
Realizing the Corporate Semantic Web:
Concept Paper

Technical Report TR-B-09-05

Adrian Paschke, Gökhan Coskun, Marko Harasic, Ralf Heese,
Markus Luczak-Rösch, Radoslaw Oldakowski, Ralph Schäfermeier

and Olga Streibel

Freie Universität Berlin
Department of Mathematics and Computer Science

Corporate Semantic Web

18 May 2009

Realizing the Corporate Semantic Web:

Concept Paper

Adrian Paschke Gökhan Coskun Ralf Heese
Markus Luczak-Rösch Radoslaw Oldakowski

Ralph Schäfermeier
Olga Streibel

Freie Universität Berlin
Department of Mathematics and Computer Science

Corporate Semantic Web
Königin-Luise-Str. 24-26
14195 Berlin, Germany

paschke,coskun,heese,luczak,oldakowski,schaef,streibel@inf.fu-berlin.de

18 May 2009

Abstract

In this concept paper, we outline our working plan for the next phase of the
Corporate Semantic Web project. The plan covers the period from March 2009
to March 2010.

Corporate ontology engineering will improve the facilitation of agile ontology
engineering to lessen the costs of ontology development and, especially, main-
tenance. Corporate semantic collaboration focuses the human-centered aspects
of knowledge management in corporate contexts. Corporate semantic search is
settled on the highest application level of the three research areas and at that
point it is a representative for applications working on and with the appropri-
ately represented and delivered background knowledge.

Each of these pillars will yield innovative methods and tools during the
project runtime until 2013.

We propose a concept draft and a working plan covering the next twelve
months for an integrative architecture of a Corporate Semantic Web provided
by these three core pillars.

Contents

1 Introduction 3
1.1 Corporate Ontology Engineering 4
1.2 Corporate Semantic Collaboration 4
1.3 Corporate Semantic Search . 4

2 Corporate Ontology Engineering 6
2.1 Introduction . 6

2.1.1 Fundamentals . 7
2.2 Scenarios / Use Cases . 8

2.2.1 Ontonym . 8
2.2.2 FIZ Chemie . 9

2.3 Ontology Modularization and Integration 10
2.3.1 Technical Concept . 11
2.3.2 Modular Reuse . 12

2.4 Ontology Versioning . 13
2.4.1 Requirements of a Flexible Ontology Versioning System

in the Corporate Context 14
2.4.2 User Groups . 14
2.4.3 Design of the SVoNt Version Control System for OWL

Ontologies . 14
2.4.4 Incorporation into the Overall Concept 15
2.4.5 Working Plan . 16

2.5 Conclusion . 16
2.5.1 Modularization and Integration Dimensions of COLM . . 17
2.5.2 Versioning Dimensions of COLM 17
2.5.3 Corporate Ontology Engineering in CSW / COLM as

Business Enabler . 18

3 Corporate Semantic Collaboration 19
3.1 Collaborative Tool for Modeling Ontologies and Knowledge . . . 20

3.1.1 Application Scenarios . 20
3.1.2 Editor Functionalities . 21
3.1.3 User Groups . 22
3.1.4 Design of the Light-weight Ontology Editor 23

3.2 Conclusion . 25

1

4 Corporate Semantic Search 26
4.1 Search in Non-Semantic Data . 26

4.1.1 Application Scenario . 27
4.1.2 Trend Mining . 28
4.1.3 Technical Concept due to Learning and Correlation Ap-

proach . 29
4.1.4 Collecting Knowledge with Extreme Tagging Approach . 29
4.1.5 Preprocessing Texts by Parsing and Chunking 30

4.2 Semantic Search Personalization 32
4.2.1 Application Scenarios / Use Cases 33
4.2.2 Semantic Matchmaking Framework 34

4.3 Conclusion and Outlook . 37

5 Conclusion and Outlook 39

A Work Packages 40

B Acknowledgment 41

2

Chapter 1

Introduction

The transition from manufacturing to information economies and the progres-
sive globalization of markets pose new challenges to enterprises. The amount of
information that companies have to produce, acquire, maintain, propagate, and
use has increased dramatically. While technologies and tools that help collabo-
rating and structuring content, such as tagging, wikis, blogs, and collaboration
platforms are in place, companies seek more capable approaches for gaining,
managing, and utilizing knowledge required for their business processes. The
amount, the heterogeneity, and the multimodality of data remain problematic
aspects in the integration of data sources, presentation of information, and the
extraction of knowledge.

In this regard, the Semantic Web offers promising solutions but also poses
new challenges. The principal aspect of the Semantic Web is a shift away from
the focus on data and documents towards their actual informational content
and a machine-readable representation of it by the means of ontologies. Being a
formal specification of a conceptualization an ontology allows inference engines
to derive new information that is implicitly contained in it. As a result of the
need for better knowledge management in corporate settings Corporate Seman-
tic Web (CSW) aims at establishing semantic technologies in enterprises. Fo-
cusing on the controlled environment in contrary to the global Semantic Web it
avoids facing unresolved problems like scalability, broader adoption of commonly
shared ontologies, and trust issues. Therefore the potential in many industrial
application scenarios and the short-term practicability in closed enterprise set-
tings merits continued work, although semantic technologies are relatively young
and gaps in standards and implementations exist.

After the Corporate Semantic Web project took up its work in February
2008, we introduced our initial vision of a Corporate Semantic Web as the next
step in the broad field of Semantic Web research. Starting from interviews with
regional industrial partners, we were able to develop a number of real world
application scenarios and to identify requirements of the corporate environment
and gaps between current approaches to tackle current problems facing ontology
engineering, semantic collaboration, and semantic search.

In the second phase of the project runtime, we were able to enforce our out-
reach to and scientific cooperation with Berlin and Brandenburg based enter-
prises with the aim to establish a knowledge transfer channel between scientific
institutions and enterprises in the local area. The results from the applicability

3

studies and requirement analysis from the first project phase yielded a sound
and robust architecture for the upcoming Corporate Semantic Web.

This report introduces our Corporate Semantic Web architecture and out-
lines our working plan for the next project phase, covering the period from
March 2009 to March 2010.

Our architecture integrates the three pillars that we consider the building
blocks of a Corporate Semantic Web: corporate ontology engineering, corporate
semantic collaboration, and corporate semantic search.

1.1 Corporate Ontology Engineering

In highly dynamic markets, enterprises depend on rapid integration of newly-
acquired knowledge into their business processes. While corporate knowledge
multiplies and evolves, companies seek knowledge management tools supporting
this process in an efficient and cost-effective way.

Corporate ontology engineering tackles this problem from two perspectives:
Ontology modularization and integration focuses on the optimization of dis-

covery, acquirement and use of corporate knowledge. In chapter 2.3, we propose
an ontology discovery and integration component that discovers ontologies based
on requirements which can be formulated by the aid of a requirements editor.
Further, we propose a methodology for efficient modularization and retrieval of
ontology parts while omitting unneeded parts.

Ontology versioning focuses the evolutionary aspect of corporate knowledge.
While tools like ”semantic diff building” and versioning on the semantic level
are in place, none of these are currently able to provide commit and rollback
actions on the concept level. In chapter 2.4, we propose an architecture and a
technical concept for SVoNt, a version control system for OWL ontologies, built
upon the well-known Subversion (SVN) system.

1.2 Corporate Semantic Collaboration

While knowledge workers are the principal actors in the process of knowledge
evolution in enterprises, current tools mainly provide support for direct ontology
editing and thereby require ontology engineers. This complicates the process of
ontology evolution can become cost intensive. It would be desirable if knowledge
workers could modify ontologies without having to be adept in their underlying
formalisms.

In chapter 3.1, we propose a design for a web-based light-weight ontology
editor that enables domain experts without knowledge about ontologies to con-
tribute to the corporate knowledge corpus.

1.3 Corporate Semantic Search

Corporate semantic search investigates information discovery in both semantic
as well as non-semantic data utilizing innovative semantic search techniques to
facilitate deep analysis of available information by analyzing complex relation-
ships in non-semantic data as well as providing users with personalized access
to corporate information. The semantic web strongly depends on ontologies as

4

means for the formal representation of knowledge, whereas most documents lack
formal semantic annotation. As a solution for searching in non-semantic data we
introduce a trend analyzing tool that combines statistical methods with human-
driven tagging approaches for recognizing semantics in and deriving trends from
unstructured information sources (see chapter 4.1).

Another important aspect in the domain of search is personalization. Com-
panies with large products scope and high customer diversity seek solutions for
personalized search and recommender systems. In order to guarantee scalability
and integration, we find a formalization of user profiles and application domains
indispensable. In chapter 4.2 we propose a flexible framework for matching for-
malized personal profiles and corporate resources.

In the following report, we will cover the above approaches in detail. We
will depict our technical concepts for tackling the above mentioned problems
and show how they integrate into our Corporate Semantic Web architecture.

5

Chapter 2

Corporate Ontology
Engineering

2.1 Introduction

In this section we describe the conceptual design for the work packages ”On-
tology Modularization and Integration” and ”Ontology Versioning”. Figure 3.1
highlights the components of the Corporate Semantic Web architecture that are
involved in realizing both work packages.

Ontology
Repository

Matchmaking
Framework

Light-weight
Ontology Editor

Text
Preprocessing

Services and Components

Ontology Usage

Feedback
Repository

Ontology
Engineering Editor

Extreme Tagging
Tool

Semantic (Web) Applications
Ontology Engineer

End-User
Knowledge Manager

Ontology Discovery
& Integration

Ontology Management

Content
Authoring

AnalyticsSearch

Data Management

Feedback
Tracking

Content
Broker

Feedback
Mining

Ontology Framework

Versioning ModularizationAPI

Data Sources

Figure 2.1: Overview of the architecture with focus on ontology engineering

6

2.1.1 Fundamentals

In modern economy the success of companies strongly depends on their ability
to rapidly adopt new achievements into their business processes. The quick
creation of economic value from knowledge is essential. But, classic enterprise
applications and software systems are based upon static information systems
and database solutions. They are not able to reflect dynamicity of knowledge
and cannot enable the agile adoption of new achievements into the business pro-
cesses. They are mainly developed for very special purposes aiming at meeting
some functionalities and requirements of the company.

