Using Semantic Web Spaces to Realize Ontology
Repositories

Elena Paslaru Bontas, Lyndon J. B. Nixon, Robert Tolksdorf
paslaru, nixon, tolk @inf.fu-berlin.de
Freie Universitit Berlin
Institut fiir Informatik
AG Netzbasierte Informationssysteme
Takustr. 9, D-14195 Berlin Germany

1 Introduction

As the Semantic Web grows, increasing numbers of private and public sector communities
will be developing ontologies which represent their domain(s) of interest. As ontologies
are also intended to act as shared domain conceptualizations [Gr95] it is expected that on-
tology developers may also wish to make their ontologies available to other users, possibly
under some license. This will bring the benefit of ontology developers being able to re-use
existing models or align them to local ones, thus reducing implementation costs, improv-
ing the quality of ontological sources, which are, by re-use, subject of continuous revisions
and refinements, and increasing the interoperability among ontology-based applications.
Besides, access to available ontologies across the Web is a fundamental requirement for
the dissemination of Semantic Web Services, which are envisioned to automatically use
these sources in order to describe their capabilities and for interprocess communication.

In this paper we consider the current state of the art of the field “Ontology Discovery”
and note the outstanding requirements that arise in a real world scenario making use of
ontologies across the Web. 'In order to meet these requirements, we first examine exist-
ing ontology repositories on the Web and the technologies underlying these repositories
and find them insufficient. We propose the use of a tuplespace-based system as a middle-
ware platform for administrating ontologies and their (semantic) descriptions which can
act as a fully-fledged ontology repository. This middleware platform is Semantic Web
Spaces [TNL*04, TNPB 105, TPBNO5, PBNTO05]. We define how the space would store
ontologies and how their descriptions would also be modeled as OWL-based metadata.
Finally, we illustrate how a Semantic Web Space would function as Ontology Repository
and conclude with our observations upon the proposed approach and future work.

By “Ontology Discovery” we mean the activities required for finding ontologies fulfilling user-defined re-
quirements on the Web or in particular Web-accessible repositories.

2 Ontology discovery today

At present the question of how existing ontologies can be found is not trivial. On one hand,
the ontology developer could attempt a Web-wide search using a standard search engine
such as Google,” or choose a Semantic Web-specific search tool such as Swoogle.> On the
other hand, he or she could try to decide which organizations best represent the domain
that is to be modeled and attempt to seek if they have made any ontologies/classifications
public. If we consider the case of a supermarket seeking to model its product range, the
domain would be *food and drink’. The latter approach could lead to contacting the Food
Marketing Institute, while the former would try to find relevant ontologies using search
criteria like *food and drink filetype:owl’ (which in Google finds ontologies on Russia,
Geography and TerroristActs!).

Alternatively, ontologies could be grouped into repositories. As long as the developer
knew how to access the repository he or she could query there for relevant existing ontolo-
gies. The DAML Ontology Library is one of the most representative examples, offering
a simple Web-based interface to the source ontologies, in which the ontology user can
access them according to different properties (e.g. URI, Keyword, Submitting Organiza-
tion) or express queries in terms of ontology classes and properties.* The keyword view
helps us find ontologies for Beer and Wines (there are Food keywords but they are CYC
ontologies which are not aimed at product classification). The query is more detailed,
as it matches on substrings of ’food’ or ’drink’, but it is difficult to see from the result
list which ontology best classifies the topic. Other examples of ontology collections are
the Protegé repository,’, SchemaWeb® (including Web Service access) and (in planning)
SemWebCentral.’

Ontology repositories appear to be a useful means to provide an access point for develop-
ers to locate ontologies. However, the present state of the art does not resolve a number
of issues. For example, the ontology description is uploaded into a separate store and is
disconnected from changes in the original ontology. The developer needs to remember to
update the ontology entry in the repository in case the ontology evolves. The repositories
do not appear to support any aspect of ontology versioning. The means of locating on-
tologies is quite haphazard, and relies on the same type of keyword matching that occurs
in non-semantic search engines such as Google. Queries can not draw on the semantics
of ontologies themselves in order to be able to find e.g. generalizations, specializations or
equivalences of search terms and concepts. Finally, the repositories link to the complete
ontologies from their descriptions, meaning that access is on an ’all or nothing’ basis, not
taking into account the various needs of individual users.

As an additional motivation, let us consider a real world scenario. In large enterprizes,
ontologies can be used to model the business domain and classify information according

Zhttp://www.google.com

3http://swoogle.umbc.edu/

4www.daml.org/ontologies/
Shttp://protege.stanford.edu/plugins/owl/owl-library/index.html
6www.schemaweb.info/

7www.semwebcentral.org/

to this model, thus enabling new solutions for knowledge management problems in these
enterprizes. Different departments need access to the enterprize knowledge model for use
in different applications and scenarios. As a result, it is likely that they do not each need
the exact full set of classes and properties that the model contains and that they eventually
maintain their own view upon the relevant ontological entities. Indeed, by restricting to
the maximum subset of the domain that is used, computational complexity is avoided
and the sub-model can be efficiently evaluated and maintained by its users. On the other
hand, each department may need to model additional concepts outside of the core domain,
and need to find models for these domains additionally. An ontology repository is made
available on the company intra-net, storing both the current versions of the ontologies in
use and metadata describing them. As well as the requirements noted previously - the
synchronization between the ontologies and their metadata, semantic searching based on
semantic-based descriptions and the selection of fragments of ontologies - we add to this:

e The repository needs to demonstrate availability and reliability - ontologies must be
available when they are needed

e Ontologies are stored as ontologies and not just links to a file, and they are dynami-
cally associated with their descriptive metadata within the system

e Search and browse functionality is available to developers and is coordinated with
the updates being made by ontology providers

e Access to ontologies and their metadata is managed, e.g. that a general user can not
make changes to the description of someone else’s ontology

e Evolution of ontologies is tracked and versioning managed, so that a developer can
e.g. resolve incompatibilities arising from ontology changes

