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Abstract

In this survey we consider geometric techniques which have been used to measure the
similarity or distance between shapes� as well as to approximate shapes� or interpolate
between shapes� Shape is a modality which plays a key role in many disciplines� ranging
from computer vision to molecular biology� We focus on algorithmic techniques based on
computational geometry that have been developed for shape matching� simpli�cation�
and morphing�

� Introduction

The matching and analysis of geometric patterns and shapes is of importance in various
application areas� in particular in computer vision and pattern recognition� but also in other
disciplines concerned with the form of objects such as cartography� molecular biology� and
computer animation�

The general situation is that we are given two objects A� B and want to know how much
they resemble each other� Usually one of the objects may undergo certain transformations
like translations� rotations or scalings in order to be matched with the other as well as
possible� Variants of this problem include partial matching� i�e� when A resembles only
some part of B� and a data structures version where� for a given object A� the most similar
one in a �xed preprocessed set of objects has to be found� e�g� in character or tra�c sign
recognition� Another related problem is that of simpli�cation of objects� Namely� given
an object A �nd the most simple object A� resembling A within a given tolerance� For
example� A could be a smooth curve and A� a polygonal line with as few edges as possible�

We also will discuss shape interpolation ��morphing�	� a problem that has become very
interesting recently� especially in computer animation� The objective is to �nd for two






given shapes A and B a continuous transformation that transforms A into B via natural
intermediate shapes�

First it is necessary to formally de�ne the notions of objects� resemblance� matching�
and transformations�

Objects are usually �nite sets of points ��point patterns�	 or �shapes� given in two
dimensions by polygons� Generalizations to� for example� polyhedral surfaces in three and
higher dimensions are possible� but most of the work has concentrated on two or three
dimensions�

In order to measure �resemblance� various distance functions have been used� in par�
ticular much work has been based on the so�called Hausdor� distance�

For two compact subsets A� B of the d�dimensional space IRd� we de�ne the one�sided
Hausdor� distance from A to B as


�H�A�B	 � max
a�A

min
b�B

jja� bjj �

where jj � jj is the Euclidean distance in IRd �if not explicitly stated otherwise	� The �bidi�
rectional	 Hausdor� distance between A and B then is de�ned as

�H�A�B	 � max
�

�H�A�B	� 
�H �B�A	

�
�

The Hausdor� distance simply assigns to each point of one set the distance to its closest
point on the other and takes the maximum over all these values� It performs reasonably
well in practice but may fail if there is noise in the images� An variant intended to be more
robust will be presented in Section ������

What kind of geometric transformations are allowed to match objects A and B depends
on the application� The most simple kind are certainly translations� The matching problem
usually becomes much more di�cult if we allow rotations and translations �these transfor�
mations are called rigid motions� or Euclidean transformations	� In most cases re�ections
can be included as well without any further di�culty�

Scaling means the linear transformation that �stretches� an object by a certain factor �
about the origin and is represented by the matrix

�� �
� �

�
in two dimensions� We call combi�

nations of translations and scalings homotheties and combinations of Euclidean transforma�
tions and scalings similarities� The most general kind of transformations we will consider
are arbitrary a�ne transformations which can occur e�g� in orthographic ��dimensional
projections of ��dimensional objects�

Considerable research on these topics has been done in computational geometry in recent
years� This chapter will give a survey on these results�

� Point Pattern Matching

In this section we present a variety of geometric techniques for matching points sets exactly
or approximately� under some allowed transformation group� We discuss methods of both
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theoretical and practical interest�

��� Exact Point Pattern Matching

A seemingly very natural question is whether two �nite sets A�B � IRd of n points each can
be matched exactly by say� rigid motions� i�e� whether are A and B congruent� Of course
unless we assume that the input consists of points on a grid� this problem is numerically
very unstable� Nevertheless� studying it assuming a �real RAM� model of computation gives
some insight in the nature of matching problems and may help in designing algorithms for
more realistic cases�

In two dimensions exact point�pattern matching can easily be reduced to string match�
ing� as is shown by the following algorithm which was invented independently by several
authors� for example Atkinson �Atk����


� Determine the centroids cA� cB �i�e� arithmetic means	 of the sets A and B� respec�
tively�

�� Determine the polar coordinates of all points in A using cA as the origin� Then sort A
lexicographically with respect to these polar coordinates �angle �rst� length second	
obtaining a sequence ���� r�	� � � � � ��n� rn	� Let u be the sequence ���� r�	� � � � � ��n� rn	
where �i � �i � ��i��� mod n� Compute in the same way the corresponding sequence
v of the set B�

�� Determine whether v is a cyclic shift of u� i�e� a substring of uu by some fast string�
matching algorithm�

It is easy to see that A and B are congruent exactly if the algorithm gives a positive
answer� The running time is O�n log n	 because of the sorting in step �� all other operations
take linear time�

For exact point pattern matching in three dimensions the following algorithm is given
by Alt et al� �AMWW����


� Determine the centroid cA and project all points of A onto the unit sphere around cA
obtaining a set A� of points on the sphere� Label each point a � A� with the sorted
list of distances from cA of all points that have been mapped onto a�

�� Compute the ��d convex hull CA of A
��

�� In addition to the labeling of step � attach to each point a � A� an adjacency list of
vertices connected to a by an edge of CA sorted in clockwise order �seen from outside	�
This list should contain all distances of a to adjacent points and all angles between
neighboring edges�

�� Execute steps 
�� with set B� as well�
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�� The hulls CA and CB can be considered as labelled planar graphs� The point sets A
and B are congruent exactly if these graphs are isomorphic� This isomorphism can
be decided by a variant of the partition algorithm of Hopcroft �see �AHU���� section
��
�	�

A detailed analysis shows that the running time of this algorithm is O�n log n	� Using
similar techniques it can be shown that the matching problem in arbitrary dimension d can
be reduced to n problems in dimension d� 
�
Consequently we have that the exact point pattern matching problem can be solved

for patterns of n points in time O�n log n	 in � dimensions and in time O�nd�� log n	 for
arbitrary dimension d � ��
An alternative approach yielding the same bound for dimension � was developed by

Atkinson �Atk����

Concerning transformations other than rigid motions� in some cases there are obvious
optimal algorithms for exact point pattern matching in arbitrary dimensions� For transla�
tions� for example� it su�ces to match those two points with the lexicographically smallest
coordinate vectors and then to check� whether the other points match as well� If scaling of
the pattern B to be matched is allowed� one can �rst determine the diameters dA� dB of
both sets� Their ratio dA�dB gives the correct scaling factor for B� Therefore� there is an
easy reduction of homotheties to translations and of similarities to rigid motions� Re�ec�

tions can easily be incorporated by trying to match the set B as well as the set B� which is
B re�ected through some arbitrary hyperplane� for example� x� � ��

Exact point pattern matching under arbitrary a�ne transformations is considered by
Sprinzak and Werman �SW���� First the sets A and B are brought into �canonical form�
by transforming their second moment matrices into unit matrices� Then it is shown that
A� B can be matched under a�ne transformations exactly if their canonical forms can be
matched under rotations� Since the canonical forms can be computed in linear time the
asymptotic time bounds for matching under linear transformations are the same as the ones
for rigid motions described above�

��� Approximate Point Pattern Matching

More realistic than exact point pattern matching is approximate point pattern matching�
Here� given two �nite sets of points A� B� the problem is to �nd a transformation matching
each point b � B into the 	�neighborhood �	 � �	 of some point a � A� On the other hand
each point in A should lie in the 	�neighborhood of some transformed point of B� Clearly�
there are many variants to this problem� The �rst distinction we make is whether A and
B must have the same number of points and the matching must be a one�one�mapping� or
whether several points in one set may be matched to the same point in the other� Obviously
in the latter case we consider matching with respect to the Hausdor��distance�
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����� One�to�one matching

Alt et al� �AMWW��� give polynomial time algorithms for many variants of one�one�
matching of �nite point sets� These variants are obtained by the following characteristics�

� di�erent types of transformations that are allowed
� solving either the decision problem� given 	� is there a matching�
or the optimization problem� �nd the minimal 	 allowing a matching�

� a �xed one�one�mapping between A and B is either already given or one should be
found�

� di�erent metrics� a concept generalized by Arkin et al� �AKM���� to arbitrary �noise
regions� around the points�

We will demonstrate the techniques used with the example of solving the decision prob�
lem� for a given 	 as a Euclidean tolerance� of matching under arbitrary rigid motions
without a predetermined one�one�mapping between the point sets A � fa�� � � � � ang and
B � fb�� � � � � bng�
First� it can be shown by an easy geometric argument that� if there exists a valid

matching of B to A then there is one where two points bi� bj of B are matched exactly
to the boundaries of the 	�neighborhoods U��ak	� U��al	 of two points in A� Consider this
con�guration for all ��tuples of points ak� al� bi� bj� Mapping bi� bj onto the boundaries of
U��ak	 and U��al	 respectively in general leaves one degree of freedom which is parametrized
by the angle � � ��� �
	 between the vector bi � ak and a horizontal line� Considering any
other point bm � B� m �� i� j for all possible values of �� that point will trace an algebraic
curve Cm �of degree �� in fact� see Figure 
	�

Being an algebraic curve of constant degree� any Cm intersects the boundary of any
U��ar	 at most a constant number of times� in fact� at most 
� times� So there are at
most � intervals of the parameter � where the image of bm lies inside U��ar	� All interval
boundaries of this kind are collected� They partition the parameter space ��� �
	 into O�n�	
intervals� so that for all � in one interval the same points of B are mapped into the same
neighborhoods of points of A� All these relationships are represented as edges in a bipartite
graph whose two sides of nodes are A and B� Clearly� the decision problem has a positive
solution exactly if there is some � for which the corresponding graph has a perfect matching�
This is checked by �nding the graph for the �rst subinterval of ��� �
	 and constructing a
maximum matching for it� Then� while traversing the subintervals from left to right� the
maximum matching is updated until a perfect matching is found or it turns out that none
exists�

Observe� that this procedure is carried out O�n�	 times for all ��tuples ak� al� bi� bj �
A detailed analysis shows that the total running time of the algorithm is O�n�	� In addi�
tion� determining the intersection points of the curves of degree � with circles could cause
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Figure 
� Curve of point bm when bi� bj are moved on the boundaries of U��ak	� U��ae	�

nontrivial numerical problems� However� simpler and faster algorithms were found for eas�
ier variants of the one�one�matching problem� For the case of translation only� Efrat and
Itai �EI��� improve the bounds of �AMWW��� using geometric arguments to speed up the
bipartite graph matching involved �for �xed sets� they can compute what they call the op�
timum bottleneck matching in time O�n��	 logn		� Arkin et al� �AKM���� give numerous
e�cient algorithms mostly assuming that the 	�neighborhoods or other noise�regions of the
points are disjoint� For example� the problem considered above is shown to be solvable
in O�n� log n	 time under this assumption� Also a generalization from rigid motions to
similarity transformations is given in that article�

He�ernan and Schirra �HS��a� take an alternative approach to reduce the complexity
of the decision problem in point pattern matching� which they call approximate decision

algorithms� They only require the algorithm to give a correct answer if the given tolerance
	 is not too close to the optimal solution� more precisely� it has to lie outside the interval
�	opt � �� 	opt � �� for �xed �� � � �� This way� using network �ow algorithms� they can
reduce the running time for solving the problem described above to O�n��		� Behrends
�Beh��� also considers approximate decision algorithms� Assuming in addition that the 	�
neighborhoods are disjoint� he obtains a running time of O�n� log n	� The best results in
the case that the mapping between A and B is predetermined� are due to Imai� Sumino�
and Imai �ISI��� who analyze the lower envelope of multivariate functions in order to �nd
the optimal solution�

����� Point pattern matching with respect to Hausdor��distance

Now A and B may have di�erent cardinalities� let A � fa�� � � � � ang and B � fb�� � � � � bmg�
The Hausdor��distance between A and B can be computed straightforwardly in time
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O�nm	� It is more e�cient to construct the Voronoi�diagrams V D�A	 and V D�B	 and
to locate each point of A in V D�B	 and vice versa in order to determine its nearest neigh�
bor in the other set� This way the running time can be reduced to O��n�m	 log�n�m		
�see �ABB�
�	�

Algorithms for optimally matching A�B under translations for arbitrary Lp�metrics in
� and � dimensions using Voronoi diagrams are given by Huttenlocher� Kedem� and Sharir
�HKS���� The idea of these algorithms is as follows�

The Voronoi�surface of the set A is the graph of the function

d�x	 � min
a�A

kx� ak

which assigns to each point x the distance to the nearest point in A� Clearly� d�x	 is the
lower envelope of all da�x	 � kx�ak� where a � A� For example� for L� and dimension � the
graph of da�x	 is an in�nite cone in ��dimensional space whose apex lies in a �see Figure �	�

Figure �� Voronoi surface of A�

The graph of d�x	 is piecewise composed of these cones and the projection of the bound�
aries of these pieces is the Voronoi diagram of A�

If B is translated by some vector t the distance of any b � B to its nearest neighbor in
A is