Knowledge-based applications are built upon knowledge bases (KB), which
allow to manage declarative knowledge, that is to create, modify, and delete
knowledge stored in the KB. Such applications are able to take new knowledge
immediately into consideration and are therefore a very promising approach to
displace classic data based and application dependent software systems. Being
able to handle dynamicity and power of knowledge they are the key for flexible
business processes.

In the Semantic Web ontologies are an important means for representing
knowledge. They provide a shared understanding of a domain of interest. In
a corporate environment, ontologies describe terms and their interrelation rel-
evant to business context. However, there are the following four gaps between
industrial needs and currently reached status of ontology engineering research
as we identified in our previous work [Report 1]: (G1) the academic orientation
gap, (G2) the application maturity gap, (G3) the process gap, and (G4) the
cost-benefit-estimation gap. We stated that there is a need for a new methodol-
ogy to create ontologies for corporate settings, which we call corporate ontology
engineering (COE). Such a methodology has to close the aforementioned gaps
by keeping the corporate setting in view. That is, it has to meet the following
requirements

• The influence of the ontology development and maintenance process on
the work flow of domain experts have to be minimized to avoid negative
influence on their productivity. (R1)

• The already existing and running system must not be disturbed. (R2)

• The ontology has to evolve with the progress of the company. (R3)

• The need for ontology engineers have to be minimized to reduce costs.
(R4)

As a solution approach we proposed the early stage of the Corporate On-
tology Lifecycle Methodology (COLM). Being focused on corporate settings it
inherently closes gap G1 and will prepare the ground for new knowledge based
applications (G2). It reflects the agility of knowledge engineering (R3) pro-
cesses and brings application dependency through the concrete definition of the
application environment and the business needs (G3).

COLM consists of two different cycles, namely the usage cycle and the en-
gineering cycle, and 7 phases. By splitting the development process into the
mentioned parts it allows an intuitive understanding of raising costs and pro-
vides a cost-sensitive evolution of knowledge in form of ontologies. Enabling
cost-benefit-estimation it closes the gap G4 and fulfills the last requirement
listed above (R4).

7

Selection/Integration/Development

EvaluationValidation

Feedback
Tracking

Population

DeploymentReporting

ENGINEERING

USAGE

Figure 2.2: The Corporate Ontology Lifecycle Methodology COLM

2.2 Scenarios / Use Cases

Aiming at the adoption of semantic technologies to corporate environments it
is very essential to have concrete scenarios and use cases. Especially for ontol-
ogy engineering tasks it is very hard to find representative real world scenarios
which are relevant for companies. For that reason we are going to introduce
two scenarios from our industrial partners which demonstrate two main aspects
which we focus in corporate ontology engineering during this phase of the project
CSW.

In order to enable an agile and evolutionary development of corporate on-
tologies which reflects the progress of the company and allows for better cost
estimation by separating between engineering and usage phases of the ontology
lifecycle, the first of the two investigated aspects is ontology versioning. The
second is ontology modularization and integration allowing less investment costs
by modular reusability of existing ontologies and easy management as well as
maintenance by improving understandability through well sized ontology mod-
ules.

2.2.1 Ontonym

The Ontonym GmbH based in Berlin is a provider of ontology-based services
which supply the appropriate background knowledge for the client’s applications
and services. Thus, Ontonym addresses the gap that the missing expertise of
ontology development and management is a key barrier for internal adoption
of ontology-based systems in infrastructures especially of small and mid-sized
enterprises. Figure 2.3 shows how the clients of Ontonym access an ontology-
based system via Web service interfaces. To facilitate an early access to the

8

service the evolving ontology prototypes underrun an agile lifecycle which is
hidden from the client who just benefits more and more from the improved
ontology.

Figure 2.3: Web services hide the agile ontology lifecycle from the user

Ontonym needs an efficient ontology versioning strategy since the company
has to handle an often and rapidly changing ontology which is accessed and
maintained by several people internally. On the one hand, these people are
the ontology engineers. But, on the other hand software engineers have to
access the ontology as well from time to time. The former prune and refine the
ontology depending on new knowledge they observed by evaluating queries and
responses of their services as well as time consuming research in the customer’s
domain. The latter have to align the service functionalities depending on the
capabilities of the ontology. In summary, Ontonym needs a distributed ontology
version control system for users with disparate viewpoints and skills. Ontology
engineers as well as software engineers have to use this system in an intuitive
way.

Ontology versioning also comes into play for Ontonym since the company
needs support for branching and merging of ontologies which satisfy the indi-
vidual needs of different customers. That is, it is possible that the ontologies
of various customers of the same economic sector only differ in certain specific
details which depend on each customer’s requirements while they have a com-
mon base model. In this case Ontonym has to handle depending branches of
ontologies and merge parts of them in case of an update on the common base
model. More, it is possible that the requirements of a customer change that
much over time, that he wants to create branches of the primary base version.
Again, in the case of an update related to common parts of the branches or to
build a completely new version which integrates the modeled knowledge of all
branches, a merge is necessary. Figure 2.4 depicts a representative branch and
merge scenario of an evolving ontology.

2.2.2 FIZ Chemie

The information center for chemistry Fachinformationszentrum Chemie (FIZ
Chemie) in Berlin provides networked information infrastructure and state-of-
the-art, scientifically sound information services. It develops information sys-

9

Iteration nIteration nIteration n‐1Iteration n‐1......Iteration 2Iteration 2Iteration 1Iteration 1

Version 4Version 1 Version 1

V i 1

Version 1

Version 3.1Version 2 Version 2.1

Version 1 Version 2.x

Version 3

Figure 2.4: A representative versioning workflow

tems and supply customized content upon request for public authorities as well
as companies in private industry. It has access to a large chemistry library with
ebooks from various fields within chemistry. For an easy access to that infor-
mation FIZ Chemie wants to provide a personalized semantic search through
an intuitively usable interface to its customers. For that reason semantic de-
scription of the domain and the profile of the user is necessary. Due to the huge
size and complexity of the domain there is the need for modular ontologies for
specific fields within chemistry to represent the expert’s vocabulary and guide
the search in an efficient way by flexible and modular composition of necessary
knowledge.

As a very basic natural science chemistry is a very suitable domain for the
reuse of already existing public ontologies in order to decrease the investment
cost and reduce the time to deployment. In fact, there are numerous publicly
available candidate ontologies, which can be used as a basis for the development
of an applicable ontology. Relevant parts can be extracted as modules and cus-
tomized for the own requirements. During the application different modules can
be integrated in order to compose a knowledge base in a flexible and application-
dependent manner.

2.3 Ontology Modularization and Integration

Divide and conquer is a very well established idea in the field of software engi-
neering. Component-based development of large and complex software systems
by small well defined building blocks simplifies the understandability as well as
the management and leads to reusable software modules and a scalable over-
all system. Accordingly, designing ontologies in a modular way is intuitively
promising in order to benefit from the same advantages. However, modeling
knowledge represented by ontologies is fundamentally different than software
modules, which are mainly describing processes. Thus, software engineering
methodologies and tools cannot be transferred easily to ontology engineering,
which necessitates further investigation. The overall goals of modularization are
the following: (1) creation of components, which can be reused in a flexible way
and lead to (2) scalable and (3) personalized utilization; (4) increased under-
standability for humans by well-sized modules avoiding too large ontologies, in
such a way that the (5) complexity can be managed easily.

In order to clarify the need for ontology modularization and integration and
its advantages for especially corporate ontology engineering it is very impor-

10

tant to have a close look at its impact on the previously introduced gaps and
requirements. Keeping the corporate context in view, especially the gap G4
(the cost-benefit-estimation gap), modular reuse of existing ontologies is very
important to reduce the capital expenditure and the time to deployment of on-
tologies. Additionally, well-sized modules are increasing the understandability
for humans and allow complexity management and easy maintenance, which
leads to a reduced need for ontology engineers (R2) and enables evolving on-
tologies (R3). Modular ontologies are also beneficial for efficiency, scalability,
and personalization. During the usage only modules which are necessary with
respect to the application and the user can be selected and integrated so that
loading needless parts and wasting storage as well as computing power can be
avoided.

Optimizing ontology modules for users and applications presumes that there
is meta information available about them. Besides the structure and the se-
mantic content of the ontology itself the closed and controlled environments of
companies allow obtaining additional information beneficial for the modulariza-
tion and integration of ontologies. In contrast to open and large-scale systems
as the World Wide Web, corporate settings make it possible to take informa-
tion about the usage and evolution of ontologies, as well as the structure of the
environment comprising departments, workflows and users into consideration.

By observing the usage and having knowledge about the users, their work-
flows and departments it is possible to conclude the relevant parts of an ontol-
ogy for specific use cases. This allows to create modules which are optimized
for such use cases and leads to personalized and efficiently usable ontologies.
Furthermore, observing the evolution of the ontology helps to identify reliable
and vague parts. Concepts and relations which are used frequently but are not
changed can be marked as reliable, while others which are changed very often
with respect to their usage can be seen as vague needing more investigation by
ontology engineers and / or domain experts.

2.3.1 Technical Concept

In the following we will demonstrate functional components within a corporate
environment which are necessary to realize modularization and integration of
ontologies in order to meet the aforementioned goals. Figure 2.5 illustrates the
relevant parts of the overall system architecture and shows the interrelation
between them.

The Ontology Engineering Editor is a front end application for ontology
engineers and knowledge managers. It is a tool to create, load, visualize and
modify ontologies directly. The Ontology Discovery & Integration component
has access to the local ontology repository as well as the publicly available
repositories as Watson, Swoogle etc. According to ontology requirements and
based upon module descriptions it is able to find and integrate ontology mod-
ules. These requirements can be defined manually by ontology engineers using
the Ontology Engineering Editor or automatically by Semantic (Web) Applica-
tions. The Modularization component of the Ontology Framework is capable of
module extraction and ontology partitioning. According to feedbacks from the
Feedback Repository it can partition the ontology automatically. Furthermore,
it is possible to use its module extraction algorithms manually through the On-
tology Engineering Editor. For a better understanding of the components and

11

Figure 2.5: Technical Components for Ontology Modularization and Integration

their interrelation we will describe a specific scenario. It is about the modular
reuse and integration of existing ontologies.