In order to provide a new paradigm for ontology repositories which can better meet the
requirements of both ontology providers and ontology developers, we propose in this pa-
per the use of our Semantic Web Spaces in building an ontology repository infrastructure.
The tuplespace-based approach provides a logically shared memory which gives a com-
mon view upon both ontologies and their metadata to both providers and developers, with
a simple yet powerful co-ordination mechanism to support the evolution of the stored on-
tologies and semantic-based matchings to offer rich query functionality to developers. We
believe Semantic Web Spaces also offer better resolution of performance and scalability
issues through tuplespace partitioning and distribution. Finally, we demonstrate how the
system is extendible to add support for access policies, trust issues, versioning, labeling
and other useful requirements for a real world ontology repository.

3 Semantic Web Spaces

Semantic Web Spaces apply the tuplespace paradigm to the Semantic Web to design a
middleware for the Semantic Web that inherits the well-known benefits of tuplespace-
based coordination such as its mechanisms for asynchronous and spatially and temporally

decoupled communication [RCDO1]. For this purpose we extend the traditional Linda-
based tuplespace infrastructure [GC92] with the possibility of representing and processing
semantically-rich information such as RDF(S) and OWL ontologies [TNL*04, TNPBT05,
TPBNOS, PBNTO5].

3.1 Overview

Semantically enriched tuplespaces require new types of tuples with defined semantics.
Semantic Web Spaces focus on tuples containing information represented in standard rep-
resentation languages of the Semantic Web. Moreover, the transfer of the original Linda
to the world of Semantic Web requires further work on the conceptional level of the Linda
co-ordination model. Examples include extensions of the Linda primitives and the de-
finition of new suited types of tuplespaces, such nested and overlapping spaces, which
correspond to the principles of the Semantic Web.

While common Linda systems deal with data represented as tuples, Semantic Web Spaces
are intended to manage information with formally defined semantics represented in triple
form (i.e. (subject, predicate, object)) [HMO4]. In the latter case tuples have a truth as-
signment which makes them different from being merely interpreted as data. Changing the
scope of the tuplespaces from data to information affects the semantics of the Linda opera-
tions involved. Hence the classical semantics of in and out must be altered for tuplespaces
of truth-assigned content.

Any client/agent accessing the Semantic Web Spaces should work within a given context
that defines a partial view upon the interpreted information. According to this, we consider
that there are two views on the tuplespace in Semantic Web Spaces. The information view
interprets the data from the space according to the semantics of the information it encodes.
In this view, Semantic Web Spaces define additional primitives with their own semantics.
The data view of Semantic Web Spaces preserves the operations out, in and rd as they
are defined in Linda. We also add extended matching relations that work on RDF typing
and are able to take into account defined RDF(S) semantics, for example to match a sub-
relation in a tuple for a relation in a template.

Figure 1 shows the structure of Semantic Web Spaces. The traditional Linda primitives op-
erate upon the data view, encompassing simple datatype tuples, XMLSpaces tuples (con-
taining XML documents[CTZ02, TLNO4]) and Semantic Web tuples such as RDF triples.
The latter also have an information view, where additional primitives are defined to oper-
ate upon the data according to the semantics of the information that it contains and hence
embedding application-relevant reasoning features (RDFS, OWL Lite, OWL DL etc.).

As in common Linda-like systems Semantic Web Spaces may use different persistent stor-
age paradigms, including for example replication and distribution of the RDF data on
several physical systems[BKvH02, HGO3].

Semantic Web Spaces is based on the different levels of information published on the
Semantic Web (Figure 2). We foresee several “flavors™:

. claim()
“.endorse()
 excerpt()

.. RDFSpaces Informatiop,x%,/"rﬂ(‘L

i <S5P0>
Y <sPO> <SP0>

<xml... <tag>..</tag> >

out()
in()

<xml... <tag>...</tag> >

RDFSpaces Data

XMLSpaces

<“hello", true>

<10,"a",20.5>

Figure 1: Different views on different spaces in Semantic Web Spaces

e RDFSpaces enable the storage and retrieval of RDF triples in a tuplespace with a
set of extended matching relations and co-ordination primitives that operate on the
additional semantic information provided.

o OWLSpaces permit the use of OWL concepts in the tuples as an extension of the
RDF(S) concepts already used in the proposed RDFSpace. Due to the syntacti-
cal compatibility between OWL and RDF(S) every OWL construct can be repre-
sented as a uniquely identified set of RDF statements. The space can interpret the
knowledge according to the reasoning capabilities implemented in the application
layer/matching functions. Different levels of expressiveness (OWL Lite, OWL DL
etc. [PSHHO4]) can be achieved by embedding corresponding reasoner modules in
the application layer.

e RuleSpaces make use of a Semantic Web rule language[HPSBT04] to explicitly
represent knowledge in the form of rules. These rules have two purposes in Semantic
Web Spaces. They could be set as reactive to particular operations on the tuplespace,
and could effect changes in the tuplespace additional to those carried out by agents.
Alternatively, agents might need expressivity of knowledge beyond that possible
with OWL to be able to draw further inferences that produce new knowledge.

e ReasonSpaces include a logical reasoner for determining and publicizing proofs in
the tuplespace. This could be based on e.g. PML [dSMF04] to provide the proof to
an agent that an operation result is correct.

o TrustSpaces include agent policies as tuples and execute matchmaking agents to
determine if two agents (source and target) can trust one another before permitting
an operation.

