
Fuzzy segmentation applied to face segmentation

Technical Report B-04-09

Erik Cuevas1,2, Daniel Zaldivar1,2, and Raul Rojas1

1Freie Universität Berlin, Institut für Informatik

Takusstr. 9, D-14195 Berlin, Germany.

2Universidad de Guadalajara, CUCEI
Av. Revolucion No. 1500, C.P 44430, Guadalajara, Jal, Mexico.

{cuevas, zaldivar, rojas}@inf.fu-berlin.de
June , 2004.

Abstract

The segmentation of objects whose color-composition is not trivial represents a
difficult task, due to the illumination and the appropriate threshold selection for each
one of the object color-components. In this work we propose the Fuzzy C-Means
algorithm application for the segmentation of such objects. It is chosen, by the
characteristics that it represents the face segmentation. This technical report is
organized in the following way: in section 1 a clustering techniques introduction are
presented. In section 2 Fuzzy C-means algorithm is analysed and also showed with a
simple example. In section 3 Matlab tools, that are used to code the fuzzy C-means
algorithm are described. In section 4 the Fuzzy C-Means algorithm is implemented for
the face segmentation. Finally in section 5 the results are presented and the possible
improvements are proposed.

 1. Introduction.
Pattern recognition techniques can be classified into two broad categories: unsupervised
techniques and supervised techniques. An unsupervised technique does not use a given set of
unclassified data points, whereas a supervised technique uses a dataset with known
classifications. These two types of techniques are complementary. For example, unsupervised
clustering can be used to produce classification information needed by a supervised pattern
recognition technique. In this section, we first introduce the basics of unsupervised clustering.
The fuzzy C-Means algorithm (FCM) [1], which is the best known unsupervised fuzzy
clustering algorithm is then described in detail.

1.1 Unsupervised Clustering.

Unsupervised clustering is motivated by the need to find interesting patterns or groupings in a
given set of data.

In the area of pattern recognition an image processing, unsupervised clustering is often used
to perform the task of “segmenting” the images (i.e., partitioning pixel on an image into
regions that correspond to different objects or different faces of objects in the images). This is
because image segmentation can be viewed as kind of data clustering problem where each
data is described by a set of image features (e.g., intensity, color, texture, etc) of each pixel.

Conventional clustering algorithms find a “hard partition” of given dataset based on certain
criteria that evaluate the goodness of a partition. By “hard partition” we mean that each data
belongs to exactly one cluster of the partition. More formally, we can define the concept “hard
partition” as follows.

Definition 1. Let X be a set of data and xi be an element of X. A partition P={C1,C2,….,CL} of
X is “hard” if and only if

Xxi i ∈∀) such that PC j ∈∃ ji Cx ∈
Xxii i ∈∀) where iiji CxCx ∉⇒∈ PCjk j ∈≠ ,

The first condition in the definition assures that the partition covers all data points in X, the
second condition assures that all clusters in the partition are mutually exclusive.

In many real-world clustering problems, however, some data points partially belong to
multiple clusters, rather than a single cluster exclusively. For example, a pixel in a magnetic
resonance image may correspond to mixture of a different types of issues.

A soft clustering algorithms finds a “soft partition” of a given dataset based on certain criteria.
In soft partition, a data can partially belong to multiple clusters. We formally define this
concept below.

Definition 2. Let X be a set a data, and xi be an element of X. A partition P={C1,C2,….,CL} of
X is soft if and only if the following two condition hold

Xxi i ∈∀) PC j ∈∀ 1)(0 ≤≤ iC x
j

µ

Xxii i ∈∀) such that PC j ∈∃ 0)(>iC x
j

µ

where)(iC x

j
µ denotes the degree to which xi belongs to cluster Cj.

A type of soft clustering of special interest is one that ensures the membership degree of a
point x in all clusters adding up to one, i.e.,

 1)(=∑ i

j
C x

j
µ Xxi ∈∀

A soft partition that satisfies this additional condition is called a constrained soft partition.
The fuzzy c-means algorithm, which is best known as fuzzy clustering algorithm, produces a
constrained soft partition.

A constrained soft partition can also be generated by a probabilistic clustering algorithm (e.g.,
maximum likelihood estimators). Even thought both fuzzy c-means and probabilistic
clustering produce a partition of similar properties, the clustering criteria underlying these
algorithms are very different. While we focus our discussion an fuzzy clustering in this
section, we should point out that probabilistic clustering has also found successful real-world
applications. Fuzzy clustering and probabilistic clustering are two different approaches to the
problem of clustering.