2.3.2 Modular Reuse

A four step methodology for modular ontology reuse is depicted in Figure 2.6.

Figure 2.6: Modular Reuse of Existing Ontologies

According to these steps the components of the technical concepts can be
used in the following way.

The Ontology Discovery & Integration component allows ontology engineers
and knowledge managers as well as end user applications to find relevant ontolo-
gies. At the beginning of the ontology development process ontology engineers
together with knowledge manager and domain experts need to analyze the do-
main and identify requirements. They can define concepts and properties which
need to be comprised by the targeted ontology.

Given these requirements the Ontology Discovery & Integration component
searches for relevant ontologies in different ontology repositories and search en-
gines as Watson, Swoogle etc. and returns a set of candidate ontologies. Domain
experts and ontology engineers control such candidate ontologies and decide if
they have to redo the search with modified requirements or if the results are
acceptable and they can go to the next step.

12

In the next step the candidate ontologies together with the requirements
are sent to the Modularization component. Only really relevant parts of the
candidate ontologies are identified based upon the requirements. These parts
are extracted by using module extraction mechanisms as closed independent
modules. Each module is associated with a part of the requirements which
it meets. The modules are controlled by the ontology engineers and domain
experts. If necessary the Modularization component is used again with the same
candidate ontologies but with modified requirements. As soon as the modules
are acceptable the integration phase is entered.

The ontology integration components is responsible for integrating the mod-
ules extracted from very different candidate ontologies into one overall ontology
and to remove redundant and overlapping parts. The created ontology has to
fulfill all requirements. It is checked by the ontology engineers and domain ex-
perts. If they are not satisfied with the integration they can redo this step with
new requirements.

Following the integration process which provides an acceptable ontology
the Modularization component creates different well-sized building blocks with
metadata by using partitioning mechanisms. The metadata expresses informa-
tion about the content of the building blocks and their interrelation to other
building blocks, i.e. information about how to integration them.

These building block together with metadata about them are stored in the
local repository and can be downloaded and put together in a flexible way by
different applications in various situations.

2.4 Ontology Versioning

The versioning of ontologies is important when continuously evolving ontologies
are in focus. For our work we state two aspects as the most relevant reasons why
the continuous evolution of ontologies is indispensable in context of corporate
ontology engineering. First, there will ever be artifacts which change necessarily
over time and influence the knowledge represented in corporate ontologies, e.g.
the product portfolio or the department structure. Second, using or re-using a
rudimentary existing ontology in the domain of discourse can lessen the costs for
initial ontology development. Furthermore, we also adopt two base perspectives
in which ontology versioning has to be applicable. The first one is the perspective
of the vendor of ontologies and ontology-based services or software and the
second one is the perspective of the user of ontologies as part of his information
systems infrastructure.

Existing approaches yielded valuable results with focus on tracking of changes,
change detection and calculation of the so called ontology diff (or semantic diff)
to facilitate efficient and conflict free versioning mechanisms. However, an ap-
proach which provides commit and rollback of ontology versions on the concept
level is missing. Such an approach can upgrade the distributed development
and evolution of ontologies effectively and thus it is in focus of our work.

13

2.4.1 Requirements of a Flexible Ontology Versioning Sys-
tem in the Corporate Context

As we mentioned it in the introduction of this chapter, we raised requirements
on corporate ontology engineering in general during the first phase of the project
Corporate Semantic Web. Now we adopt the requirements R2 (the already ex-
isting and running system must not be disturbed) and R4 (the need for ontology
engineers have to be minimized to reduce costs) and derive the following specific
ones for the design and implementation of an ontology versioning solution which
is applicable in the corporate context flexibly.

1 The system has to deploy the actual ontology version(s) to various applica-
tions directly. (related to R2)

2 The system has to be usable for non-experts in the field of ontology engineer-
ing. (related to R4)

3 The system has to be usable with other tools than dedicated ontology engi-
neering applications. (related to R4)

2.4.2 User Groups

With reference to requirement (2) we state that other people beside ontology
engineers have to access the ontology version history and derive the users which
form the relevant target group for our system. From a technical perspective,
these people are software engineers and in some cases IT administrators or
IT managers. They check out the actual ontology versions to verify that the
modeled knowledge is conform with the requirements of the software systems
which use it. That means they search for necessary ontology primitives and
structural aspects of the conceptualization, e.g. essential properties or depth of
the hierarchy.

2.4.3 Design of the SVoNt Version Control System for
OWL Ontologies

We decided to set up on top of the well-known version control system SVN
which is typically used for versioning of source codes in software engineering
contexts. Thus, the selection of SVN fulfills requirement (2) perfectly from a
non-technical point of view. To facilitate ontology versioning in the sense of all of
the mentioned requirements, the text-based approach of SVN has to be extended
to act on semantic structures of OWL ontologies and finally integrated into
an ontology management framework which handles the access to appropriate
ontology versions for distributed applications.

We implement an extension of the classical SVN approach for the server and
the client side as it is depicted in Figure 2.7.

On the server side we wrapper the SVoNt server architecture around the clas-
sical SVN server architecture and keep all functionalities of the classical SVN
system working as before. Internally, we add two major components which fa-
cilitate the additional functionality, namely consistency checks and generation
of the ontology diff. The former supports the detection of of semantic incon-
sistencies when a new version is committed to the system and results an alert

14

SVoNt Client

Classical
Change
Detector Ontology

Diff

SVN
Commands

SVN ClientsSVN Clients

Change
Selector

Diff

Commit

Working Copy
Revision
R llb k

Revision
C l l t

Ext. SVN Interface

Working Copy RollbackCalculator

SVoNt Server classical SVN commands
Command Handler

Ch

Class. SVN Interface

Classical SVN Server

ext. SVN commands

Change
Detector

Ontology
Diff

Consist.
Check

Ext. Precommit

Metadata
Rep.

Change Log
SVN Workflow

Figure 2.7: The SVoNt architecture

and avoids the commitment in case of a failure. The latter is applied after the
consistency of the committed version is approved and provides the semantic
distinction of the endmost and the new ontology version. From the set of dif-
ferences we calculate a set of granular change operations and store them into a
change log.

Our server side approach allows the use of any classical SVN client since we
kept all actions and commands working as before. However, we implement a
special SVoNt client as well which will provide

• the visualization of revision numbers on concept level,

• the partial commit of selected sets of changed concepts and

• concept-oriented rollback to former revisions.

To do that the SVoNt client accesses the SVoNt server change log and re-
trieves information about the atomic changes. A special tree view will provide
an intuitive visualization as it is commonly familiar from the SVN visualization
of source code repositories.

2.4.4 Incorporation into the Overall Concept

Our SVoNt approach is a core component of a COLM ontology framework which
will provide an integrative set of functionalities to store, access and maintain
OWL ontologies within an information systems infrastructure. Our first draft
proposal of this architecture is shown in Figure 2.8.

This depiction describes the various systems which access an ontology, re-
spectively an ontology repository, for certain tasks, e.g. the ontology editors for

15

(Ontology)
Editors

SVN Clients

Editors

Ont.‐based
Applications

OntSVN
Clients ApplicationsApplicationsClients

Access Handler

load query
URI Handler Query Handler

Ontology Version Rep.

URI Handler Query Handler

SVoNt Feedback Tracker

Ontology Version Rep.

Change
Log

Ont
Metadata Feedback Rep.Command

Handler

Classic SVN

Figure 2.8: Proposal for an ontology management framework architecture in-
cluding the SVoNt system

manipulating an ontology or ontology-based applications for querying them. A
central component is the feedback tracker which observes each action performed
on the ontologies and supports the detection of new knowledge or potentially
weak parts of the model.

2.4.5 Working Plan

Our working plan for the development of an ontology versioning system based
on SVN is divided into four packages (WP 10.2.1 - 10.2.4) which are performed
from 04/2009 until 03/2010. At the end of this process we expect a version 0.9 of
both, an SVoNt server and an SVoNt client, which are ready for beta testing in
enterprises. The SVoNt server will available as a standalone component as well
as part of an integrated COLM framework. During the last year of this phase of
the project we are planning to test and mature the COLM framework including
the SVoNt server so that it is ready for stable productive use in enterprises.

2.5 Conclusion

In this chapter we introduced a technical concept to realize corporate ontol-
ogy engineering. Based upon the Corporate Ontology Lifecycle Methodology
(COLM) we investigated in two important aspects, namely ontology versioning
and ontology modularization and integration. Both are essential to enable an
agile and evolutionary development of corporate ontologies which reflects the
progress of the company and allows for better cost estimation.

16

2.5.1 Modularization and Integration Dimensions of COLM

Ontology modularization and integration allows less investment costs by mod-
ular reusability of existing ontologies and easy management as well as mainte-
nance by improving understandability through well sized ontology modules. It
is in different ways integrable into the lifecycle. As illustrated and mentioned
previously COLM facilitates cost estimation in the run-up of cost-intensive evo-
lution steps. The modularization and integration dimensions of COLM helps to
decrease investment costs as well as the operational costs and supports to realize
ontology adoption to the corporate environment by keeping the incentives of a
company in view.

At the very beginning of COLM during the selection and integration phases
it is reasonable to look for existing ontologies for the sake of reusability, because
developing ontologies from scratch is a very cumbersome and time-consuming
task. Expecting candidate ontologies which perfectly fit into the targeted system
is unrealistic, some customization will be necessary in order to adapt candidate
ontologies and make them useful. At this point modularization is an important
mechanisms to allow reusability even if the candidate ontologies are not usable in
their original form. The possibility of extracting only relevant parts of existing
ontologies and integrate them in order to achieve a useful ontology decreases
investment costs drastically and makes ontology application realistic and really
attractive for companies.