Rules Triist

Darey | Proof o

2

Data lose Eﬂ
[¥a]

Ontology vocabulary T‘g

" o0

Unicode

Figure 2: The Semantic Web layered architecture as proposed by Tim Berners Lee [BL0OO]

As mentioned above different reasoning engines can be linked to the information space
depending on its content (e.g. OWL, SWRL) and on the client requirements.

The tuplespace itself is internally represented in terms of a Semantic Web ontology, which
contains both content-related metadata and management data such as the types of sup-
ported templates, access and trust policies. In this way the architecture of the tuplespace
can be adapted to new requirements of the application environment and can support new
types of primitives depending on the content of the space.

In the following we take a look at the ways RDF(S) and OWL data is represented and at
the semantic matching capabilities within Semantic Web Spaces, as these issues play an
important role in understanding the benefits Semantic Web Spaces provide as an infrastruc-
ture for Web ontology repositories. In a complementary technical report, we presented the
Conceptual Model for the Semantic Web Space in more detail [PBNTOS5].

3.2 Representing RDF(S) and OWL in Semantic Web Spaces

The data level of Semantic Web Spaces (see Figure 1) contains RDF statements - the core
model of Semantic Web knowledge representation. These statements are represented in
the tuplespace as tuples with the structure (subject, predicate, object,id). Each tuple also

carries an unique identifier, which is drawn from the RDF ID of the Tuple instance in the
tuplespace ontology. In conforming with the RDF data model, all RDF tuples are typed
(?rdfs:Resource, ?rdf:Property, ?rdfs:Resource, ?rdf:ID)8.

By re-using the object of one statement as the subject of another, the tuplespace can rep-
resent a semantic graph structure of the contained knowledge. In order to support rich
typing, tuples in Semantic Web Spaces are stored as an ordered list of typed field values.
These values of these types are URIs identifying RDF classes constrained in an ontology.
In other words, each field value in the tuplespace is associated to a RDF type. Addi-
tionally special attention is paid to blank nodes, RDF containers and reified statements
[TPBNOS, PBNTOS].

Semantic typing also includes namespace support so that types from different vocabularies
may be differentiated, also when they share the same name. Each tuple in the Semantic
Web Space is addressable through an unique identifier in order to group several semanti-
cally interrelated RDF statements. Since the structure and properties of a tuplespace are
described using the tuplespace ontology, every tuple of the space is defined by means of
this ontology and can be referenced using the corresponding URL.

Ontologies represented in RDF Schema or OWL define classes, properties, restrictions of
the domain and range of properties and hierarchies of classes and properties. Due to the
syntactic compatibility between RDF and RDF(S) and OWL, representing information in
the latter is reduced to representing RDF in the information space. The semantics behind
the corresponding representation paradigms is resolved in the information view of the
space (Figure 1) by means of pre-defined semantic matching templates complimented by
language-specific extern reasoners.

3.3 Semantic Matching

Matching through templates is the fundamental interaction paradigm of tuplespaces. New
matching procedures are required to support the RDF-based paradigm of the Semantic
Web Space which includes matching not only on values as in the classic Linda-based
setting but also on types. As well as resource matching (equivalence of simple datatypes
but also of complex datatypes (arrays, lists) and of URIs), matching procedures must also
take into account ontological information and different levels of precision matching made
available to allow requesters to choose the bounds in which a template may be determined
as valid for a tuple.

For example, a query on which wine is located in which region using the template (?wine: Wine,
wine:locatedIn, ?wine:Region) means match on tuples whose subject (of type Wine) has
the predicate wine:locatedIn and the object of type Region. ° Given a tuple (X, wine:locatedIn,

81n particular the object of a RDF triple — typed as rdfs:Resource — may be a new resource or a value, a literal.
The fourth field should not be understood as an ID for the RDF statement, which would be reification, but an ID
for the tuple in the space

9The forth field of the RDF tuples, the identifier is not relevant to the matching operations and is thus left out
from our matching examples.

Z) where Z is of type USRegion, X is of type WhiteWine and the RDF Schema informa-
tion that USRegion is a subclass of Region, while WhiteWine is a kind of Wine we expect
this tuple to match. However the matching will only succeed if the matcher is aware of
the RDF Schema information, and the matching procedure selected allows matching on
subclasses. The matching functionality for clients in RDFSpaces - the first version of Se-
mantic Web Spaces for representing RDF(S) data - support simple templates for retrieving
matching tuples and subspaces, which could then be queried through a suitably expressive
RDF query language locally. Special matching rules could be applied to handle cases such
as Blank Nodes, reified statements and RDF containers and collections.

OWL primitives and their semantical interpretations are handled by embedding available
DL reasoners in the same way as RDFS semantics (i.e. subsumption) is supported in
RDFSpaces.

4 Ontologies and Metadata

A fully-fledged ontology repository is inconceivable without a rich and flexible metadata
model aggregating additional information about the managed ontologies. The metadata
model is used as a framework for search and classification services in the repository - on
one hand the repository user (the developer) specifies the properties of the ontologies he
or she is looking for in terms of attributes of this model; on the other hand the repository
classifies the ontologies according to these dimensions in order to support adequate views
aiding the user in navigating the repository’s content. According to the requirements in
Section 2 the metadata model should satisfy the following conditions:

e [t should incorporate significant general-purpose and application-related facts about
the described ontologies

e [t should be represented semantically in order to enable content-based search on the
model’s dimensions and automatical classification of new ontological sources in the
repository

e It should be extensible to different groups of users and application settings

As mentioned in Section 2 most of the today ontology repositories do not provide support
for ontology descriptions, but are merely collections of ontological sources which have to
be ‘read through’ by humans in their attempt to discover potentially relevant ontologies.
Others such as DAML Ontology Library and Swoogle classify resources according to
an implicit, flat metadata model with very limited search functionality. This situation
is justified by the fact that currently the metadata issue w.r.t. ontological sources has
been poorly explored in the Semantic Web community, though its importance is well-
recognized. Recent approaches such as [Kn04] try to cope with this problem, offering
a prototypical model of an XML-based metadata scheme for Web ontologies. However
the proposed model lacks formal semantics and can not be optimally used to search or
automatically classify ontological resources within the repository.