The fuzzy c-means algorithm generalizes a hard clustering algorithm called the c-means
algorithm, which was introduced in the ISODATA clustering method. The (hard) c-means
algorithm aims to identify compact, well-separated cluster. Figure 1 shows a two-dimensional
dataset containing compact well separated clusters. In contrast, the dataset shown in the figure
2 contain clusters that are not compact and well separated. Informally, a compact cluster has a
“ball-like” shape. The center of the ball is called the prototype of the cluster. A set of cluster
are well separated when any two points in a cluster are closer than the shortest distance
between two clusters in different clusters. Figure 3 shows two clusters that are not well
separated because there are points in C2 that are closer to a point in C1 than point in C2. We
formally define well separated clusters bellow.

Definition 3. A partition P={C1,C2,……,Ck} of the dataset X has compact separated cluster if
and only if any two points in a cluster are closer than the distance between two points in
different cluster, i.e, PCyx ∈∀ ,),(),(wzdyxd < where ,,, kjCwCz rq ≠∈∈ and d denotes
a distance measure.

Assuming that a dataset contains c compact, well-separated clusters, the goal of hard c-means
algorithm is twofold:

(1) To find the centers of these clusters, and
(2) To determine the clusters (i.e., labels) of each point in the dataset.

In fact, the second goal can easily be achieved once we accomplish the first goal, based on the
assumption that clusters are compact and well separated. Given cluster centers, a point in the
dataset belongs to cluster whose center is closest, i.e.,

 if ji Cx ∈ kiji vxvx −<− jkck ≠= ,....,2,1 (1)

where vj denotes the center of the cluster Cj.

Fig. 1. An Example of compact well separated clusters.

In order to archive the first goal (i.e., finding the cluster centers), we need to establish a
criterion that can be used to search for these cluster centers. One such criteria is the sum of the
distance between points in each cluster and their center.

2

1

),(∑∑
= ∈

−=
c

j Cx
ji

ji

vxVPJ

Fig. 2. An example of two clusters that are not compact and well separated.

Fig. 3. Two clusters that are compact, but not well separated.

where V is a vector of cluster center to be identified. This criterion is useful because a set of
true cluster centers will give a minimal J value for a given database. Based on these
observations, the hard c-means algorithm tries to find the clusters centers V than minimize J.
However, J is also a function of partition P, which is determined by the cluster centers V
according to equation 1. Therefore, the hard c-means algorithm (HCM) [2] searches for the
true cluster center by iterating the following two step:

(1) Calculating the current partition based on the current cluster.
(2) Modifying the current cluster centers using a gradient decent method to minimize the J

function.

The cycle terminates when the difference between cluster centers in two cycles is smaller than
a threshold. This means that the algorithm has converged to a local minimum of J.

2. Fuzzy c-Means Algorithm.

The fuzzy C-Means algorithm (FCM) generalizes the hard c-mans algorithm to allow a point
to partially belong to multiple clusters. Therefore, it produces a soft partition for a given
dataset. In fact, it produces a constrained soft partition. To do this, the objective function J1 of
hard c-means has been extended in two ways:

(1) The fuzzy membership degrees in clusters were incorporated into the formula, and
(2) An additional parameter m was introduced as a weight exponent in the fuzzy

membership.

The extended objective function [3], denoted Jm, is:

 2

1

))((),(ik
m

c

j Cx
kCm vxxVPJ

ji

i
−= ∑∑

= ∈

µ

where P is fuzzy partition of the dataset X formed by C1,C2,…,Ck. The parameter m is a
weight that determines the degree to which partial members of a clusters affect the clustering
result.

Like hard c-means, fuzzy c-means also tries to find a good partition by searching for
prototypes vi that minimize the objective function Jm. Unlike hard c-means, however, the
fuzzy c-means algorithm also needs to search for membership functions

iCµ that minimize Jm.
To accomplish these two objectives, a necessary condition for local minimum of Jm was
derived from Jm. This condition, which is formally stated below, serves as the foundation of
the fuzzy c-means algorithm.

Theorem. Fuzzy c-means theorem. A constrained fuzzy partition {C1,C2,…,Ck} can be a
local minimum of objective function Jm only if the following conditions are satisfied:

∑
=

−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−

=
k

j

m

j

i

C

vx

vx

x
i

1

1
1

2

2

1)(µ Xxki ∈≤≤ ,1 (2)

∑

∑

∈

∈= n

Xx

m
C

Xx

m
C

i

x

xx
v

i

i

))((

))((

µ

µ
 ki ≤≤1 (3)

Based on this theorem, FCM updates the prototypes and the membership function iteratively
using equations 2 and 3 until a convergence criterion is reached. We describe the algorithm
below.

FCM (X, c, m, ε)

X: an unlabeled data set.
c: the number the clusters.
m: the parameter in the objective function.
ε: a threshold for the convergence criteria.