Modularization during the lifetime of ontologies is also possible. This can be
done based upon diverse aspects. In the feedback tracking and reporting phases,
the closed and controlled corporate environment allows obtaining information as
relevance of concepts and relationships regarding departments and application.
It also enables to observe the evolution of the ontology and allows to identify
vague parts which change very often and well-established parts which change
less frequently.

Finally, in case of context-sensitive and ontology-based applications, which
are able to define ontology requirements, an additional aspect of ontology mod-
ularization is possible. During the deployment phase, while application need to
load ontologies, optimized modules regarding the application context, can be
identified and extracted in real-time. This would lead to personalization and
increased efficiency of the ontology usage, because loading needless parts and
wasting storage as well as computing power can be avoided.

2.5.2 Versioning Dimensions of COLM

Efficient ontology versioning is a key enabler for the agile evolution of ontologies
in the setting of enterprise information system infrastructures. It facilitates the
management of various coexisting representations of corporate knowledge which
is used by heterogeneous applications.

Our SVoNt approach for ontology versioning incorporates into the overall
approach of COLM as the central backend component which encapsulates the
ontology repository. Combined with other parts of the COLM ontology man-
agement framework the whole development, update, release and access chain is
handled by this system.

17

2.5.3 Corporate Ontology Engineering in CSW / COLM
as Business Enabler

The work packages ontology versioning and ontology modularization and in-
tegration are refining the Corporate Ontology Lifecycle Methodology (COLM)
towards a fundamental business enabler for utilizing ontologies in companies.
By providing an ontology framework it prepares the ground for semantic appli-
cations. In corporate ontology engineering we are always keeping the real world
constraints in view, through close cooperation with industrial partners.

18

Chapter 3

Corporate Semantic
Collaboration

In this section we describe the conceptual design of a light-weight ontology editor
which is part of the work package “Collaborative Tool for Modeling Ontologies
and Knowledge.” Figure 3.1 highlights the components of the Corporate Se-
mantic Web architecture that are involved in building such an editor. These
components allow to access ontologies (ontology framework), to keep track of
user interaction (feedback tracking), and to assist a user in modeling ontology
concepts (matching framework).

Ontology
Repository

Matchmaking
Framework

Light-weight
Ontology Editor

Text
Preprocessing

Services and Components

Ontology Usage

Feedback
Repository

Ontology
Engineering Editor

Extreme Tagging
Tool

Semantic (Web) Applications
Ontology Engineer

End-User
Knowledge Manager

Ontology Discovery
& Integration

Ontology Management

Content
Authoring

AnalyticsSearch

Data Management

Feedback
Tracking

Content
Broker

Feedback
Mining

Ontology Framework

Versioning ModularizationAPI

Data Sources

Figure 3.1: Overview of the architecture

19

3.1 Collaborative Tool for Modeling Ontologies
and Knowledge

In contrast to existing ontology editors and our work on ontology engineering,
we focus on developing an easy-to-use editor for non-experts in engineering of
ontologies. Thus, we concentrate on the usage cycle of the ontology lifecycle (see
Corporate Ontology Lifecycle Methodology (COLM) in Chapter 2) – the period
after a first version of an ontology has been deployed – and primarily address
the needs of domain experts. But the editor also supports ontology engineers as
it also gathers feedback about changes in the ontology. The feedback is analyzed
by ontology engineers to improve the quality of the ontologies and deploy a new
release of them.

We structured this section as follows: First, we describe three real-world
scenarios to illustrate the need for such an editor. Second, we identify and
describe user groups and functionality of the planned editor. Finally, we specify
the architecture and sketch the working plan.

3.1.1 Application Scenarios

Our cooperation partner, Ontonym GmbH, has made the experience that com-
panies often carry out a project on ontology development in cooperation with
ontology engineers. The ontology engineers themselves talk to domain experts
to learn details about the application area. Since the involvement of external
ontology engineers is expensive and the ontologies nevertheless have to be kept
up-to-date, companies want their employees to be able to extend and to modify
the ontologies. However, existing tools address primarily ontology experts and,
moreover, do not cover and support the usage cycle of the ontology life cycle
[9]. This is especially true for commercial ontology modeling tools.

In collaboration with EsPresto AG, we recently developed a demonstrator il-
lustrating another application domain of a simple ontology editor: We extended
a conventional wiki engine, XWiki1, by a plug-in that recognizes concepts in the
text of a wiki page and uses background knowledge, e.g., an ontology, to offer
a search for similar and related terms to the wiki user. The suitability of the
similar and related terms highly depend on the background knowledge. Since
wikis can be applied to any application domain, the wiki users themselves should
mainly be responsible to maintain the background knowledge. A light-weight
ontology editor will be the instrument for this purpose. Considering semantic
wikis as a related technology to our XWiki approach, we think that they also
suffer from the lack of domain ontologies. Thus, our editor would facilitate the
dissemination of semantic wikis.

Regarding our third scenario we cooperate with the makers of DBpedia2.
DBpedia is a community effort to extract structured information from Wikipedia
and to make this information available on the Web. Their database is currently
emerging to a major hub of the linked data approach. For example, the BBC
developed a system that obtains unique identifiers from DBpedia to connect the
content of their business units. As a result, they are able to enrich their content

1http://www.xwiki.org
2http://dbpedia.org

20

http://www.xwiki.org
http://dbpedia.org

automatically and increase the visiting time on their website3 by providing links
to related information sources of their own website instead of external one. In a
discussion a developer of the DBpedia pointed out that the vocabulary used in
the infoboxes of Wikipedia are arbitrary choosen. To provide high-quality query
results, they are currently developing an ontology representing the Wikipedia
content consistently. Thus, they have a need for an easy-to-use editor that allows
users of DBpedia to map the vocabulary of the infoboxes to their ontology.

3.1.2 Editor Functionalities

In a first step to design an ontology editor we compiled a list of user groups op-
erating ontology engineering tools and a list of operations to handle ontologies.
Compiling these lists we assumed that ontology engineers have already made
basic design decisions on the ontology model and deployed a first version of it
on a production system. The employees of a company are in charge of extending
the ontologey. Thus, we consider in particular the usage cycle of the ontologies.

The following list gives an overview of operations on an ontology. Some
of these operations may require a deeper technical understanding of ontology
engineering than other one. In the list of operations we indicate the level of
required technical knowledge with ‘+’ signs, ranging from ‘ +’ (low) to ‘ +++’
(high). In addition, further operations are conceivable, but we omitted them,
because they require a too high technical knowledge. Please note, that we do not
make any assumptions on the procedure of applying changes to the ontologies.
For example, the changes may be immediately permanent and visible to all or
have to be reviewed by a knowledge engineer.

Search concepts A user searches for concepts in the ontologies that corre-
spond to a given a search term. If context information of the user are
available, the search engine considers them for ranking the results. (+)

Navigate Starting from some concept the user navigates through the ontol-
ogy along relationships. Context information may be used to narrow the
offered navigation paths. (+)

Add concepts/relationships A user adds a new concept to an ontology by
typing a word into a form field, e.g., while he is annotating or tagging a
document. On the one hand, he can rely on the system to find the right
place for the word in the ontology. On the other hand, he may revise the
suggestions of the system or add relationships manually. (++)

Remove concepts/relationships Delete concepts and relationships from the
ontology. (++)

Move subgraphs Performing this operation, a user changes the parent of a
concept and, thus, moves a concept together with its children to another
place of the ontology. (+++)

Tag concepts Tagging of concepts aims at putting concepts into context and,
therefore, it pursues a similar goal as creating relationships between con-
cepts. Although the tags do not need to be contained in the ontology, it

3http://www.bbc.co.uk/blogs/radiolabs/

21

http://www.bbc.co.uk/blogs/radiolabs/

helps an ontology engineer to understand the actual meaning of a concept
and decide on its placement in the ontology. (+)

Comment and discuss Users can add comments to parts of an ontology. Us-
ing this functionalities the users can collaboratively clarify the meaning of
concepts and relationships and the modify the ontologies accordingly. (+)

Add data using a pattern Ontology design patterns are templates for cre-
ating new elements in an ontology. The user fills in and submits a form
and the system populates the information to the ontology, e.g., enter the
names of employees into a given organigram. (++)

Manage design patterns A user can create, modify, and delete ontology de-
sign patterns that can be used by other users to populate and modify
ontologies. (+++)

Performing modifications on ontologies the system has to ensure that all
data is still in a consistent state after applying the modifications. To add a
concept, for example it has to verify that this concept does not already exist in
the target ontology. If it does, the system has to execute some procederes to
solve this conflict, e.g., automatically disambiguate the meaning with the help
of context information. A more challenging situation arises if a user moves a
subgraph of the ontology, because it may affect many other concepts, e.g., all
subclasses of the moved concept.

3.1.3 User Groups

Methodologies for ontology engineering such as HCOME [7], METHONTOL-
OGY [10], and OTK methodology [12], refer to the user groups ontology engi-
neers, experienced users, knowledge managers, and system designers. In the us-
age cycle of COLM, we distinguish between different user groups that influence
the further development of ontologies. Depending on background knowledge
and experience of users we consider the following main groups:

Application user Application users are not aware of the usage of ontologies
in the system; for them the functionality of the application stands in the
focus. Thus, they are not directly involved in the ontology engineering,
but they provide implicitly feedback to ontology engineers by just using
the application, e.g., the system observes the interaction between user and
application.

Ontology user This group will mainly use the ontology read-only as a vo-
cabulary, for example, to annotate content. From their point of view on
ontologies they are especially able to judge the adequateness of the domain
model. Their comments and the discussions between them are valuable
feedback for knowledge managers and ontology engineers.

Knowledge manager Knowledge managers are responsible for maintaining
the ontology in the context of a corporation. Thus, they are not only
using or commenting an ontology but actively modifying it. A knowledge
manager may be responsible for the complete ontology or only for a part
of it, e.g., an ontology module corresponding to a particular department of

22

a company. The changes of ontology managers may be subject of reviews
by ontology engineer.