In order to describe ontologies within the tuplespace-based repository we use the infor-
mation model introduced in [PB05]. The information model was derived from a com-
prehensive survey of recent Ontology Engineering literature and from empirical findings
from several case studies in the same field. It is intended as a means to offer a formal se-
mantic description of Web ontologies which can be used to improve the results of various
human-driven or automatic stages of the engineering process such as ontology discovery,
evaluation or matching [PB05]. The model is represented in OWL and contains - accord-
ing to Stamper’s semiotic framework [St91] - three categories of features: syntactical,
semantic and pragmatic:'”

e Syntactical features, originally related to the external form of the metadata-described
item, offer quantitative and qualitative information about the ontology and its un-
derlying (graph) topology. Examples of syntactical features include the number of
concepts and properties for each class, the depth of an inheritance tree, the number
of incoming properties, the number of concept instances, the average path length,
the number of connected components. Since ontologies are published in an open
network like the Semantic Web, it is also important to consider the links a partic-
ular ontology has to other networked information sources [Ne0O3]. Finally, there is
qualitative, representation language-dependent information like the representation
language itself, the number of syntax constructs used and syntactical correctness
(validity).

e Semantical features are related to the formal semantics of the representation lan-
guage and the meaning of the ontology content: i). consistency (as measured by a
reasoner), ii). correctness (i.e. whether the asserted information is true), iii). read-
ability (i.e. the non-ambiguous interpretation of the meaning of the concept names
w.r.t. a lexicon, the usage of human-readable concept names), iv). level of formal-
ity (e.g. highly informal, semi-informal, semi-formal, rigorously formal[UG96]),
v). type of model (upper-level, domain ontology, thesaurus etc.[Gu98, WWO02]),
vi). ontology domain (i.e. the modelled domain e.g. medicine), vii). representation
paradigm (i.e. the class of representation languages w.r.t. expressivity such as a
specific Description Logic), and viii). natural language (the natural language used
to denominate ontological primitives e.g. English).

e Pragmatic features refer to information about the usage history of the ontology, for
example when, by whom and to which purpose it was developed, whether multi-
ple versions are available or about the engineering process the ontology originally
resulted from. The latter topic is relevant for ontology engineers intending to (par-
tially) re-use the ontology within an information system: the original engineering
methodology, tools used during the development process and the input information
sources. As input information sources one can mention extern ontologies which are,
partially or in a modified form, included to the current ontology. Another example
is a domain-relevant document corpus used by ontology learning programs.

10The rationales behind and the method applied to generate the information model are beyond the scope of
this paper and are described in [PB05].

The OWL-based information model can be used to describe ontologies and fragments of
ontologies or additional sources related to them, which are contained in the repository
(see Figure 3). In contrast to common static metadata approaches, the information model
introduced here is meant to offer a description of the complete usage and development
history of a particular ontology (or ontology fragments down to concepts and properties).
While the former are updated with every change in the ontology they describe, the latter
model is of contextual nature, which implies that it monitors the whole range of usage
and developmental contexts associated with a specific ontological source. For example the
blue ontology in Figure 3 is annotated with more than one metadata objects, depending on
the application using the ontology or the user of the metadata. ContextObjectl and Con-
textObject13 in the same figure are instances of the same class in the metadata ontology,
describing the usage of the blue ontology in two application settings, denoted by abc and
def. ContextObject2 aggregates the same descriptive information for an ontology user,
which is not interested in too many technical details. With every change in an ontology,
be that its usage or its content, a new context object is created monitoring the new setting
in which the changes are logged for further tasks such as the evaluation of the ontology
w.r.t. specific application requirements. The model foresees descriptions for both sub-
ontologies (which are quite similar to the metadata used for complete ontologies anyway)
and for single ontological primitives. In Figure 3 a new ontology is created by merging
the blue, the yellow and the black ontologies on the left side. In this case, the concepts in
the new ontology keep the former annotations from the original source ontologies, while
the target ontology is described by a new context object. Ontological entities are described
by the pragmatical features listed above and by information related to the representation
paradigm they are part of. Appendix .1 contains an excerpt of an imaginary instantiation
of the described information model. We illustrate the usage of the information model for
search and classification purposes for ontology repositories in the next section.

Some of the mentioned features e.g. syntactic and semantic ones can be generated auto-
matically (either by direct computations or using heuristics) in order to ensure the consis-
tency between ontologies and the metadata describing them and thus to ease the annotation
process. Remaining features, in particular most of the ones in the pragmatic category are
to be provided by humans, due to the lack of pre-defined syntactical constructs in RDF(S)
and OWL which could be use unambiguously to represent such information.

5 A tuplespace-based ontology repository

Given Semantic Web Spaces and an ontology for the description of other ontologies (see
Section 4), it is possible to realize tuplespace-based ontology repositories. Figure 4 shows
the high level architecture of such a repository. In particular we emphasize the following
important aspects w.r.t. this architecture:

e The tuple space provides a common view upon both the ontologies and the ontology
metadata

e The co-ordination model provides synchronized access to those ontologies and their

ContextObjectl ContextObject13

User: OntologyEngineer User: OntologyEngineer2
Task: Semantic Annotation Task: Semantic Annotation
Information: domain=medicine, Information: domain=medicine,
repr_language=OWLDL, repr_language=OWLDL,
formality=semi_formal, formality=semi_formal,
type=domain_ontology, author=xyz, type=domain_ontology,
application=abc /I author=xyz, application=def

ContextObject2

User: OntologyUser

Task: Semantic Annotation
Information: domain=medicine,
view=insurances, nat_language=
german, size= 1200classes,
50relationships, no axioms...