Initialize prototype V={v1,v2,…,vc}
Repeat
VPrevious ← V
Compute membership functions using equations 3.
Update the prototype, vi in V using equation 2.

Until ε≤−∑
=

c

i
i

evious
i vv

1

Pr

Suppose we are given a dataset of six points, each of which has two features F1 and F2. We
list the dataset in table 1. Assuming that we want to use FCM to partition the dataset into two
clusters (i.e., the parameter c=2), suppose we set the parameter m in FCM at 2, and the initial
prototypes to v1=(5,5) and v2=(10,10).

 F1 F2
x1 2 12
x2 4 9
x3 7 13
x4 11 5
x5 12 7
x6 14 4

Tale 1. Dataset values.

Fig. 4. Dataset graphical representation.

The initial membership functions of the two clusters are calculated using equation 2.

∑
= ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−
−

=
2

1

2

1

11

1
1)(

1

j j

C

vx
vx

xµ

5873 222
11 =+=− vx

6828 222

21 =+=− vx

5397.0

68
58

58
58

1)(11
=

+
=xCµ

Similarly, we obtain the following

4603.0

68
68

58
68

1)(12
=

+
=xCµ

6852.0

37
17

17
17

1)(21
=

+
=xCµ

3148.0

37
37

17
37

1)(22
=

+
=xCµ

2093.0

18
68

68
68

1)(31
=

+
=xCµ

7907.0

18
18

68
18

1)(32
=

+
=xCµ

4194.0

26
36

36
36

1)(41
=

+
=xCµ

5806.0

26
26

36
26

1)(42
=

+
=xCµ

197.0

13
53

53
53

1)(51
=

+
=xCµ

803.0

13
13

53
13

1)(52
=

+
=xCµ

3881.0

52
82

82
82

1)(61
=

+
=xCµ

6119.0

52
52

82
52

1)(62
=

+
=xCµ

Therefore, using these initial prototypes of the two clusters, membership function indicated
that x1 and x2 are more in the first cluster, while the remaining points in the dataset are more
in the second cluster.

The FCM algorithm then updates the prototypes according to equation 3.

∑

∑

=

== 6

1

2

6

1

2

1

))((

))((

1

1

k
kC

k
kkC

x

xx
v

µ

µ

222222

222222

3881.0197.04194.02093.06852.05397.0
)14,4(3881.0)7,12(197.0)5,11(4194.0)13,7(2093.0)9,4(6852.0)12,2(5397.0

+++++
+++++

=

⎟
⎠
⎞

⎜
⎝
⎛=

0979.1
044.10,

0979.1
2761.7

= (6.6273, 9.1484)

∑

∑

=

== 6

1

2

6

1

2

2

))((

))((

2

2

k
kC

k
kkC

x

xx
v

µ

µ

222222

222222

6119.0803.05806.07909.03148.04603.0
)14,4(6119.0)7,12(803.0)5,11(5806.0)13,7(7909.0)9,4(3148.0)12,2(4603.0

+++++
+++++

=

⎟
⎠
⎞

⎜
⎝
⎛=

2928.2
4629.19,

2928.2
326.22

= (9.7374, 8.4887)

The updated prototype v1, as is shown in fig 5, is moved closer to the center of the cluster
formed by x1, x2 and x3; while the updated prototype v2 is moved closer to the cluster formed
by x4, x5 and x6.

Fig. 5 Prototype updating.

We wish to make a few important points regarding the FCM algorithm:

- FCM is guaranteed to converge for m>1. This important convergence theorem was
established in 1980 [4].

- FCM finds a local minimum (or saddle point) of the objective function Jm. This is
because the FCM theorem (theorem 1) is derived from the condition that the gradient
of the objective function Jm should be 0 at an FCM solution, which is satisfied by all
local minima and saddle points.

- The result of applying FCM to a given dataset depends not only on the choice of
parameters m and c, but also on the choice of initial prototypes.

3. Matlab tools.

The Fuzzy Logic Toolbox is equipped with some tools that allow to find clusters in input-
output training data. We can use the cluster information to generate a Sugeno-type fuzzy
inference system that best models the data behaviour using a minimum number of rules. The
rules partition themselves according to the fuzzy qualities associated with each of the data
clusters. This type of FIS generation can be accomplished automatically using the command
line function, genfis2.

The Fuzzy Logic Toolbox command line function fcm starts with an initial guess for the
cluster centers, which are intended to mark the mean location of each cluster. The initial guess
for these cluster centers is most likely incorrect. Additionally, fcm assigns every data point a
membership grade for each cluster. By iteratively updating the cluster centers and the
membership grades for each data point, fcm iteratively moves the cluster centers to the
“right” location within a data set. This iteration is based on minimizing an objective function
that represents the distance from any given data point to a cluster center weighted by that data
point’s membership grade.

fcm is a command line function whose output is a list of cluster centers and several
membership grades for each data point. We can use the information returned by fcm to help

we build a fuzzy inference system by creating membership functions to represent the fuzzy
qualities of each cluster.