Ontology engineer An ontology engineer has a deep understanding of mod-
eling of ontologies and are generally not an expert of the application do-
main. In contrast to knowledge managers he has to consider the complete
ontologies and the interdependencies between ontology modules, but has
not necessarily to know the application domain in detail. Furthermore,
an ontology engineer has deep knowledge about respresentation formats,
technologies, and methodologies.

In literature, the role of domain experts is often mentioned. From our view-
point, domain experts are a group of persons that may belong to all mentioned
groups. Thus, we do not list them separately.

Corresponding to the tasks of the groups in the context of ontology engineer-
ing, we associate a set of operations with them that they will typically perform
(Table 3.1).

User Group Operations Level
Application user no operations in cause of indirect ontol-

ogy usage
–

Ontology user search, navigate, comment, discuss, tag
concepts, use design pattern

(+)

Knowledge manager all operations of ontology users, modify
the ontology, manage design pattern

(++)

Ontology engineer all operations (++)

Table 3.1: User groups and their typical operations

3.1.4 Design of the Light-weight Ontology Editor

Designing a light-weight ontology editor we focus in the first step on the user
group consisting of ontology users. In a second step we will extend the function-
ality of the editor to support knowledge managers. The group application users
do not directly interact with the ontology, instead the system collects feedback.
Ontology engineers, in contrast, need a dedicated tool to manage ontologies
efficiently (see Chapter 2).

Figure 3.2 puts the leight-weight ontology editor into the context of the over-
all system architecture of the CSW project. The user interact with this editor
which in turn interacts with the extreme tagging tool or the backend compo-
nents, i.e., feedback tracking, matchmaking framework, text preprocessing, and
the ontology API.

With the help of the extreme tagging tool [13] a knowledge manager can
collaborate with domain experts and obtain new concepts for an application
domain. The feedback tracking component is responsible for collecting feed-
back of the interaction between a user and the ontology editor. A knowledge
manager, for example, can analyze the feedback to discover concepts that are
often searched but are currently not contained in the ontology.

The matchmaking framework is a central component for the ontology editor.
It is used for the following tasks:

23

Ontology API

Matchmaking
Framework

Feedback
Tracking

Light‐weight
Ontology Editor

Text
Preprocessing

Backend

Frontend

Extreme Tagging
Tool

Ontology UserDomain Expert

Figure 3.2: Architecture of the light-weight ontology editor

• Search (similar) concepts in the ontology to use for performing a task,
e.g., annotate documents.

• Check that a concept is not already contained in the ontology when an
user wants to add it to the ontology.

• Suggest a location in the ontology for a newly entered concept, e.g., a
potential parent concept.

To improve the results of invoking the matchmaking framework, the ontology
editor may provide context information of the user. Furthermore, the match-
making framework may use information from external data sources, e.g., Ze-
manta Semantic API4, OpenCalais5 and DBpedia[1].

In the context of the ontology editor the text preprocessing component is an
auxiliary means to help the user to recognize concepts that are already contained
in the ontology or to suggest new concepts. Thus, a user saves time, because he
does not try to add already existing concepts.

Finally, the ontology API allows the ontology editor to access and modify
the ontology. The component implementing this API guarantees that changes
to the ontology are performed consistently.

In Figure 3.3, we present the components of the ontology editor. We dis-
tinguish between user interface components (upper part) and core components
(lower part). We design two kinds of user interfaces, a Web based editor and
a embedded Web based editor. While the purpose of the Web based editor is
to support the task of ontology management, the embedded Web based editor
enables a user to make changes to the ontology on the fly, e.g., as he is doing
some other task. For example, after a user finished editing the content of a

4http://www.zemanta.com/
5http://www.opencalais.com/

24

http://www.zemanta.com/
http://www.opencalais.com/

wiki page, he wants to annotate it with some concepts of the ontology. At this
moment he does not need a full-featured interface of the ontology editor but
only a few functionalities, e.g., a search field or some suggestions for annotating
the text.

While we implement the Web based editor as a standard Web application, we
consider to use an RDF JavaScript API as proposed in [4] for the embedded Web
based editor. This API allows a seamless integration of semantic technologies
into a webpage by modifying RDF models on the client side and synchronizing
them with a server.

Discussion
Manager

Embedded Web
based Editor

Context
Extractor

Web based Editor

Matching
Engine

Design Pattern
Manager

Figure 3.3: Components of the light-weight ontology editor

The editors invoke the functionalities of core components such as the design
pattern manager, the discussion manager, context extractor, and annotation
engine. These components in turn access services and components of the ar-
chitecture depicted in Figure 3.1. The design pattern manager provides – as
its name suggests – operations on ontology design patterns as described in Sec-
tion 3.1.2. Furthermore, it extracts the RDF data from completed patterns for
further processing. The discussion manager handles user discussions about con-
cepts and relationships of the ontologies, keeps track of arguments, and supports
the process of decision-making. Implementing this feature, we found inspiration
in DILIGENT [11] which supports controlled discussions besides others. The
context extractor is responsible for detecting the current context of a user, e.g.,
to improve the quality of suggestions for placing new concepts into an ontology.
The matchmaking engine searches for concepts that are related to a given search
term. This feature is used, on the one hand, to find concepts for annotating
texts and on the other hand, to suggest the placement of a new concept in the
ontology and its relationships to existing concepts.

3.2 Conclusion

In this chapter we presented scenarios indicating the need for a light-weight
ontology editor that can be operated by non-experts. In contrast to existing
methodologies and tools which only address the user groups ontology engineers,
experienced users, knowledge Managers, and system designers, we explicitly ad-
dress application user which have generally experience with Web browsers but
not with ontologies. Furthermore, we described operations of the editor which
the editor should support to be useful in our scenarios. Finally, we presented
the conceptual design of our light-weight ontology editor and described its com-
ponents.

25

Chapter 4

Corporate Semantic Search

This section presents the conceptual design for the work packages “Search in
Non-semantic Data” and “Search Personalization”. Figure 4.1 highlights the
components of the Corporate Semantic Web architecture that are involved in
realizing both work packages.

Ontology
Repository

Matchmaking
Framework

Light-weight
Ontology Editor

Text
Preprocessing

Services and Components

Ontology Usage

Feedback
Repository

Ontology
Engineering Editor

Extreme Tagging
Tool

Semantic (Web) Applications
Ontology Engineer

End-User
Knowledge Manager

Ontology Discovery
& Integration

Ontology Management

Content
Authoring

AnalyticsSearch

Data Management

Feedback
Tracking

Feedback
Mining

Ontology Framework

Versioning ModularizationAPI

Data Sources

Content
Broker

Figure 4.1: Overview of the CSW Architecture with Focus on Semantic Search

4.1 Search in Non-Semantic Data

The research pillars of corporate ontology engineering and corporate semantic
collaboration as described in previous sections concentrate on formalizing en-
terprise knowledge in form of ontologies. The preservation and advancement

26

of corporate ontologies insist on ontology learning and ontology population.
These crucial tasks can be accomplished by semi-automatic search for ontology
concepts, complex relations between them, and instances in corporate text col-
lections. From this point of view, the working package search in non-semantic
data should deal with the extraction of ”semantics” from the corporate text
collections. Yet mostly, this ”semantics” is not explicit assigned to the docu-
ments in corporate text collections. Texts are given in electronic form, in best
case formatted in XML. Besides, there is a tagging technique which is the most
common way used by many users, also by employees in companies, for annotat-
ing knowledge and information. Tagging helps in understanding the meaning
of information being tagged. Combining both: search in text collections and
tagging, we can satisfy the need for extracting ”semantics” from texts and cre-
ate an automatic approach for ”understanding” given text from a text collection.

Aiming at trend mining as an example of the semantic search, in our work
on search in non-semantic data we focus on the method that unifies statisti-
cal learning approach with semantic technologies in order to enable search for
complex relations in text collections.

4.1.1 Application Scenario

One application scenario for the trend mining is trading on financial market.

The more information of a good quality a trader has, the better the base for
decisions. A lot of useful information one can find in business news. Through the
free news services available on the Internet, most of investors are overwhelmed
with information. The process of making decisions becomes suddenly more and
more difficult: information that is free is hard to avoid. Therefore, finding good
quality information is the challenge. All market analysts have access to the

Figure 4.2: Trading: ”real world” scenario

same information about market trends, but the best ones are able to enhance

27

such statistical information by bringing their own experience and their ability
to make predictions from associated qualitative information into the decision
making process. However, this analysis process cost time and money. In order
to support human analysts, new methods are required.

A number of methods and computer programs have been developed in or-
der to support decision makers in the investment business but most of them are
based only on analysing numeric data and generating charts with stock exchange
values. Nevertheless, traders still have to filter, read and analyse relevant in-
formation found in business news. The consequences of an investor missing an
important piece of information, or misinterpreting a situation can be severe. The
burden of success of the investors is therefore linked to their ability to collect,
filter, understand, and react to reports about these information. Semantic Tech-
nologies are very promising solution for integrating expert knowledge in order
to automatic analyse and ”understand” important information in business news.

During our project work, we are collaborating with the JRC GmbH1 com-
pany in order to exploit the needs for and obstacles of the automatic detection
of trends in business news.

In our work, we are focusing on a general approach and developed concept
that can be applied also for trend mining in market research as well as in medical
diagnosis.

4.1.2 Trend Mining

State-of-the-Art in Emergent Trend Detection in Text Mining

In an overview over the research on Emergent Trend Detection in Text Mining
[6] several systems that detect emerging trends in textual data are presented:

• TOA (Technology Opportunity Analysis), TimeMines, New Event Detec-
tion, Patent Miner, HDDI (Hierarchical Distrubuted Dynamic Indexing),
Theme River, etc.

Also the project presented in [8] includes an approach for trend detection in
news. Besides scientific projects, there are few useful tools and applications
that concern with detecting trends from textual information, i.e. GoogleTrends
and BlogPulse. However, current solutions do not include approaches for in-
corporating formalized expert knowledge in the automatic trend detection. We
propose an approach for automatic expert knowledge integration in the process
of trend detection without involving experts in annotating text collections or
in studying the content of news. Our approach is based on using Semantic
Technologies and Tagging for formalizing and collecting expert knowledge.