ContextObject4
User: OntologyEngineer3

Task: Semantic Retrieval

Information: domain=humanresources,
view=business, nat_language= english,
size= 1000classes, 63relationships, no

axioms...

ContextObjectl

ContextObject5
User: OntologyEngineer3

Task: Semantic Retrieval

Information: domain=humanresources,
medicine, view=business, nat_language=
english, size= 1300classes, 60relationships,
no axioms, sources=ontl1,ont2,ont3

ContextObject4

Figure 3: Ontology Metadata

metadata

e The tuple space ontology and administrative services based upon it can provide use-
ful additional functionalities such as versioning or rights management

e The clients can interact with the tuple space using any available GUI on any platform
over any network

e The ontology stores can be distributed, based on different platforms and over differ-
ent networks

e The interaction with the repository is based on semantic reasoning over the stored
ontological knowledge

We illustrate the value of the tuplespace-based ontology repository through a feasible us-
age scenario. We consider different tasks that are foreseeable within this scenario and how
these tasks are facilitated by the approach introduced in this report.

Semantic Web Ii=— l =
Clients

IHTI'P SOAP I P2P

Search & Browse

Ontological reasoner, Co-ordination model

matchmaker . .
(Linda operations)

RDF model of data,

Tuple space
metadata ontology Pl sp
(ontologies & metadata)
Repository Interface
I y
Store e.g. Protégé)
Ontology
Stores

Figure 4: High-level architecture of a tuplespace-enabled ontology repository

5.1 Usage scenario

In 2 we already introduced an enterprize use case, in which ontologies are used to model
business domains and views upon these domains in different departments and for different
application purposes. Here, a large enterprize, whose departments are distributed geo-
graphically and who each independently have their own knowledge requirements, wants
to support its knowledge developers in finding and using the ontologies they need. It does
this by making available a repository of ontologies that have been provided by previous and
existing knowledge management projects within the enterprize or have been accepted by
some authority as being external ontologies which are trustworthy and expressive enough
for use within the enterprize. The idea is that when a department requires to develop an
ontology for some task, it can access other ontologies which are relevant to its domain
and particular requirements, in order to re-use it or adapt it to their own needs. This saves
development time and promotes interoperability where different departments in the enter-
prize may share, at least, some common subset of concepts between different ontologies.
In the same time the ontologies administrated by the repository system can be accessed
and refined by the authorized parties in a coordinated manner, in order to guarantee their
consistency in a distributed environment.

We see the scenario as having two types of actor: !!

e Providers have developed ontologies for some task and now make them available
on the platform together with some metadata,

'Though the same user may be either or both we make this distinction as it is a distinction in how the system
is used.

e Developers are seeking ontologies for use in a specific project. They are able to
express their requirements and are willing to consider any ontology which partly
meets that requirement.

5.2 Functionality

For this scenario, we consider the sort of functionalities that an user of the ontology repos-
itory would wish to have, and how these are performed using Semantic Web Spaces as the
ontology repository platform. Firstly, in the case of providers we have:

e Introducing ontologies to the space (publishing ontologies)
e The automatic and semi-automatic generation of the ontology metadata

e Keeping metadata entries actual, permitting updates generated by the system and
allowing other users to add information

Protecting ontologies and metadata from abuse

Collaboratively updating ontologies in the space
Then, in the case of developers, we can consider:

e Search by expressing ontology requirements in terms of the metadata vocabulary
e Subscribing to ontology changes

e Additional tests to assess ontology suitability

Finally, we consider a collaborative scenario, in which a cycle of ontology development
and provision is occurring, requiring the co-ordination aspects of the Linda model.

5.3 Examples

In this section we demonstrate the implementation of the aforementioned ontology repos-
itory functionality in terms of the Semantic Web Spaces middleware. To understand the
exact semantics of the operations given here, we refer the reader to [PBNTOS5].

5.3.1 Introducing ontologies to the space

For the space to act as an ontology repository it is clear that initially ontologies must be
introduced into the space. The simplest means to achieve this is to define an instance of
the class Ontology and provide an URI which points to the actual ontology 2.

12For brevity, the ontology description metadata is given without any namespace prefix, local IDs are given as
strings beginning with a hash and the XMLSchema URI is also abbreviated

claim("#hrontologyl" [Ontology],hasURI,
"http://.../wz2003.rdf#" [XMLSchema#anyURI])

In order to support the correct interpretation of the referred ontology it may also be neces-
sary to provide the Representation Paradigm. However, it may be within the capabilities
of the repository to determine the representation from the file (e.g. in a XML encoding, by
examining the root element and used namespaces, or by means of specific tools detecting
the expressivity level of the representation language in use). Generally, ontologies will be
expressed in RDFS or OWL. The file is retrieved from the given URI (we could expect
that if the URI returns an error, the claim could be rejected) and stored in the tuplespace
(generating RDF tuples in a new context which as a whole represent the RDF graph of the
newly submitted ontology). Note that the use of contexts is important here to ensure that
RDF statements can be referenced to their “owner”and hence to its metadata. A simple
rule of thumb could be to use the ontology URI (e.g. in this case ’hrontology1”) as the
unique-identifier extension to a standard context URI string.

5.3.2 Generation of the ontology metadata

Once the ontology is stored into the tuplespace it is necessary to also have metadata re-
lating to that ontology. To provide the means to maintain the connection between the
ontology and metadata both are found within the same context. Some metadata can be
generated automatically or using particular heuristics by the repository on the basis of the
triples generated when the ontology was introduced to the space. Other metadata must be
produced manually by the ontology provider. A possible approach here would be to build
this metadata provision into the ontology development tool (by extending a development
tool to allow the author to store such metadata within the ontology project files).