Now, the fcm function will be described:

[center, U, obj_fcn] = fcm(data, cluster_n)

The input arguments of this function are:

•data: data set to be clustered; each row is a sample data point.
•cluster_n: number of clusters (greater than one).

The output arguments of this function are:

•center: matrix of final cluster centers where each row provides the center coordinates.
•U: final fuzzy partition matrix (or membership function matrix).
•obj_fcn: values of the objective function during iterations.

4. Implementation.

To implement the segmentation system it is necessary to use as data an image of the object to
be segment (in our case a person face). Each pixel of the image is coded in three components
represented respectively with the red, green and blue color.

The next code assign to each pixel its respective color component dataset represented by VP
with the fcm function format (that means the pixel data is presented in row form). Something
that one must not forget is that the image dataset is obtained in integer format but to work
with it will be necessary to change it to double format.

R=Im(:,:,1);
G=Im(:,:,2);
B=Im(:,:,3);

[m,n]=size(R);

indice=m*n;

erik=0;

for a1=1:m
 for an=1:n
 data=R(a1,an);
 data1=G(a1,an);
 data2=B(a1,an);
 num=num+1;
 VR(num)=data;
 VG(num)=data1;
 VB(num)=data2;

 end
end

 VP=[VR;VG;VB];
 VP=double(VP);

 There is an important parameter in the fcm function, this is the cluster number in wich one
wants to divide the presented dataset, this parameter should be founded heuristically. For this
example its value was 7. If this value is big, then the system generalization is not good enough

and if is very small then the neighbor colors can be confused. The matlab code to find the
image clusters is:

[center,U,of]=fcm(VPT,7);

After used this function we have in the variable center the clusters centers, which will be used
to classify the pixels belonging to the interest class. In our case the interest class is the class
that represent the flesh color. In this work the classification is achieved calculating the
minimum distance from each pixel to the cluster centroid (this centroid was previously
obtained with the fcm function). The code in C++ to achieve that in real time is:

 for(int i=1;i<=sizeImage;i++)
 {
 b=*pBuffer;
 pBuffer++;
 g=*pBuffer;
 pBuffer++;
 r=*pBuffer;
 pBuffer++;
 dist=sqrt((abs(r-176.1448)*abs(r-176.1448))+(abs(g-
115.1489)*abs(g-115.1489))+(abs(b-20.4083)*abs(b-20.4083)));

 if (dist<45)
 temp1=255;
 else
 temp1=0;

 pBuffer--;
 pBuffer--;
 pBuffer--;
 *pBuffer=temp1;
 pBuffer++;
 *pBuffer=temp1;
 pBuffer++;
 *pBuffer=temp1;
 pBuffer++;

 }
 pBuffer=pixel;

The previous code considers that sizeImage is the image size and also that the flesh color
class centroid values are 176.1448 for red, 115.1489 for green and 20.4083 for blue and a
similarity criteria minor to 45.

5. Results.

The obtained results using the fuzzy C-Means as a segmentation method is quite good for
objects whose colors are not trivial. A fast training is an important advantage obtained with
the use of Fuzzy C-Means matlab tools as well as the easy change of its parameters. This
allows to experiment with different operation conditions like changing the class number until
the system robustness is satisfied.

The figure 6 shows the cluster distribution obtained by training the fcm function. While the
figure 7 shows an image and their respective classification using the following cluster center
values for the class flesh color: red=176.1448, green=115.1489 and blue =20.4083.

Fig. 6 Cluster distribution.

Fig. 7. (left) Original image, (rigth) Segmented image.

In this work we only used as a classify criteria the centroid distance but we proporse also the
use of the class dispersion as a classify criteria as well (distance of Mahalanobis) that surely
will show better results.

References

[1] Yen J. and Langari R., Fuzzy logic, intelligence, control and information, Prentice Hall,
2000, New York.

[2] J.C. Bezdek and S. Pal (eds.) Fuzzy Models for Pattern Recognition. IEEE Press, 1991.

[3] J.C Bezdek and L. Hall, and L.P. Clark. Review of MR Image segmentation techniques
using pattern recognition. Medical Physics, Vol. 67, pp. 490-512, 1980.

[4] J.C Dunn. A fuzzy relative of the ISODATA process and its use detecting compact well-
separated clusters. J. Cybernetics, Vol. 8, pp. 32-57, 1983.