�b�t	 � min
a�A

ka� �b� t	k � min
a�A

k�a� b	� tk � da�b�t	

so the graph of �b is the Voronoi surface of A translated by the vector �b� The directed
Hausdor� distance 
�H�B � t� A	 is the function

f�t	 � max
b�B

�b�t	
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and� consequently� the upper envelope of m Voronoi surfaces� namely those of A� b�� A�
b�� � � � � A� bm� On the other hand we consider

g�t	 � 
�H�A�B � t	�

Since g�t	 � 
�H�A���t	� B	 we can de�ne g�t	 by upper envelopes like f�t	� interchanging
the roles of A and B and replacing t by �t� The Hausdor��distance between A and B � t
is then

h�t	 �max�f�t	� g�t		�

Again� for L� the graph of h is composed of piecewise �conic� segments� We are searching for
mint h�t	� This minimum is found by determining all local minima of h�t	� By the bounds
on the number of these minima derived in �HKS���� algorithms are obtained for matching
�� and ��dimensional �nite point sets under translations minimizing the Hausdor� distance�
In � dimensions their running times are O�nm�n�m	 log nm	 for the L�� and L��metric
and O�nm�n �m	��nm	 log�n �m		 for other Lr�metrics� r � �� �� � � �� In � dimensions
time O��nm	��n�m	���	 is obtained for the L��metric�

At �rst glance it is not clear how the technique described earlier can be generalized
from translations to arbitrary rigid motions� However� this is done by Huttenlocher et al�
in �HKK��� by considering so called dynamic Voronoi diagrams� Here� it is assumed that
we have a point set consisting of k rigid subsets of n points each� Each of the subsets may
move according to some continuous function of time� The dynamic Voronoi diagram is the
subdivision of the ��dimensional space�time such that every cross section obtained by �xing
some time t equals the Voronoi diagram at time t� The authors investigate how many topo�
logical changes the Voronoi diagram can undergo as time passes which gives upper bounds
on the complexity of the dynamic Voronoi diagram�
These results are applied to matching under rigid motion by representing the optimal solu�
tion as

D�A�B	 � min
x��

�H�r��A	� B � x	

where x � IR� is the translation vector� and r� is the rotation around the origin by angle
 � ��� �
	� For �xed  we have the situation described before in the case of translations�
The �directed	 optimal Hausdor��distance can be determined by �nding the minimum of
the upper envelope of m Voronoi surfaces� namely the ones of r��A	� b�� � � � � r��A	� bm�
The minimum algorithm keeps track of this for changing values of  by considering the
dynamic Voronoi diagram of these sets where  is identi�ed with the time parameter� As
a consequence� an optimal match of two point sets under arbitrary rigid motions can be
found in time O��m� n	� log�mn		�

Matching of point patterns under translations in higher dimensions is investigated by
Chew et al� �CDEK���� For the decision problem in case of the L��metric� the space of
feasible translations is an intersection of unions of unit boxes� This space is maintained
using a modi�cation of the data structure of orthogonal partition trees by Overmars and
Yap �OY�
�� This gives algorithms for the decision problem which are used to solve the
optimization problem by parametric search �Meg���� �Col���� In particular� for the L��
metric an algorithm of running time O�n��d����
 log� n	 is obtained where n is the number

�



of points in both patterns� For d�dimensional point patterns under the L��metric� the
matching takes time O�nd
d��e�� log
 n	�

The methods described before are probably quite di�cult to implement and numeri�
cally unstable due to the necessary computation of intersection points of algebraic surfaces�
A much simpler but practically more promising method is given by Goodrich et al� in
�GMO���� For a �pattern� P and a �background� B of m and n points� respectively� it
approximates the optimal directed Hausdor��distance minT 
�H�T �P 	� B	 up to some con�
stant factor� T ranges over all possible transformations which are translations in arbitrary
dimensions or rigid motions in � or � dimensions� The approximation factors are between
��	 for translations in IRd and ��	 for rigid motions in IR
� The running times are consid�
erably faster than the ones of algorithms computing the optimum exactly� The algorithm
for rigid motions in IR� essentially works as follows�


� Fix a pair �p� q	 of diametrically opposing points in P �

�� Match the pair by some rigid motion as good as possible to each pair of points of B�

�� For each such rigid motion determine the distance of the image of each point in P
to its nearest neighbor� Choose that match where the maximum of these distances is
minimized�

In higher dimensions the nearest neighbor search is done approximately by the data
structure of Arya et al� �AMN�����

����� Practical Variations

Percentile�Based Hausdor� Distance

As was mentioned above� the Hausdor��distance is probably the most natural function
for measuring the distance between sets of points� Furthermore� it can easily be applied
to partial matching problems� In fact� suppose that sets A and B are given where A is a
large �image� and B is a �model� of which we want to know whether it matches some part
of A� This is the case exactly if there is some allowable transformation T such that the
one�way Hausdor��distance 
�H�T �B	� A	 is small� In fact� many of the matching algorithms
with respect to Hausdor��distance presented previously can be applied to partial matching
as well� An application of this property to the matching of binary images is given by
Huttenlocher et al� in �HKR��� where a discrete variant of the Voronoi�diagram approach
for matching under translation with respect to Hausdor��distance is used�

In the same article a modi�cation of the Hausdor��distance is suggested for the case
that it is not necessary to match B completely to some part of A but only at least k of the
m points in B� In fact� the distance measure being used is

hk�B�A	 � min
b�B

kmin
a�A

jja� bjj
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where mink denotes the k�th smallest rather than the largest value� This percentile de�nition
allows us to overcome the sensitivity of the Hausdor��distance to outliers� which is very
important in practice�

The paper �HKR��� is also interesting in that the authors show how to adapt some of
the conceptual geometric ideas presented earlier to their rasterized context so as to obtain�
after several other optimizations they invented� e�cient practical algorithms for the partial
Hausdor� matching described above�

Alignment and Geometric Hashing

A number of other techniques for point pattern matching have been developed and used
in computer vision and computational molecular biology� In computer vision the point
pattern matching problem arises in the context of model�based recognition �EG��� Bai���
! in this case we are interested in knowing whether a known object �we will call it the
model M	 appears in an image of a scene �which we will denote by S	� Both the model
and the scene are subjected to a feature extraction process whose details need not concern
us here� The outcome of this process is to represent both M and S as a collection of
geometric objects� most commonly points� The same principle applies to the molecular
biology applications ! typically molecular docking �NFWN���� In that context we are
trying to decide if the pattern� usually a small molecule �the ligand	� can sterically �t into a
cavity� usually the active site of some protein� Again through a feature extraction process�
both the ligand and the active site can be modeled by point sets� The dimensionalities
of the point sets M and S� as well as the transformation group we are allowed to use in
matching M to S� are application dependent� In computer vision S is always ��D while M
can be either ��D or ��D� both are ��D in the biology context�

To illustrate the methods of alignment and of geometric hashing we use below an example
in which both M and S are planar point sets of cardinalities m and s respectively� In the
example we will assume that the allowed transformation group when matching M to P is
the group of similarities� i�e� Euclidean transformations and scalings� We are interested in
one�way matches from M to P � in the sense of the one�way percentile Hausdor� distance�
we will be looking for transformations that place many �most	 points of M near points of
P � The extension of these ideas to the case of other dimensions and other transformation
groups is in general straightforward� the one exception is when the allowed transformations
include a �dimension�reducing	 projection ! about which more below�

In the alignment method �HU���� two points a and b of M are �rst chosen to de�ne a
reference coordinate frame �a� b� for the model� We can think of the �rst point as the origin
��� �	 and the second point as the unit along the x�axis �
� �	� This choice also �xes the y�
axis and thus an orthogonal coordinate system in which all points of M can be represented
by two real values� Note that this representation of the points in M is invariant under
translations� rotations� and scalings� We now align the points of a and b of M with two
chosen points p and q of S respectively� Up to a re�ection� this �xes a proposed similarity
mapping M to S �we will ignore the re�ection case in what follows	� In order to test the
goodness of this proposed transformation� we express all points of S using coordinates in
the frame �p� q�� Now that we have a common coordinate system for two sets� we just check
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for every point of M to see if there is a point of S nearby �within some preselected error
tolerance	� The number of points on M that can thus match in this veri�cation step is the
score for the particular transformation we are considering�

The alignment method consists of trying in this way to align pairs of points of M with
pairs of points of S and in the process discover those transformations that have the highest
matching score� If we could assume that all points of M are present in S� in principle we
could get by by matching and verifying a speci�c pair from M with all its counterparts in
S� Because of occlusions� however� this assumption cannot be made in practice and usually
we need to try many pairs of points fromM before the correct match is found� Alignment is
thus an exhaustive method and its worst�case combinatorial complexity is bad� O�m
s�	 !
even assuming only a linear O�m	 veri�cation cost �O�m log s	 would be a more theoretically
correct bound	� Things get worse as the size of the frames we need to consider increases
with higher dimensions or larger transformation groups� Thus in the vision context a lot
of attention must be given to the feature extraction process� so that only the most critical
and signi�cant features of each of M and S are used during the alignment�

Since we may want to match the same modelM into many scenes or� conversely� we may
be looking for the presence of any one of a set of modelsM��M�� � � � �Mk in a given scene� it
makes sense to try to speed up the matching computation through the use of preprocessing�
This leads to to the idea of geometric hashing �LW��� LSW��a� LSW��b�� Let us describe
geometric hashing in the same context as the in the above alignment problem� but with
several models M��M�� � � � �Mk� As above� for each model Mi and each frame �a� b� of two
points for that model� we calculate coordinates for all other points ofMi in that frame� The
novel aspect of geometric hashing is that these coordinates are then used as a key to hash
into a global hash table� We record at that hash table entry the model index and frame
pair the entry came from� The computation of this hash table completes the preprocessing
phase of the algorithm� Note that there is a hash table entry for each triplet �model� frame
for that model� other point in that model	� multiple triplets may hash to the same table
entry� in which case they are linked together in a standard fashion�

At recognition time� we choose a frame pair �p� q� in the scene S and compute the
coordinates of all points of S in that frame� Using then these coordinates as a key� we then
hash into the global hash table and "vote# for each �model� frame	 pair stored at that hash
table entry� If we were lucky to choose two scene points which correspond to two points �a� b�
in an instance of some modelMi� we can then expect that the pair �Mi� �a� b�	 will get many
votes during that process� thus signaling the presence ofMi in the scene and also indicating
the matching transformation involved� In general� of course� we cannot expect to be so lucky
in choosing p and q the �rst time around� so we will have to repeat the voting experiment
several times� In the worst case� preprocessing for a model M of size m costs O�m
	 and
the recognition by voting also costs O�s
	 �we assume throughout that the cost of accessing
the hash table is constant	� Note that by appropriately rounding the coordinates used as
a key to the hash table we can allow for a certain error tolerance in matching points of M
and S� Also� once some promising �model� frame	 pairs have been identi�ed� the votes for
the winner actually give us a proposed correspondence between model and scene points�
The matching transformation can then be calculated more accurately using a least�squares







�t �LSW��b��

As was mentioned above for the alignment problem� these ideas also extend to matching
point sets in ��D� as well to other transformation groups� such as the group of a�ne maps�
One noteworthy aspect of this in the vision case is the dimension�reducing projection maps
that must be allowed in matching �as whenM is ��D but S is ��D	� This makes the problem
harder� as the projection map is not invertible and a point in S has an inverse image which
is a line in ��D� This can be handled in geometric hashing by having each point of S� after
a frame has been chosen� generate samples along a line of possible matching points from M
in ��D and vote for each of them separately �LW����

Geometric hashing has been successfully used in both identifying CAD$CAM models
in scenes� as well in the molecular docking problem �LW��� LSW��a� LSW��b� NFWN���
NLWN���� Performance in practice tends to be much better than the above combinatorial
worst�case bounds would indicate� Recent theoretical studies also suggest that random�
ization can improve the above bounds for alignment and geometric hashing� especially in
cases where the model is not present in the the scene� or when the point sets involved have
limited "self�similarity# �IR��

� Matching of Curves and Areas

Apart from point patterns� research has been done in recent years also on the resemblance
of more complex patterns and shapes� mostly in two dimensions� These objects usually
are assumed to be given by polygonal chains or one or more simple polygons representing
their boundary� As a measure for their resemblance usually the Hausdor��distance is used�
though some articles are concerned with other variants� as described in Section ������

��� Optimal Matching of Line Segment Patterns

Throughout this section we will assume� if not explicitly stated otherwise� that the input
to the algorithms consists of two sets A� B of n� m line segments in two dimensions�
respectively� The aim is to �nd an optimal match between A and B� i�e� a transformation
T minimizing the Hausdor��distance �H�A� T �B		� Here� A and B are identi�ed with the
sets of points lying on their line segments and the metric underlying the Hausdor��distance
is L��

Notice that while there is a straightforward O�nm	 algorithm for computing the Haus�
dor� distance between �xed �nite point sets A and B� this is no longer the case for sets of
line segments� In the case of convex polygons Atallah �Ata��� gave a linear time algorithm�
For arbitrary sets of line segments an asymptotically optimal O�n log n	 algorithm was given
by Alt et al� in �ABB�
�� This algorithm is based on the fact� that the Hausdor� distance
can only occur at endpoints of line segments or at intersection points of line segments of
A with the Voronoi diagram of B or vice versa� Furthermore� for any Voronoi edge this
can happen only at the two extreme intersection points with line segments of the other set�
These points are then determined by a line sweep algorithm�
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In �ABB�
� it was also observed that the matching problem under translations or rigid
motions can be solved in polynomial time� These results are based on the fact that if the
transformation has k degrees of freedom �e�g� k � � for rigid motions	 then in the optimal
position the Hausdor��distance essentially must occur at at least k � 
 di�erent places�

More sophisticated techniques leading to asymptotically faster� but probably practically
quite complicated algorithms are used by Agarwal et al� �AST��� for translations and Chew
et al� �CGH���� for arbitrary rigid motions� Both articles start with essentially the same
idea� They �rst solve the decision problem whether for given A� B� and 	 
 � there exists
a transformation T such that �H�A� T �B		 	 	� Let us consider the one�way Hausdor��
distance in detail� with just a few technical details it can be extended to the two way
Hausdor� distance�
Let C� be the disk of radius 	 around the origin and A� the Minkowski sum A
C�� Clearly�
A� is the union of so called �racetracks� ��AST���	� i�e� rectangles of width �	 with semidisks
of radius 	 attached at their ends �see Figure �	�

Figure �� The set A��

Now� for a transformation T the one�way Hausdor��distance 
�H�T �B	� A	 	 	 exactly if
T �B	 � A�� Let us consider the case of translations �rst� Suppose t is a translation vector
not satisfying the inclusion above� So we have B� t �� A�� in particular t�bi �� A� for some
line segment bi � B� This is equivalent to t � A�
 ��bi	� where A� denotes the complement

IR� n A� of A�� Conversely� a translation t moves B into A� exactly if t � A� 
 ��bi	 for
i � 
� � � � �m� The latter set we will denote by A�

i � �see Figure �	 so there is a one way
match exactly if the set

S �
m�
i
�

A�
i

is nonempty�

Figure � shows that in the construction of the sets A�
i � i � 
� � � � �m� we use the circular

arcs and line segments bounding A� and� additionally� these curves translated by the vector
bi� altogether there are O�nm	 circular arcs and line segments� Each A�

i is a union of
some of the cells of the arrangement A de�ned by these curves� The decision problem for
translations can be solved by a sweep line algorithm� While sweeping across the arrangement
the algorithm computes the depth of the cells� i�e� the number of di�erent A�

i that cover a
cell� Clearly� S is nonempty� exactly if there is a cell of depth m�
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�bi

bi

Figure �� The set A�
i �shaded	�

Since the complexity of the arrangement is O��mn	�	 the sweep line algorithm solves
the decision problem for translations in O��mn	� log�mn		 time �see �AST���	� In the case
of rigid motions �see �CGH����	 we assume that �rst the set B is rotated around the origin
and then translated in order to match the set A� For each orientation � � ��� �
	 we consider
the sets A�

i ��	 which are de�ned like A
�
i � only that bi is rotated by angle � around the origin�

Likewise the arrangement A��	 depends on the orientation ��
A��	 and the depth of its cells can be determined as described before� Then while

increasing � the algorithm keeps track of the changes that occur in the arrangement and
of the depth of the newly appearing cells� The arrangement only changes topologically for
orientations � where two sets of the form �aj 
 		 
 ��bj	 touch each other� a so�called
�double event��see Figure � a		� or the boundaries of three of them intersect in one point�
a �triple event� �see Figure � b		�

Altogether� there are O�m
n
	 events� The algorithm determines them and sorts them
in a preprocessing phase� Then it makes use of a suitable data structure where all local
changes in the arrangement due to an event can be processed in constant time� In this
manner� starting from A��	 all arrangements are inspected whether for some � there is a
cell in A��	 of depth m� If so� a positive answer is given to the decision problem� Altogether
the algorithm requires O�m
n
 log�mn		 time�

In both cases the algorithms for the decision problem can be turned into ones for the
optimization problem by parametric search �see �Meg��� �Col���	 on the parameter 	� For
matching by translation� Agarwal et al� �AST��� describe a parallel algorithm which �rst
computes the arrangement A� Then it determines the depth of its cells by considering
the dual graph� �nding an Eulerian path in it and using that to traverse the cells sys�
tematically� This parallel algorithm is used to direct the parametric search� Altogether�
an O��mn	� log
�mn		 algorithm for �nding the optimal matching under translations is
obtained�

For optimal matching by rigid motions Chew et al� �CGH���� use an EREW�PRAM
sorting algorithm for the events to direct the parametric search� Whenever this algorithm
attempts to compare two events ���		� ���		� the set of critical parameters 	 is determined
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a� b�

Figure �� Orientations where the arrangement changes� a	 double event b	 triple event�

and sorted� Then a binary search is done on these critical parameters in each step involving
the decision algorithm described before to determine the interval containing the optimal 	�
Altogether an O��mn	
 log��mn		 algorithm is obtained for optimal matching under rigid
motions�

With essentially the same ideas and the usage of dynamic Voronoi diagrams e�cient
algorithms for point pattern matching are obtained in �CGH����� as was mentioned in
section ��

Huttenlocher et al� �HKS��� also extend the Voronoi diagram approach described in
section � to sets of line segments� This method leads to rather complicated surfaces if the
Hausdor��distance with respect to the L��metric is considered� However� if the underlying
metric is L� or L� the situation is simpler and an O��mn	���mn		 algorithm can be
obtained�

��� Approximate Matching

As we have seen in the previous sections the algorithms for �nding the optimal solution
of the matching problem use quite sophisticated techniques from computational geometry
and� therefore� are probably too complicated to implement� Also the asymptotic running
times are� although polynomial� rather high� One approach to overcome these problems are
approximation algorithms for the optimization problem� These are algorithms that do not
necessarily �nd the optimal solution� but one whose distance is within a constant factor c
of the optimum� Again� if not explicitly stated otherwise we will consider matching of sets
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of line segments with respect to Hausdor��distance based on the L��metric�

Approximation algorithms in this context were considered �rst by Alt et al� �ABB�
�
ABB��� using so called reference points� These are points rA� rB that are assigned to the
sets A and B and have the property that when B is transformed to match A optimally then
the distance of the transformed rB to rA is also bounded by a constant factor a times the
Hausdor��distance of the matching� a is called the quality of the reference point�

A reference point can be found very easily in the case of translations as allowable trans�
formations� In fact� to a set A assign the point rA � �xAmin� y

A
min	 where x

A
min �y

A
min	 is

the lowest x�coordinate �y�coordinate	 of any point in A� So rA is the lower left corner of
the smallest axes�parallel rectangle enclosing A� Observe that if in an optimal match A

and the translated image B� of B have Hausdor��distance � then
���xAmin � xB

�

min

��� 	 � and���yAmin � yB
�

min

��� 	 � �see Figure �	� Consequently� the distance of rA and rB� � which is the

image of rB under the translation� is at most
p
��� So rA is a reference point for A of qualityp

��

� �

� �

A

B

rA

rB

Figure �� Optimal match between A and B under translations�

Now� suppose that instead of �nding the optimal translation of B to match A we use
just the one that matches rB to rA obtaining an image B

�� of B� Then� since B� is obtained
from B�� by translation by the vector rB� � rA� �H�B

�� B��	 	 p
��� Consequently

�H�A�B
��	 	 �H�A�B

�	 � �H�B
�� B��	

	 �
p
� � 
	��

So the Hausdor��distance of the match found by the reference points is at most by a factorp
� � 
 � ��� worse than the optimal one� In general� matching with respect to a reference
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point of quality a for translations yields a match that is at most a factor a � 
 worse
than the optimal one� Observe that the approximation algorithm has linear running time�
since only the reference points need to be determined� So it is much faster and much
simpler than the best known algorithm for �nding the optimal match which has running
time O��mn	� log
mn	 �AST����

Reference points for rigid motions are not that easy to �nd� Obviously the one for
translations given above does not work any more� Nor do the seemingly obvious choices
like the center of gravity of the convex hull of a set A or the center of the smallest enclosing
circle� It was shown by Alt et al� �ABB�
� that for an arbitrary bounded set A the center of

gravity of the boundary of the convex hull is a reference point with respect to rigid motions�
However� the upper bound given for the quality of this reference point is rather large� in
fact� it is �
 � � � 
����
Aichholzer et al� in �AAR��� found a better reference point� In fact� imagine that the

axes�parallel wedge determining the reference point for translations given above is circled
around the set A� Then its apex describes a closed curve� For the �average point�on this
curve no particular direction is preferred� so it might be a candidate for a reference point
under rigid motions� Formalizing and slightly simplifying this idea� we obtain the following
de�nition for arbitrary bounded sets A�

s�A	 ��






��Z
�

hA��	

�
cos�

sin�

�
d�

where hA��	 is the so called support function of A which assigns to � the largest extent of
A in direction ��

The point s�A	 is the so called Steiner�point of A� The Steiner point is well investigated
in the �eld of convex geometry �She��� Gr%u��� as well as in functional analysis �PY����
Using these results it is shown in �AAR��� that the Steiner point is a reference point not
only for translations and rigid motions but even for similarities and not only for two but for
arbitrary dimensions� Its quality is ��
 � 
��� in two� 
�� in three and between p��
pd
and

p
��


p
d� 
 in d dimensions� Usually the Steiner point is de�ned for convex bodies

only� it can be extended to arbitrary bounded sets by taking the Steiner point of the convex
hull� In the case of sets of line segments we obtain convex polygons for which the Steiner
point can easily be computed� In fact it is the weighted average of the vertices where each
vertex is weighted by its exterior angle divided by �
� Furthermore� Przes&lawski and Yost
�PY��� showed that for translations there is no reference point whose quality is better than
the one of the Steiner point�

In the case of translations the usage of a reference point for approximate matching
was obvious� In the case of rigid motions �rst the two reference points are matched by a
translation and then the optimal matching is sought under rotations around the common
reference point� This is easier than the general optimization problem since the matching of
the reference points reduces the number of degrees of freedom by two �in two dimensions	�
In the case of similarities� �gure B is �rst stretched by the factor dA�dB � where dA and dB
are the diameters of A and B� respectively� Then the algorithm for rigid motions is applied�
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In �AAR��� it is shown that from reference points of quality a approximation algorithms
are obtained yielding a solution within a factor of a � 
 of the optimal one in the case of
rigid motions and within a factor of a � � of the optimal in the case of similarities� The
running times for both approximate matching algorithms are O�nm log�nm	 log��nm		�

Finally it should be mentioned that by an idea due to Schirra �Sch��� it is possible to get
the approximation constant of reference point based matching with respect to translations
or rigid motions arbitrarily close to 
� In fact� suppose that the quality of the reference
point is a� This means that in the optimal match the distance of reference point rB is
mapped into the a��neighborhood U of rA� In order to achieve an approximation constant

 � 	 for a given 	� we place onto U a su�ciently small grid so that no point in U has
distance greater than 	� from the nearest grid point� Instead of placing rB onto rA only
we place it onto each grid point and proceed as described before� Since at some point rB is
placed at a distance of at most 	� of its optimal position� the approximation constant is at
most 
 � 	� Notice� that for a constant 	 only constantly many grid points are considered
so the running time only changes by a constant factor�

��� Distance Functions for Non�Point Objects

In some applications� the simplicity of the Hausdor��distance can be a disadvantage� In
fact� when the distance between curves is measured the Hausdor��distance may give a wrong
picture� Figure � shows an example where two curves have a small Hausdor��distance
although they have no resemblance at all�

δ

Figure �� Two curves with small Hausdor��distance ��

The reason for this problem is that the Hausdor��distance is only concerned with the
point sets but not with the course of the curves� A distance considering the curves# courses
can informally be illustrated as follows� Suppose a man is walking his dog� he is walking
on one curve� the dog on the other� Both are allowed to control their speed but not to go
backward� What is the shortest length of a leash that is possible� Formally� this distance
measure between two curves in d�dimensional space can be described as follows

�F �f� g	 � inf
��	
max
t������

jjf���t		 � g���t		jj

where f� g � ��� 
� � IRd are parameterizations of the two curves and �� � � ��� 
� � ��� 
�
range over all continuous and monotone increasing functions� This distance measure is
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known under the name Fr�echet�distance�

The Fr'echet�distance seems considerably more di�cult to handle than the Hausdor��
distance� No matching algorithms have been developed yet� the following algorithm for
measuring the Fr'echet�distance between two polygonal chains has been given by Alt and
Godau �AG��� AG����

Let P and Q be the given polygonal chains consisting of n and m line segments respec�
tively� First we consider the decision problem� so in addition to P and Q some 	 
 � is
given and we want to decide whether �F �P�Q	 	 	� We �rst consider the m
 n�diagram
D��P�Q	 shown in Figure � which indicates by the white area for which points p � P �
q � Q jjp � qjj 	 	� The horizontal direction of the diagram corresponds to the natural
parameterization of P and the vertical one to that of Q� One square cell of the diagram
corresponds to a pair of edges one from P and one from Q and can easily be computed since
it is the intersection of the bounding square with an ellipse�

P

Q

	

P

Q

Figure �� P � Q� 	 and the diagram D��P�Q	�

Now it follows from the de�nition that �F �P�Q	 	 	 exactly if there is a monotone
increasing curve from the lower left to the upper right corner of the diagram� These consid�
erations lead to an algorithm of running time O�mn	 for the decision problem� Then Cole#s
variant of parametric search �Col��� can be used to obtain an algorithm of running time
O�mn log�mn		 to compute the Fr'echet�distance between P and Q� In practice� it seems
more reasonable to determine �F �P�Q	 bit by bit using binary search where in each step
the algorithm for the decision problem is applied�

Arkin et al� �ACH��
� consider a distance function between shapes in two dimensions
that is based on the slope of the bounding curves� In fact� for a given shape A some starting
point O on the bounding curve is chosen and the curve is then parametrized with the natural
parameterization nA �i�e� parameterization by arc length	 which is normalized so that the
parameter interval is ���
�� To each parameter t � ��� 
� the angle  A�t	 between the counter�
clockwise tangent of A in the point nA�t	 and a horizontal line is assigned�  A is called
the turning function of A�  A is piecewise constant for simple polygons �see Figure �	� it
is invariant under translations and� because of the normalization of the parameterization
under scaling� A rotation of A corresponds simply to a shift in  �direction and a change
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of the origin to a shift in t�direction�

�

	

tO

�

Figure �� Turning function of a simple polygon�

Now� as a distance measure between shapes A and B the Lp�metric �p � IN	 between
 A and  B is being used� i�e� we de�ne

�p�A�B	 �

	