Some important metadata that would require manual provision includes the specification
of the OntologyAuthor, OntologyApplication and OntologyTask.

claim(("#hrontologyl" [Ontology],createdBy,
"Malgorzata Mochol" [OnthologyAuthor]),
("#hrontologyl" [Ontology],usedInApplication,
"#InformationRetrievalSystem" [OntologyApplication]),
("#hrontologyl" [Ontology],usedFor,
"#MatchingTask" [OntologyTask]))

Some important metadata that could be generated automatically (eventually by using some
heuristics) includes the OntologyDomain (referencing topics in the Open Directory ontol-
ogy), the NaturalLanguage, SupportedOntologyPrimitives and the UsedSources (see Sec-
tion 4 and [PBOS5] for a detailed description of the concepts). In the example, we declare
an OntologyPrimitive called RecursiveTypeRelation which represents the non-restriction
on the use of the type relation existing in RDFS which is not permitted in Classical De-
scription Logics.

claim(("#hrontologyl" [Ontology],hasNaturallanguage,

"de" [XMLSchema#string]),

("#hrontologyl" [Ontology],describesDomain,

"dmoz :HumanResources" [Topic],

("#hrontologyl" [Ontology], supportsOntologyPrimitive,
"#RecursiveTypeRelation" [OntologicalPrimitivel]),
("#hrontologyl" [Ontology],usesSource,
"#naicshomepage" [WebDocument]))

5.3.3 Evolution of the ontology metadata

It is recognized that just as the submitted ontology will evolve over time the metadata
describing the ontology will need to be updated to reflect the evolution and to provide up-
to-date information about the ways the ontology has been used across the tuplespace user
community. As for the initial generation of the metadata, some aspects of the metadata can
change automatically as the ontology changes, while other aspects need to be manually
changed (by a retraction and new claim in the tuplespace).

In the ontology repository, changes are made on the ontology through claims and retrac-
tions (additions and removals of RDF tuples in the space). Rules defined in the repository
can link changes in the ontology to changes in the metadata of the ontology, in order to
ensure that both are synchronized. This is required at the entity level, since every concept
of an ontology can be theoretically annotated with metadata information. At the ontology
level, a new instance in the metadata ontology is created, recording the changes in terms
of actualized metadata. The tuplespace system is responsible for retrieving, aggregating
and presenting this information to the ontology developer looking for application-relevant
ontologies.

Other aspects of the metadata can change independently of the ontology itself. One im-
portant aspect that may change is the version of the ontology. While ontology versioning
could be supported by a standalone component, such as SemVersion, new Ontology in-
stances can be added to the space which are versions of existing Ontologies. These on-
tologies inherit the characteristics of the ontology they are a version of, while new claims
supercede any inherited properties. For example, hrontology2 is a new version of the
hrontology1 ontology, in which the labels of concepts have been translated into English:

claim(("#hrontology2" [Ontology],isVersionOf,
"#hrontologyl" [Ontologyl]),
("#hrontology2" [Ontology],hasNaturallLanguage,
"en" [XMLSchema#string]))

5.3.4 Trusting information in the space

Strategies are employed to ensure that the information in the space is not discredited by
permitting claims that are false or misleading and which lead to ontology users receiving
wrong conclusions about the relevance or suitability of certain ontologies.

The evolution of usage of the system may be able to lead to trusting ontologies from certain
authors or organizations, or which have been proven in quality or certified in previous
application settings [PBO5].

One means of determining trust is through associating trust policies with the tuple space
and with the agents which are making claims in the space [PBNTO05]. However, here we
consider another means in which trust is determined from within the ontology repository.
A simple example rule could be that an ontology which is used as a source by a significant
number of other ontologies must be an ontology that can be trusted. An agent could check
this for a given ontology using the following operation, and then counting how many
matches exist in the returned context by destructively reading until the context is empty:

excerpt (? [Ontology],usesSource,
"#dublincore" [Ontology])

5.3.5 Search by expressing ontology requirements

The ontology developer would use the ontology repository to discover relevant ontolo-
gies by expressing a specific user/application context and matching this to the ontology
metadata stored in the repository. The context could express information about the target
ontology, about the application (e.g. type of system, industrial sector) and the role the
ontology would play in this setting [PBO5].

Using the Semantic Web Space, requirements can be expressed as a set of operations
through which the developer can drill down through a larger set of candidate ontologies to
a smaller number which best match all of his or her requirements.

excerpt (? [Ontology],describesDomain,
"dmoz:Human_Resources" [OntologyDomain]) -> C,
retract (? [Ontology],describesDomain,
"dmoz:Human_Resources" [OntologyDomain]) @ C,
excerpt (x [Ontology],usedInApplication, =*) —-> Cl

This sample initial query creates within a context C a set of statements about Ontologies
which describe the domain of Human Resources. For each of these Ontologies the state-
ment identifying the Ontology is retracted from context C and the related statement about
the type of application the Ontology is used in is coped into the context C1.

excerpt (? [Ontology],usedInApplication,
"#InformationRetrievalSystem" [OntologyApplication]) @ C1

Following this, the developer may seek from among the Human Resource Ontologies any
that are used in Information Retrieval Systems. To do this, the operation is performed in
the context C1, which contains only statements about those Ontologies which describe the
Human Resources domain. This can be continued, in that the new set of Ontologies which
are the subjects of the statements in context C2 may be retracted, new facts about them
excerpted into a new context, and then this new context is queried.