State-of-The-Art Relevant Tools

Concerning the Trend Mining based on texts and enhanced text analysis, there
are many related projects on the Internet, scientific and commercial, as well as

1http://www.jrconline.com

28

http://www.jrconline.com

services that we have to take into account to during our work: GoogleTrends 2,
BlogPulse3, SystemOne4, Connexor5, ClearForest6, OpenCalais7 The last one
is very relevant and useful for our work regarding text analysis.

State-of-the-Art Relevant Vocabularies and Ontologies

Several projects that concern themselves with lightweight ontologies and ex-
tended vocabularies are relevant for this part of our work, in particular: Con-
ceptNet8 and OpenMind9 of Massachusetts Institute of Technology, MoaT10,
WordNet11, SentiWordNet12, Wortschatz Uni Leipzig13, DWDS14, SKOS15,
SCOT16

4.1.3 Technical Concept due to Learning and Correlation
Approach

Based on our Learning and Correlation Approach see4.3, we developed a concept
for realizing our ideas as described in [5].

Figure 4.3: Learning and Correlation Approach

2http://www.google.de/trends seen on 22.01.2009
3http://www.blogpulse.com/ seen on 22.01.2009
4ttp://www.systemone.net/de/ seen on 22.01.2009
5http://www.connexor.com/ seen on 22.01.2009
6http://www.clearforest.com/ seen on 22.01.2009
7http://www.opencalais.com/seenon22.01.2009
8http://conceptnet.media.mit.edu/ seen on 22.01.2009
9http://commons.media.mit.edu/en/ seen on 22.01.2009

10http://moat-project.org/ seen on 22.01.2009
11http://wordnet.princeton.edu/ seen on 22.01.2009
12http://sentiwordnet.isti.cnr.it/
13http://wortschatz.uni-leipzig.de/ seen on 22.01.2009
14http://www.dwds.de/ seen on 22.01.2009
15http://www.w3.org/2004/02/skos/ seen on 22.01.2009
16http://scot-project.org/ seen on 22.01.2009

29

http://www.google.de/trends
http://www.blogpulse.com/
ttp://www.systemone.net/de/
http://www.connexor.com/
http://www.clearforest.com/
http://www.opencalais.com/ seen on 22.01.2009
http://conceptnet.media.mit.edu/
http://commons.media.mit.edu/en/
http://moat-project.org/
http://wordnet.princeton.edu/
http://sentiwordnet.isti.cnr.it/
http://wortschatz.uni-leipzig.de/
http://www.dwds.de/
http://www.w3.org/2004/02/skos/
http://scot-project.org/

Figure 4.4: Package concept: Architecture for search in non-semantic data

In the following we describe the 2 components.

4.1.4 Collecting Knowledge with Extreme Tagging Ap-
proach

Automatic generation of relations between individual words is still a problem.
The current approaches of computer linguistics do not produce satisfactory re-
sults. Therefore, people should be involved in this process. Previous tagging
methods produce no precise specification of the relations. Each word is linked
with another, without assigning the relation a more precise meaning. The Ex-
treme Tagging System (ETS) approach [13] allows to tag the relations. ETS
extends the common tagging method with an enrichment of the tags with a
meaning. This can give the relations better semantics than just ”is associated
with”, e.g. A ”is part of” B or X ”is a” Y. With the help of tags we can now
use various graph algorithms to generate ontologies. Our first concept for gen-
erating semantic relations from folksonomy tags, named Tagsenses, has been
developed during a master thesis17. In this thesis partitions of tag graphs are
generated. Using these partitions ambiguities and synonyms can be found and
polysems can be discovered.

17Mike Rohland, Master Thesis 2009: ”Generierung von semantischen Relationen aus Tags
innerhalb einer Folksonomie”, FU Berlin

30

Figure 4.5: Extreme Tagging Tool: general architecture

Architecture of ETS:

ETS is realized as a web application for Apache Tomcat. In order to achieve
an easy distribution of the software, we use HSQL DB as storage for the tags.
This allows us to keep the database within the releases, so no external database
is necessary. Furthermore, the communication between the JSP front-end and
the backend is completely encapsulated by web services. So it is possible for us
to use a central authority to gather the tags from various places. This can also
be turned off, so eXTS can run locally and do not forward the data to the central
authority. Currently, only a simple user permission system implemented. This
allows only registered users to tag words and assign their tags a ”sentiment”.
In a later phase, we plan to connect eXTS to the Tagsenses system mentioned
above. With the help of domain-experts it will be easy to create a proper
ontology, without teaching the experts to use an ontology creation program
such as Protege.

4.1.5 Preprocessing Texts by Parsing and Chunking

The aim of the prepocessing component is to automatically generate triplets
(trenary, syntactic relations) from a natural language text so that RDF-Tripels
can be then generated from these triplets. We evaluated several tools and meth-
ods for their capability to fulfilling our goal.

First, we started with the evaluation of scientific reports and implementa-
tions concerning information-retrieval and concept mining from texts. These
concepts use in general methods from computer linguistics. Almost all of these
tools and papers apply to English which has has a different syntax than Ger-
man. German is not as explored as English, but today several works are in
progress. So we cannot use the approaches directly but as a lead to our goal.
Today only proof of concepts exits, but with interesting approaches. They dis-
tinguish between statistic and syntactic processes and between noun and verb
based processes.

The text in statistic processing is mostly classified with the TF-IDF (Salton)
method to make an approximate statement about the content and to find to
most significant words. After that, the text is sentence wise processed and noun-
noun, noun-adjective or noun-verb tuples are extracted. If such a tuple occurs
very often, you can say, these two words belong together. This method can be

31

improved, if you implicate synonyms for the words of the tuples. But in these
methods, the syntax of the processed sentences is not regarded, so this can lead
to wrong results. However, you will find many connections between the words
(low precision, high recall). The biggest advantage of statistical methods is their
language independence. Furthermore, entities can be recognized with regular
expressions. Call numbers or salutations have usually the same structure; you
can create an expression to find all entities in a specific domain. This entities
gain a higher weight and you extract the tuples over relations of these words.

Syntactic methods are the other approach. Approaches from computer
linguistic like POS-tagging are used here. The parsers for syntax-trees base
on POS-taggers, because they have to know information about the particular
words. You can identify dependencies between the words of the sentence in the
created syntax trees and assign attributes to nouns (adjectives) or verbs (ad-
verbs). Regular expressions, which are created for the particular language (e.g.
X is part of Y; X, Y, Z are related to A), are also used to find relations between
concepts. The biggest problem of syntactic methods is the dependency on the
language to parse. A parser for English cannot be used to parse German texts.
The parsers have often the problem to create the whole tree, but found relations
are usually accurate. So, they have in difference to pure statistic algorithms a
high precision but a low recall. The syntactic concept extraction bases on the so
called tree-tagger. Our biggest problem at the evaluation was the low distribu-
tion of German in the computer linguistic. We found only two suitable parsers.
First, the University of Stanford works on a project, which is available for free.
This tagger was original developed for English, but there exist projects, which
port it to other languages like Chinese or German. These ports do not work
satisfyingly at this moment. The other result was a commercial product from
Connexor. This tagger delivers far better results than the Stanford-parser and
enriches the output with much more information. He finds the time and the
case of a word if it is not in its baseform. Connexor provides a web based form
to test its product. The results look sophisticated.

Because of the strengths and weaknesses of both approaches, both are con-
nected to provide better results, as the use of only one of it. You can try to
found entities with statistic methods and then create parse trees to find relations
on the other entities.

It is very hard to test the right order of process steps or connect other sources
of information like ontologies or databases. UIMA, which bases on GATE was
developed to provide a framework for this. Both of them provide interfaces for
which you can write your own Plug-Ins. These Plug-Ins and the built in meth-
ods can be ordered with a GUI to create a process pipeline.

Architecture of our preprocessing-component:

To generate RDF-Triples from natural language texts, these texts have to
be processed in several steps. For this goal we develop the preprocessing-
component, which uses several methods mentioned before.

The texts are in XML-Format. So they are read with Xerces and the sig-
nificant tags are saved. We use a SQL-database, in our case HSQLDB for a
later access to the texts and other caching purposes. If an actual version of our
program is released, no database has to be set up, because everything neces-
sary is stored in our version. The database is also used to store the parse trees

32

and the baseforms of the found words, because the creation of them takes a
very long time. When we read a file, it runs through several steps. First, all
abbreviations are replaced by their long form to avoid faults, e.g. the trailing
point. This component is very rudimentary, because not many abbreviations
are stored. In a later release several of them are stored in the database. After
this first step, an other component which recognizes proper nouns and replaces
them with pseudonyms processes the text. Proper nouns lead to failures in tree
taggers. When the text is prepared in this way, the semantic analyzes can be
started. At this state we use two different taggers, the Stanford-Tagger which
is free and the demo version of Connexor. The Stanford tagger has the problem
not to be very performant. He needs for a simple sentence of 20 words about
30 seconds and needs about 1 GByte RAM to fulfill its task. Even then, he
can often not recognize the sentence structures properly. He cannot normalise
word, we use the web service provided by Wortschatz Uni Leipzig. The results
of these queries are stored in the database mentioned above. As other tagger
we use the demo version of Connexor. This tagger provides far better results
than the Stanford tagger, has a much better performance and normalizes the
founded words. But the tagger is not free for use. Again, the calculated tree
will be stored in the database for later access. Once all the texts of the corpus
have been read, the IDF for each word is calculated, which later is used by us
in a later processing step.

To show the results, we use Timeline and Timeplot both of them provided
by SIMILE. Timeplot is useful because we want to show the documents by their
dates and the share price of a company want to display. If you want a specific
text to display, the TF of its terms is calculated and with the IDF of the terms
a TF-IDF ranking on the content created. The parse tree belonging to the
document is dynamically created using JavaScript.

