Sinclair 89] S.B. Jones, A.F. Sinclair: Functional
Programming and Operating Systems The Computer
Journal Vol. 32 (2), pp 162-174, 1989

[Jones 94] M. Jones: Gofer 2.21/2.28/2.30 Release Notes,
available by anonymous ftp from ftp.cs.yale.edu

[Karlsson 81] K. Karlsson: Nebula, a Functional
Operating System, Chalmers University, Göteborg, 1981

[Launchbury, Peyton Jones 94] J. Launchbury, S.L.
Peyton Jones: Lazy Functional State Threads, Conference
on Programming Language Design and Implementation,
Orlando, FL, June 1994

[Lock, Jähnichen 90] H.C.R. Lock, S. Jähnichen: Linda
Meets Functional Programming, Proc. of 2nd IEEE
Workshop on Future Trends in Distributed Computing
Systems, 1990

[Mauw 91] S. Mauw: PSF, A Process Specification
Formalism, PhD Thesis, University of Amsterdam, 1991

[Peterson 94] J. Peterson: Dynamic Typing in Haskell,
Research Report YALEU/DCS/RR-1022, Yale University,
1994

[Perry 90] N. Perry: The Implementation of Practical
Functional Programming Languages, PhD thesis, Imperial
College, University of London, 1990

[Reppy 93] J.H. Reppy: Concurrent Programming with
Events - The Concurrent ML Manual, AT & T Bell
Laboratories, 1993

[Scholz 95] E. Scholz: Turning a Functional Data Type
into a Concurrent Programming Language, 9th ACM
SIGAPP Symposium on Applied Computing, Nashville,
Tennessee, 1995 (to appear)

[Stoye 86] W. Stoye: Message-based Functional
Operating Systems, Science of Computer Programming
Vol. 6, pp 291-311, 1986

[Thomsen et al. 93] B. Thomsen et al: Facile Antigua
Release Programming Guide, Technical Report ECRC-93-
20, 1993 European Computer-Industry Research Centre

[Turner 87] D. Turner: Functional Programming and
Communicating Processes, Conference on Parallel
Languages and Architectures, 1987

[Wadler 90] P. Wadler: Comprehending Monads, ACM
Conference on Lisp and Functional Programming, Nice,
France, June 1990

[Wadler 92] P. Wadler: The Essence of Functional
Programming, 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, 1992