-> C2

5.3.6 Testing ontology suitability

Having acquired some candidate ontology the ontology user also needs to use contextual
information to estimate the quality of the candidate for re-use in the particular target appli-
cation. While we do not attempt to introduce a novel ontology evaluation methodology, by
which ontology developers are aided to discover the most suitable candidate sources for
particular application settings, existing elaborated evaluation approaches agree that infor-
mation about the original purpose and the projects/settings already using these ontologies
can give hints about their suitability in a new setting [PB05]. We exemplify these issues
for the tuplespace-based ontology repository.

The user could for instance prefer to check if a candidate ontology is already used in the
role that the user intends (As OntologyRoles, the metadata defines IndexRole, FilterRole,
ModelRole and VocabularyRole). To do this, we excerpt the tasks which are associated to
that role and check if the ontology is already used for any of those tasks.

excerpt (? [OntologyTask],has—-associated-role,
"ModelRole" [OntologyRole]) -> C,

retract (? [OntologyTask],has—-associated-role,
"ModelRole" [OntologyRole]) @ C,

endorse ("#hrontologyl" [Ontology],usedFor,

x [OntologyTask])

Another aspect of checking suitability is to determine what sort of changes may still be
required in the selected ontology. As a final example, we consider checking the natural
language used in the ontology, as it may be required that concept labels or documentation
is translated into the language of the intended ontology users.

endorse ("#hrontologyl" [Ontology],hasNaturallanguage,
? [XMLSchema#string])

Finding that the ontology is in German, we can check if there are versions of the ontology
which are in French:

excerpt (? [Ontologyl], isVersionOf,
"#hrontologyl" [Ontology]) -> C,
retract (? [Ontology],isVersionOf,
"#hrontologyl" [Ontology]) @ C,
excerpt (x [Ontology],hasNaturalLanguage,
? [XMLSchema#string]) -> C1,

endorse (? [Ontology],hasNaturalLanguage,
"fr" [XMLSchema#string]) @ C1

5.4 Discussion on collaborative scenario

Using the operations of Semantic Web Spaces, which are blocking i.e. they stall the ex-
ecuting process until the operation completes which in the case of a retrieval operation
means waiting until a match is introduced in the space, introduces a powerful synchro-
nization functionality to the ontology repository. We must also consider what this means
for a collaborative scenario in which ontologies are being introduced and updated while
other developers are searching the space for suitable ontologies.

Firstly, it seems circumspect to expect that agents employ a time out on their retrieval
operations. While a reasonable amount of time can be allowed to ensure that the entire
space has been checked, and possibly to allow for the introduction of a matching claim in
the meantime by an ontology provider, in many cases (e.g. checking how many ontologies
use Dublin Core as a source, when perhaps none are) a non-match is best considered
as a fail than holding the ontology developer process for an indefinite period. However,
there are cases where this holding is preferable, e.g. a department begins a new project
and seeks an ontology for the Human Resources domain. When it performs its blocking
retrieval operation, it may prefer to wait in case an ontology provider introduces a matching
ontology to the space than immediately consider the operation to have failed and begin
building an ontology from scratch. The user will have the final decision in terms of the
period of time he or she is prepared to wait.

Secondly, it is recommended that claims made in the ontology repository block the entire
context in which the claim is made until all consequences of the (accepted) claim have
been handled by the system. The advantage of this is that if the ontology provider makes
a change in the ontology or its metadata, and during the course of the system updating the
stored information about the knowledge there is a retrieval request made concerning that
information, it is non-determinable whether what is returned will be the updated infor-
mation or not. By applying this block, retrieval is guaranteed always to receive the most
up-to-date information from the repository.

6 Conclusions and Future Work

The purpose of this document has been to describe how Semantic Web Spaces could
be used as the basis for an Ontology Repository platform, combining the semantically-
enhanced co-ordination power of the Linda language, the distributed shared memory space
of the Tuple Space model and a knowledge model for describing ontologies to support
their selection and re-use. This serves to provide an illustrative use case for our Semantic
Web Space as well as to provide an implementable platform for the use of the proposed
ontology description scheme.

References

[BKVHO2]

[BLOO]

[CTZ02]

[dSMF04]

[GC92]

[Gr95]

[Gu98]

[HGO3]

[HMO04]

[HPSBT04]

[Kn04]

[Ne03]

[PBO5]

[PBNTO5]

[PSHHO04]

[RCDO1]

Broekstra, J., Kampman, A., and van Harmelen, F.: Sesame: A generic architecture
for storing and querying RDF and RDF schema. In: The Semantic Web - ISWC2002.
2002.

Berners-Lee, T. The Semantic Web. Talk at the XML2000:
http://www.w3.0rg/2000/Talks/1206-xml2k-tbl/. December 2000.

Ciancarini, P., Tolksdorf, R., and Zambonelli, F.: Coordination Middleware for XML-
centric Applications. In: Proceedings of ACM SAC 2002. S. 335-343. 2002.

da Silva, P. P., McGuinness, D. L., and Fikes, R. E.: A proof markup language for
semantic web services (Technical Report KSL-04-01). Technical report. Knowledge
Systems Laboratory, Stanford University. 2004.

Gelernter, D. and Carriero, N.: Coordination languages and their significance. Com-
munications of the ACM. 35(2):97-107. 1992.

Gruber, T. R.: Toward principles for the design of ontologies used for knowledge
sharing. Int. J. Hum.-Comput. Stud. 43(5-6):907-928. 1995.

Guarino, N.: Formal Ontology and Information Systems. In: Proc. of the FOIS’98.
1998.

Harris, S. and Gibbins, N.: 3store:Efficient Bulk RDF Storage. In: Proceedings of the
First International Workshop on Practical and Scalable Semantic Systems. 2003.

Hayes, P. and McBride, B.: Rdf semantics. Available at http://www.w3.0rg/TR/rdf-mt/.
2004.