4.2 Semantic Search Personalization

In the Web context, Baldoni et al. define the personalized access to Web data
as “the process of supporting the individual user in finding, selecting, access-
ing, and retrieving Web resources (or meaningful sub-sets of this process)” [2].
User adapted services or applications require a user profile describing his or
her preferences in order to be able to select the set of relevant information.
Additionally, personalized systems require some form of representation of their
application domain. Ontologies have the potential to fulfill this role by provid-
ing formalized machine-readable means for meaningful representation of both
users and domain resources.

Whereas the research fields of corporate ontology engineering and corpo-
rate semantic collaboration, presented in previous sections, focus on formalizing
enterprise knowledge in form of ontologies, this section concentrates on provid-
ing users within the corporate context, both internal (employees) and external
(customers, business partners, etc.), with personalized access to this informa-
tion. For realizing personalized search, however, there is a need for an architec-
ture component which determines the similarity between user preferences and
domain resources. In this section, we present a flexible domain-independent
Semantic Matchmaking Framework for calculating semantic similarity of infor-
mation objects represented as arbitrary RDF graphs, thus being applicable in

33

a wide range of scenarios.

4.2.1 Application Scenarios / Use Cases

Since the Corporate Semantic Web project focuses on application oriented re-
search it is crucial to have real-world scenarios in order to evaluate our research
contribution. However, the goal of the project is not to develop proprietary so-
lutions only satisfying the requirements of one particular cooperation partner.
Therefore, as far as the Semantic Matchmaking Framework, developed in this
work package, is concerned, we aim at providing a flexible, generic architecture
which can easily be customized to a wide range of use case. The use cases briefly
described in this section represent possible application areas of the framework
and serve as a proof of concept for our research.

Condat AG

Condat AG, located in Berlin, is a system integrator offering innovative IT
solutions in the fields of media, mobility, and environment. In cooperation
with Condat AG we are developing a personalized recommender system for
multimedia content.

Since the emergence of Digital Video Broadcasting (DVB) viewers are over-
whelmed with a huge number of TV channels (often exceeding 500) covering
various fields of interest. The information about TV programs available in
Electronic Program Guides (EPG) only provides limited search and filtering
support (e.g. category search). Therefore, there arises a need for more sophis-
ticated personalized search functionality. This can be realized by representing
user preferences and metadata about content using domain ontologies, popu-
lating those ontologies with information from EPGs as well as by integrating
external data sources for example the Internet Movie Database (IMDB)18. Fi-
nally, the realization of this scenario requires a matchmaking component for
ranking of the multimedia content with respect to user likes and dislikes.

x:hibit

Our second use case deals with the cultural heritage domain. We cooperate
with x:hibit GmbH - developer of the Museumsportal Berlin19 where users can
find information about over 200 museums, memorial places, castles, and others
cultural institutions as well as their services and current exhibitions.

At present, most of the information on the portal can only be accessed via
simple keyword search. Complex queries like “find all museums and exhibi-
tions related to Impressionism, open on Monday, with guidance in English and
admission fee less than 10 Euro” can only be realized by keyword search for “Im-
pressionism” combined with long navigation paths, i.e. following every single
museum/event link and subsequently opening a few more sub-pages providing
information about opening hours, admission fees, services, etc.

A semantic representation of this information would allow to implement a
more friendly user interface providing features like faceted browsing and time-
lines. Moreover, based on the background knowledge from the cultural heritage

18http://www.imdb.com/
19http://www.museumsportal-berlin.de/

34

domain formalized in ontologies, the system could provide further recommen-
dations not explicitly stated by the keyword. For example, while searching
for “Claude Monet” the user might also be shown events related to works by
another (French) Impressionists.

Apart from the improvement of the search and navigation on the portal we
also plan to develop a personalized recommender system based on the Push Prin-
ciple. The key component of such a system would be the Semantic Matchmaking
Framework for calculating the similarity between user preferences, formalized
in ontology-based user profiles, and information objects representing museums
and events.

4.2.2 Semantic Matchmaking Framework

The implementation of a domain-specific application architecture supporting
personalized search based on user profiles requires a suitable component for
ranking of resources with respect to user preferences. The process of finding
best alternatives for a given user profile is called matchmaking. Such a com-
ponent should offer application developers a ready-to-use tool allowing a fast
implementation of the matchmaking logic, thereby reducing the cost of the over-
all application development. The key requirements for such a tool are:

• domain-independent generic architecture

being able to handle various corporate resources and user profiles regard-
less of the underlying data schema (ontology T-Box)

• flexibility

i.e. offer various matchmaking techniques for different kinds of object
properties

• extensibility

i.e. provide interfaces for implementation of new (domain specific) match-
making techniques

• traceability

i.e. deliver a detailed explanation of the matchmaking result together with
the similarity ranking

Given these requirements, we designed a flexible Semantic Matchmaking
Framework for calculating semantic similarity of multi-attributive and multi-
dimensional information objects (as depicted in Figure 4.6) represented as ar-
bitrary RDF graphs with concepts from an underlying corporate or domain
ontology. In the corporate context, such information objects may represent, on
the one hand, enterprise resources like products, services, employees, business
partners, documents (including metadata), etc. On the other hand, they may
represent user profiles. In general, the framework can be applied in a wide
range of use case scenarios ranging from product/service recommender systems
to expert finder systems.

Depending on the type and semantics of object attributes or dimensions
the framework should deliver different kinds of matchmaking techniques, for
example:

35

Information
Object

Attribute 1

Attribute 2

Attribute n

…

Multi-attributive

Information
Object

Dimension 1

Dimension 2

Dimension n

…

Attribute 1

Attribute n

…

Subdimension 1

Subdimension n

…

Multi-dimensional

Figure 4.6: Multi-attributive and Multi-dimensional Information Objects

• string-based

Calculating the similarity of two string values represented by RDF Liter-
als. This includes comparing keywords, searching for keywords (and their
synonyms) in texts, searching for Named Entities, or applying Natural
Language Processing techniques.

• numeric

Used to determine similarity of two numeric values. A good application
example for this matching technique is the comparison of a product price
some person is willing to pay (pq) with the actual product price (pr). For
all pr > pq the similarity shall decrease with increasing pr. However,
beyond a certain value (upper bound) where pr would be unacceptably
high the similarity shall equal 0.

• taxonomic

Applied for matching attribute values represented by resources from a
common taxonomy. In this case, the similarity between two concepts c1

and c2 can be determined based on the distance d(c1, c2) between them,
which reflects their respective position in the concept hierarchy. Conse-
quently, the concept similarity is defined as: sim(c1, c2) = 1 − d(c1, c2).
For the calculation of the distance between concepts different distance
functions may be applied.

As example, consider the method presented in [14] where every concept in
a taxonomy is assigned a milestone value. Since the distance between two
given concepts in a hierarchy represents the path over the closest com-
mon parent (ccp), the distance is calculated as d(c1, c2) = dc(c1, ccp) +
dc(c2, ccp) where d(cn, ccp) = milestone(ccp)−milestone(cn). The mile-
stone values are calculated with an exponential function: milestone(n) =
0.5

kl(n) where k is a factor greater than 1 indicating the rate at which mile-
stone values decrease along the hierarchy. It can be assigned different
values depending on the hierarchy depth.

This formula implies two assumptions: (1) the semantic difference be-
tween upper level concepts is greater than between lower level concepts

36

(in other words: two general concepts are less similar than two specialized
ones) and (2) that the distance between “brothers” is greater than the
distance between “parent” and “child”. As an example, we determine the

High level
programming

languages

Imperative
procedural

Pure object
oriented

COBOLC

TRUBO PASCALC++Visual BasicJava

Hybrid
languages

Ojbect
oriented

m(0) = 0.5

m(1) = 0.25

m(2) = 0.125

m(3) = 0.0625

Figure 4.7: Example of a Skill Taxonomy

distance between two concepts: Java and C. Figure 4.7 shows a snippet
of a simple taxonomy together with milestone values (with k = 2) for the
corresponding hierarchy levels (in brackets). Since the closest common
parent is High level programming languages, the distance between Java
and C is calculated as follows:

d(Java, C) = d(Java, High level programming languages) + d(C, High
level programming languages) = (0.5 − 0.0.0625) + (0.5 − 0.125) =
0.8125. Consequently, the similarity between these two concepts equals:
sim(Java, C) = 1− 0.8125 = 0.1875. This value is much smaller than in
the case of the evidently more related concepts Java and VisualBasic for
which sim(Java, V isualBasic) = 0.875.

• rule-based

Which given a set of pre-defined rules determine the similarity between
complex object dimensions. Consider, for example, an expert finder sce-
nario in which, while searching for experienced Java programmers, only
those candidates would receive a high ranking whose skill matches the
concept Java, and additionally have already worked in projects for which
Java skills were required.

• (geo)location-based

For performing vicinity search given two locations (cities, street names,
etc.) as strings or geo coordinates.

• collaborative filtering

Taking into account not only a given user profile but also preferences of
similar users, with respect to a particular attribute or dimension to be
matched.

As depicted in Figure 4.8, the Matchmaking Framework plays a key role in
realizing Web applications supporting personalized search in corporate data. In
a given use case scenario, through a domain-specific Web interface , users pro-
vide their query and preferences which are represented in RDF using concepts

37

Application
Administrator

Search for Information Objects

Calculation of
attribute/dimension similarities

Aggregation of
attribute/dimension Similarities

Matchmaking Engine

- Property Mapping
- Ontology Module Selection
- Matcher selection
- General weights assignment

Ranking
(incl. Justification tree)

RDF Store
(corporate ontology)

Information
Objects

GUI
(Use Case 1)

GUI
(Use Case n)…

GUI
(Framework

Configuration)

User User

SPARQL

Assigned
matchers

Assigned
aggregator

User Profile
(RDF)

Query Object
(RDF)

Use Case specific
Matchmaking
configuration (RDF)

Semantic Matchmaking Framework

Figure 4.8: Architecture of the Semantic Matchmaking Framework

from an underlying corporate or domain ontology. As next, a user profile is
merged with the use-case-specific matchmaking configuration delivered by the
application administrator. It includes, among others, the selection and mapping
of attributes/dimensions in user profiles with the semantically corresponding at-
tributes/dimensions in corporate information objects to be matched, together
with information about which matching techniques should be applied for com-
putation of each attribute/dimension similarity. The aggregated RDF graph is
then passed (as query object) to the Matchmaking Engine.