Horrocks, 1., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean,
M.: Swrl: A semantic web rule language combining owl and ruleml. Available at
http://www.w3.org/Submission/SWRL/. 2004.

KnowledgeWeb European Project. Identification of standards on metadata for ontolo-
gies (Deliverable D1.3.2 KnoweldgeWeb FP6-507482). 2004.

Newman, M.: The structure and function of complex networks. SIAM Review.
45(2):167-256. 2003.

Paslaru Bontas, E.: Using Context to Improve Ontology Reuse. In: Proceedings of
the Doctoral Consortium at the International Conference on Advanced Information
Systems Engineering CAISE0S. 2005.

Paslaru Bontas, E., Nixon, L., and Tolksdorf, R.: A Conceptual Model for Semantic
Web Spaces (Technical Report TR-B-05-11). Technical report. Free University of
Berlin. August 2005.

Patel-Schneider, P. F., Hayes, P., and Horrocks, I.: Owl web ontology language se-
mantics and abstract syntax. Available at http://www.w3.org/TR/owl-absyn/. 2004.

Rossi, D., Cabri, G., and Denti, E.: Tuple-based technologies for coordination. In:
Omicini, A., Zambonelli, F., Klusch, M., and Tolksdorf, R. (Hrsg.), Coordination
of Internet Agents: Models, Technologies, and Applications. chapter 4, S. 83—109.
Springer Verlag. 2001. ISBN 3540416137.

[St91] Stamper, R.: The Semiotic Framework for Information Systems Research. Information
Systems Research: Contemporary Approaches and Emergent Traditions. 1991.

[TLNO4] Tolksdorf, R., Liebsch, F., and Nguyen, D. M.: XMLSpaces.NET: An Extensible
Tuplespace as XML Middleware. In: Proceedings of the 2nd International Workshop
on .NET Technologies, .NET Technologies’2004. 2004.

[TNLT04] Tolksdorf, R., Nixon, L., Liebsch, F., Duc Minh, N., and Paslaru Bontas, E.: Semantic
Web Spaces (Technical Report TR-B-04-11). Technical report. Free University of
Berlin. 2004.

[TNPBT05] Tolksdorf, R., Nixon, L., Paslaru Bontas, E., Nguyen, D. M., and Liebsch, F.: En-
abling real world Semantic Web applications through a coordination middleware. In:
Proceedings of the 2nd European Semantic Web Conference ESWC2005. Springer
Verlag. 2005.

[TPBNOS] Tolksdorf, R., Paslaru Bontas, E., and Nixon, J. B. L.: Towards a tuplespace-based
middleware for the Semantic Web. In: Proceedings of the International Web Intellin-
gence Conference WI-IAT2005 (to be published). 2005.

[UGY6] Uschold, M. and Griininger, M.: Ontologies: Principles, methods and applications.
Knowledge Engineering Review. 11(2). 1996.

[WWO02] Wand, Y. and Weber, R.: Information Systems and Conceptual Modelling: A Research
Agenda. Information Systems Research. 13(4). 2002.

.1 An example for context information for ontologies

<!-- one context object describing the hrontology —-->

<Contextrdf:ID="contextobjectl">
<hasTarget rdf:resource="#hrontologyl/>
<hasTask rdf:resource="tasks:matching"/>

<!-- one system the ontology is used in —--—>

<usedInApplication>

<OntologyApplication rdf:ID="wissensnetzte">
<isContextInformation rdf:resource="#hrlontologycontext"/>
<hasIndustrialSector rdf:resource="wz2003:branch_01"/>

<hasURL rdf:datatype=".../XMLSchema#anyURI">
http://www.inf.fu-berlin.de/inst/ag—-nbi/research/wissensnetze/
</hasURL>

</OntologyApplication>
</usedInApplication>
</Context>

<!-- additional descriptive information -->

<Ontology rdf:ID="hrontologyl">

<hasURI rdf:datatype=".../XMLSchema#anyURI">
http://www.inf.fu-berlin.de/inst/ag-nbi/research/wissensnetze
/interval/wz2003.rdf#
</hasURI>
<!-- pragmatic metadata: engineering method, sources... ——>
<isCreatedUsingMethodology>
<EngineeringMethodology rdf:ID="wissensnetzemethodology">
<hasDocumentation rdf:datatype=".../XMLSchema#anyURI">
http://www.inf.fu-berlin.de/inst/ag-nbi/research/wissensnetze/
</hasDocumentation>
</EngineeringMethodology>
</isCreatedUsingMethodology>

<usesSource>
<WebDocument rdf:ID="naicshomepage">
<hasURI rdf:datatype=".../XMLSchema#anyURI">
http://www.census.gov/epcd/www/naics.html
</hasURI>
<isContextInformation rdf:resource="#hrlontologycontext"/>
</WebDocument>
</usesSource>

<usedFor rdf:resource="tasks:matching"/>
<hasConceptualizationMethod>
<ConceptualizationType rdf:ID="ManualOntologyConceptualization">
<isContextInformation rdf:resource="#hrlontologycontext"/>

<!-- semantic metadata: natural language, repr. language ——>
<hasNaturallanguage rdf:datatype=".../XMLSchema#string">de
</hasNaturallLanguage>
<hasDomainType>

<DomainType rdf:ID="Domain">

</DomainType>
</hasDomainType>
<hasFormalityLevel>

<FormalityLevel rdf:ID="SemiFormal">
<supportsOntologyPrimitive rdf:resource="#concept"/>
<supportsOntologyPrimitive>

<subClassOf rdf:ID="subclassof">

<isSupportedBy rdf:resource="#hrontologyl"/>

</subClassOf>
</supportsOntologyPrimitive>
<describesDomain rdf:resource="dmoz:Human_Resources"/>

</Ontology>