The process of matchmaking is carried out by the engine in three steps.
First, the information objects to be matched, together with all relevant back-
ground knowledge (e.g. concept taxonomies), are retrieved from the RDF store.
The access to RDF data is realized with Jena - the Semantic Web Framework
for Java [3]. As next, for each information object, the engine computes the
attribute/dimension similarities by invoking appropriate matchers implement-
ing a certain matching technique specified by the application administrator.
Finally, all attribute/dimension similarities are aggregated into an overall sim-
ilarity score for a particular information object. The output of the engine is
a ranking of information objects for a given user profile with additional infor-
mation containing the explanation of the matchmaking process for each single
object. The result is rendered in an appropriate format and presented to the
user via the application-specific Web interface.

38

4.3 Conclusion and Outlook

In this chapter we presented our work on Corporate Semantic Search research
pillar. Based on cooperation with the companies, we outlined use cases that
give directions for our work. We described our concepts for realizing working
packages: search in non-semantic data and search personalization. Due to the
general description in [5], we introduced more detailed concepts for our research
issues: Extreme Tagging, Preprocessing, Matchmaking Framework. At this
time, our research is still work in progress and we are currently validating our
conceptual ideas by developing first components.

39

Chapter 5

Conclusion and Outlook

In this document we describe the state of our work in the project “Corporate
Semantic Web”. While we presented the results of the requirement analysis in
our first technical report, we conceptually designed an overall architecture of
components that help to deploy semantic technologies in a corporate environ-
ment.

In the field of ontology engineering we investigated in two important aspects,
namely ontology versioning and ontology modularization and integration based
upon the Corporate Ontology Lifecycle Methodology (COLM).

Considering the usage cycle of an ontology, as described in COLM, we de-
scribed operations of the editor which should be implemented to be useful in
our scenarios. Furthermore, we distinguish between different user groups that
influence the further development of ontologies. Last but not least, we presented
the conceptual design of a light-weight ontology editor.

Finally, we presented the conceptual design for the work packages “Search
Personalization” and “Search in Non-semantic Data”. In the first field, we
considered contextual information of a user to realize a personalized search. In
the second one, we described on the one hand the extraction of “semantics” from
corporate text collections, and on the other hand, we focussed on searching for
complex relations in text collections.

40

Appendix A

Work Packages

Work package 1 Search in non-semantic data 02/08-01/11
WP 1 Task 1.3 Conceptual design of semantic search with

knowledge extraction from non-semantic
data

08/08-01/09

WP 1 Task 1.4 Prototypical implementation 02/09-01/10
Work package 2 Search personalization 02/08-01/11
WP 2 Task 2.3 Conceptual design of personalized semantic

search based on user profiles
08/08-01/09

WP 2 Task 2.4 Prototypical implementation 02/09-01/10
Work package 5 Knowledge extraction by mining user

activities
02/08-01/11

WP 5 Task 5.3 Conceptual design of a semantic collabora-
tive tool for the acquisition of implicit knowl-
edge about employees

08/08-01/09

WP 5 Task 5.4 Prototypical implementation 02/09-01/10
Work package 6 Ontology- and knowledge modeling

supported by collaborative tools
02/08-01/11

WP 6 Task 6.3 Conceptual design of a collaborative tool for
modeling corporate knowledge

08/08-01/09

WP 6 Task 6.4 Prototypical implementation 02/09-01/10
Work package 9 Ontology modularization and integra-

tion
02/08-01/11

WP 9 Task 9.3 Conceptual realization of ontology modular-
ization and integration

08/08-01/09

WP 9 Task 9.4 Prototypical implementation 02/09-01/10
Work package 10 Ontology versioning 02/08-01/11
WP 10 Task 10.3 Conceptual realization of ontology versioning

for a real-world use case scenario
08/08-01/09

WP 10 Task 10.4 Prototypical implementation. 02/09-01/10

41

Appendix B

Acknowledgment

This work has been partially supported by the ”InnoProfile-Corporate Seman-
tic Web” project funded by the German Federal Ministry of Education and
Research (BMBF).

42

Bibliography

[1] Sören Auer, Christian Bizer, Jens Lehmann, Georgi Kobilarov, Richard
Cyganiak, and Zachary Ives. DBpedia: A nucleus for a web of open data.
In Proceedings of the 6th International Semantic Web Conference and 2nd
Asian Semantic Web Conference (ISWC/ASWC2007), volume 4825 of Lec-
ture Notes in Computer Science, pages 715–728, Berlin, Heidelberg, Novem-
ber 2007. Springer Verlag.

[2] Matteo Baldoni, Cristina Baroglio, and Nicola Henze. Personalization for
the semantic web. In Norbert Eisinger and Jan Maluszynski, editors, Rea-
soning Web, volume 3564 of Lecture Notes in Computer Science, pages
173–212. Springer, 2005.

[3] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: implementing the semantic web
recommendations. In WWW Alt. ’04: Proceedings of the 13th interna-
tional World Wide Web conference on Alternate track papers & posters,
pages 74–83, New York, NY, USA, 2004. ACM.

[4] Sebastian Dietzold, Sebastian Hellmann, and Martin Peklo. Using
javascript rdfa widgets for model/view separation inside read/write web-
sites. In Proceedings of the 4th Workshop on Scripting for the Semantic
Web, 2008.

[5] Markus Luczak-Rösch Radoslaw Oldakowski Ralph Schäfermeier
Gökhan Coskun, Ralf Heese and Olga Streibel. Towards corporate
semantic web: Requirements and use cases. Technical report, 2008.

[6] April Kontostathis, Leon Galitsky, William M. Pottenger, Soma Roy, and
Daniel J. Phelps. A Survey of Emerging Trend Detection in Textual Data
Mining. Springer-Verlag, 2003.

[7] Konstantinos Kotis and George A. Vouros. Human-centered ontology engi-
neering: The hcome methodology. Knowl. Inf. Syst., 10(1):109–131, 2006.

[8] Victor Lavrenko, Matt Schmill, Dawn Lawrie, Paul Ogilvie, David Jensen,
and James Allan. Mining of concurrent text and time series. In In proceed-
ings of the 6 th ACM SIGKDD Int’l Conference on Knowledge Discovery
and Data Mining Workshop on Text Mining, pages 37–44, 2000.

[9] Markus Luczak-Rösch and Ralf Heese. Managing ontology lifecycles in cor-
porate settings. In Proceedings of the International Conference on Semantic
Systems (I-SEMANTICS), May 2008.

43

[10] Mariano Fernandez and Asuncion Gomez-Perez and Natalia Juristo.
Methontology: from ontological art towards ontological engineering. In
Proceedings of the AAAI97 Spring Symposium Series on Ontological Engi-
neering, pages 33–40, Stanford, USA, March 1997.

[11] S. Pinto, C. Tempich, S. Staab, and Y. Sure. Semantic Web and Peer-to-
Peer, chapter Distributed Engineering of Ontologies (DILIGENT), pages
301–320. Springer Verlag, 2006.

[12] York Sure and Rudi Studer. On-to-knowledge methodology — expanded
version. On-To-Knowledge deliverable 17, Institute AIFB, University of
Karlsruhe, 2002.

[13] Vlad Tanasescu and Olga Streibel. Extreme tagging: Emergent semantics
through the tagging of tags. In Liming Chen, Philippe Cudré-Mauroux,
Peter Haase, Andreas Hotho, and Ernie Ong, editors, ESOE, volume 292
of CEUR Workshop Proceedings, pages 84–94. CEUR-WS.org, 2007.

[14] Jiwei Zhong, Haiping Zhu, Jianming Li, and Yong Yu. Conceptual graph
matching for semantic search. In Proceedings of the 10th International
Conference on Conceptual Structures (ICCS), pages 92–196, London, UK,
2002. Springer-Verlag.

44

	1 Introduction
	1.1 Corporate Ontology Engineering
	1.2 Corporate Semantic Collaboration
	1.3 Corporate Semantic Search

	2 Corporate Ontology Engineering
	2.1 Introduction
	2.1.1 Fundamentals

	2.2 Scenarios / Use Cases
	2.2.1 Ontonym
	2.2.2 FIZ Chemie

	2.3 Ontology Modularization and Integration
	2.3.1 Technical Concept
	2.3.2 Modular Reuse

	2.4 Ontology Versioning
	2.4.1 Requirements of a Flexible Ontology Versioning System in the Corporate Context
	2.4.2 User Groups
	2.4.3 Design of the SVoNt Version Control System for OWL Ontologies
	2.4.4 Incorporation into the Overall Concept
	2.4.5 Working Plan

	2.5 Conclusion
	2.5.1 Modularization and Integration Dimensions of COLM
	2.5.2 Versioning Dimensions of COLM
	2.5.3 Corporate Ontology Engineering in CSW / COLM as Business Enabler

	3 Corporate Semantic Collaboration
	3.1 Collaborative Tool for Modeling Ontologies and Knowledge
	3.1.1 Application Scenarios
	3.1.2 Editor Functionalities
	3.1.3 User Groups
	3.1.4 Design of the Light-weight Ontology Editor

	3.2 Conclusion

	4 Corporate Semantic Search
	4.1 Search in Non-Semantic Data
	4.1.1 Application Scenario
	4.1.2 Trend Mining
	4.1.3 Technical Concept due to Learning and Correlation Approach
	4.1.4 Collecting Knowledge with Extreme Tagging Approach
	4.1.5 Preprocessing Texts by Parsing and Chunking

	4.2 Semantic Search Personalization
	4.2.1 Application Scenarios / Use Cases
	4.2.2 Semantic Matchmaking Framework

	4.3 Conclusion and Outlook

	5 Conclusion and Outlook
	A Work Packages
	B Acknowledgment