 �Z

�

j A�s	� B�s	jpds
�
A

�

p

�

Then this distance measure is made invariant under translations and the choice of the
starting point ��

dp�A�B	 � min
��IR�t������

	

 �Z

�

j A�s� t	� B�s	 �  jpds
�
A

�

p

�

It is shown that dp is a metric for all p � IN �

An algorithm is given for computing d��A�B	 where A�B are simple polygons with n and
m edges� respectively� It can be shown that the minimum in the de�nition of dp can occur
at at most O�mn	 �critical� values of t� By considering partial derivatives with respect to
 it is shown that for any �xed t the optimal  can easily be computed� Altogether� an
O�mn logmn	 algorithm is obtained� An extension of this algorithm to deal with scaling as
well was recently given by Cohen and Guibas �CG����

The drawback of this distance measure is its sensitivity to noise� especially non�uniformly
distributed noise� but it works properly if the curves are su�ciently smooth�

A generalization of this distance to a distance measure that is invariant under a�ne
transformations is given by Huttenlocher and Kedem �HK���� With respect to this distance�
matching of two polygons with n and m vertices under a�ne transformations is possible in
time O�mn logmn	�

A di�erent idea is to represent shapes by their areas rather than by their boundaries�
In this context the probably most natural distance measure between two shapes is the area
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of their symmetric di�erence� However� this measure seems to be much more di�cult to
handle than Hausdor��distance� Within computational geometry it was �rst considered
in a paper by Alt et al� �ABGW��� in connection with the very special problem of opti�
mally approximating a convex polygon by an axes�parallel rectangle� Only recently some
more results on the symmetric di�erence have been obtained� In fact� de Berg et al� in
�dBDvK���� consider matching algorithms maximizing the area of overlap of convex poly�
gons which is the same as minimizing the symmetric di�erence� They obtain an algorithm
of running time O��n�m	 log�n�m		 for translations where n and m are the numbers of
vertices of the two polygons� In addition� it is shown that if just the two centers of gravity
are being matched by a translation this yields a position of two convex �gures where the
area of overlap is within a constant factor of the maximal one� A lower bound of ���� and
an upper bound of ��� is obtained for this constant� so the center of gravity is a reference
point with respect to maximizing the overlap under translations�

As easily can be seen this does not imply directly that it is a reference point with respect
to the area of the symmetric di�erence� However� this can be shown� as well� In fact� Alt
et al� �AFRW��� show that if the centers of gravity of two convex �gures are matched the
area of the symmetric di�erence is at most 

�� times the minimal one� It is demonstrated
with an example that this bound is tight� The center of gravity is also a reference point for
other sets of transformations such as rigid motions� homotheties� similarities� and arbitrary
a�ne mappings�

� Shape Simpli�cation and Approximation

In manipulating shape representations� it is often advantageous to reduce the complexity of
the representation as much as possible� while still staying geometrically close to the original
data� There is a vast literature on shape simpli�cation and approximation� both within
computational geometry and in the various applied disciplines where shape representation
and manipulation issues arise� In this section we cannot possibly attempt to survey all the
approaches taken and the results obtained� We will focus on a small subset of results giving
e�cient algorithms for shape simpli�cation under precise measures of the approximation
involved�

��� Two�dimensional Results

To focus our attention� let us consider the problem of simplifying a shape represented as a
polygonal chain in the plane� Our goal is to �nd another polygonal chain with a smaller
number of links and which stays close to the original� Let the original chain be C� de�ned
by n vertices v�� v�� � � � � vn �we assume in this discussion that C is open	� and let the desired
approximating chain A be de�ned by m vertices w�� w�� � � � � wm� A number of variations on
the problem are possible� depending on exactly how the error� or distance� between C and
A is measured� and on whether the wj #s need to be a subset of the vi#s� or can be arbitrary
points of the plane� In general we have to solve one of two problems in �nding A�
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The min�� problem� Find an A which minimizes m �the combinatorial complexity of
A	� given some a priori bound � on the maximum allowed distance between C and A�
or

The min�� problem� For a given m� �nd an A which minimizes the distance � between
C and A�

In order to illustrate some of the ideas involved in solving these problems� let us further
assume that both C and A are x�monotone chains ! in other words� C and A are piecewise
linear continuous functions C�x	 and A�x	� For such chains a very natural measure of
distance is the so�called uniform or Chebychev metric de�ned as

d�A�C	 � max jA�x	� C�x	j�
where the max is taken over the support on the x�axis for C� Let us consider the case
when the vertices of A can be arbitrary points� i�e� need not be vertices of C� Imai and Iri
�II��� II���� and Hakimi and Schmeichel �HS�
� gave optimal O�n	 algorithms for the min�(
problem in this context� Their methods can be viewed as an extension of the linear�time
algorithm of Suri �Sur��� for computing a minimum link path between two given points
inside a simple polygon �here the polygon is the chain C appropriately "fattened# vertically
by the allowed error �	 and make crucial use of the concept of weak�visibility from an edge
inside a simple polygon �AT�
�� Similar ideas were also used by Aggarwal� Booth� O#Rourke�
Suri� and Yap �ABO���� to give an O�n log k	 algorithm for �nding a convex polygon with
the smallest number k of sides nested between two given convex polygons of total complexity
n�

For the min�� variant of the chain simpli�cation problem� Hakimi and Schmeichel gave
an O�n� logn	 algorithm by cleverly limiting the critical values of � to a set of size O�n�	
and then using a certain kind of binary search� More recently� Goodrich �Goo��� used
a number of new geometric insights to reduce the set of critical � values to O�n	 and
thus obtained an O�n logn	 algorithm through several applications of pipelined parametric
searching techniques� For a survey of results when A and C are not constrained to be x�
monotone� see the paper of Eu and Toussaint �ET��� and related work by Hershberger and
Snoeyink �HS���� and Guibas� Hershberger� Mitchell� and Snoeyink �GHMS���� In general�
algorithms for the min�( problem have linear complexity� while those for the min�� have
quadratic complexity�

Next let us consider the problem variant where the vertices of A have to be a subset
of the vertices of C� Now we do not require that A or C be x�monotone �so we revert to
using the Hausdor� distance function	� One of the oldest and most popular algorithms for
this problem is the heuristic Douglas�Peucker �DP��� line simpli�cation algorithm from the
Geographical Information Systems community� Hershberger and Snoeyink showed how to
implement this algorithm to run in O�n logn	 time �HS��b�� A more formal approach to
the problem was initiated in the papers by Imai and Iri cited above� For the min�( variant�
Imai and Iri reduce the problem to a graph�theoretic problem as follows� A line segment
vivj joining vertices vi and vj of C is called a shortcut for the subchain vi� vi��� � � � � vj of
C� A shortcut is allowed if the error it induces is at most the prescribed error �� the error
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of the shortcut vivj is de�ned to be the maximum distance from vivj to a point vk� where
i 	 k 	 j� It is easy to see that this is also the Hausdor� distance from vivj to the subchain
vi� vi��� � � � � vj � Our goal is to replace C by a chain consisting of allowed shortcuts�

So we consider a directed acyclic graph G whose nodes V are the vertices v�� v�� � � � � vn
of C and whose edges E are the pairs �vi� vj	 if and only if i � j and the shortcut vivj is
allowed� A shortest �in terms of the number of edges	 path from v� to vn corresponds to
a minimum vertex simpli�cation of C� such a path can be found in time linear in the size
of G by topological sorting �CLR���� The size of G is O�n�	 and it can be computed by an
obvious method in O�n
	 time� Thus constructing G is the bottleneck in the computation�
Melkman and O#Rourke �MO��� showed how to reduce the construction time to O�n� log n	�
and Chan and Chin �CC��� further reduced it to optimal O�n�	�

The Chan and Chin algorithm starts from the observation that the error of a shortcut
vivj � i � j� is the maximum of the errors of two half�lines� the one starting at vi and going
towards vj �call it lij	� and of the one starting at vj and going towards vi �call it lji	� To
compute the graph G we intersect the graphs G� and G�� where G� contains the edge �vi� vj	
if and only if i � j and the error of lij is less than � and G� contains the edge �vi� vj	 if and
only if i � j and the error of lji is less than �� We show how to compute G� in O�n

�	 time�
the computation of G� is entirely symmetric by reversing the number of the vertices of C�

We examine the vertices of G� in the sequence v�� v�� � � � � vn� When we process vertex
vi� we calculate in turn the errors determined by all half�lines lij� where j takes on the
values i � 
� i � �� � � � � n� Let Dk denote a closed disk of radius � centered at vk� The
error of lij is at most � if and only if lij intersects all disks Dk with i 	 k 	 j� Thus
the algorithm works by maintaining the cone of half�lines from vi which intersect the disks
Di���Di��� � � � � Dj �which is nothing but the intersection for the corresponding cones for
all these disks separately	� When we process vj�� it su�ces to update this cone� which is a
constant time computation� If the cone stays non�empty� then �vi� vj��	 is in G�� otherwise
we are done with vi as all further half�lines will also have error which is too large� Thus
the computation of G�� and therefore of G and of our desired shortest path can be done
in O�n�	 time� Figure 
� illustrates the situation with the disks and the cone of vi a some
intermediate point�

Methods based on the Imai�Iri graph construction seem inherently quadratic as� if �
is large enough� the graph will have )�n�	 allowed shortcuts� Very recently� Varadarajan
�Var��� was able to use graph clique compression techniques such as those proposed by Feder
and Motwani �FM�
� to obtain an O�n��
�
	 algorithm for this min�( problem in the case
of x�monotone chains� Varadarajan gave a randomized and a more complex deterministic
algorithm for the min�� version of this problem as well� with the same time bound�

In the general �non�x�monotone	 case of the above chain simpli�cation problems it is
quite possible that A may end up being self�intersecting� even though C itself is simple� This
is clearly undesirable in many application contexts� Even worse� one is often simplifying
several chains at once� as in the case of boundaries between regions in� say� a geographical
map� In this case it is important that the topological structure of the regions be maintained
after simpli�cation� so the simpli�cations of disjoint chains are not allowed to end up crossing
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�� The computation of the allowed shortcuts starting at vi

each other� Guibas� Hershberger� Mitchell� and Snoeyink �GHMS��� showed that the min�(
problem is NP�hard in this case� when the positions of the approximating vertices can be
arbitrary� When the vertices of the approximating chain have to be a subset of the original
chain and we are in the x�monotone setting� de Berg� van Kreveld� and Schirra �dBvKS���
gave an O�n�n�m	 log n	 algorithm for the min�( problem for a chain C of n vertices so
that the resulting approximating chain A is guaranteed to be simple and to be on the same
side of each of m given points as C is� Using this algorithm as a local subroutine� they give
a method for polygonal subdivision simpli�cation which is guaranteed to avoid topological
inconsistencies �but which need not be globally optimal	�

��� Three dimensions

Unfortunately the situation is not an equally happy one in three dimensions� Nearly all
natural extensions of the above problems are NP�hard� so most of the extant work to�date
has focussed on approximation algorithms�

The analog of an x�monotone chain in ��D is that of a polyhedral terrain� which is
just a continuous bivariate �and possibly non�total	 function z � T �x� y	 which happens to
be piecewise linear� The complexity of a terrain can be measured by its total number of
vertices� edges� and faces� The numbers of these are linearly related by Euler#s relation� so
most often we will use the number of faces as our measure of the complexity of a terrain�
There is a plethora of techniques in the literature for simplifying polyhedral terrains� by
e�ectively deleting vertices which lie in relatively �at neighborhoods �and retriangulating
the hole thus created	� Unfortunately not much has been proved about such methods�
In fact� Agarwal and Suri �AS��� have shown that even the simpler problem of deciding
the approximability within a vertical tolerance � of a collection of n isolated points by a
polyhedral terrain with at most k faces is NP�hard� Similarly� though more surprisingly�
Das and Joseph �DJ��� showed that �nding a convex polytope of at most k facets nested
between two other convex polytopes P and Q with a total of n facets is also NP�hard� thus
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settling an old question �rst posed by Klee�

With these results in sight� researchers turned their e�ort to approximation algorithms�
Mitchell and Suri �MS��� formalized the nested convex polytope problem as a set�cover
problem by considering the regions de�ned on the outer polytope by tangent planes to
the inner polytope� They showed that the greedy method of set covering computes a
nested polytope with O�� log n	 facets� where � is the complexity of an optimal nested
polytope� The same approach also works for the approximation by a convex surface of n
points themselves sampled from another convex surface� These algorithms run in O�n�	
time� These results were extended by Clarkson �Cla���� who gave a randomized algorithm
with expected time complexity O��n��
	 for computing a nested polytope of size O�� log �	�
Br%onnimann and Goodrich �BG��� further improved the set cover algorithm using VC�
dimension ideas to obtain a deterministic algorithm that computes a nested polytope which
is to within a constant factor of the optimal one�

The set cover formulation� unfortunately� does not work for the terrain approximation
problem� as we cannot independently select faces in the approximating surface� Agarwal and
Suri in the paper cited above formulate instead the terrain �tting problem as a geometric
partitioning problem� �rst we project all the points to be approximated on the xy�plane�
then we seek a disjoint collection of triangles in the xy�plane which cover all these points
and such that each triangle satis�es a certain legality constraint w�r�t� the points it covers�
This constraint� which can be formulated as a linear program� is that the triangle can
be lifted to ��D so that it ��approximates all the points it contains� Agarwal and Suri
gave an approximation algorithm which solves this problem and produces a covering set
of legitimate triangles whose size is O�� log �	� where again � is the minimum number of
triangles possible� Unfortunately their algorithm has a very high complexity O�n�	�

� Shape Interpolation

Shape interpolation� more commonly known as morphing� has recently become a topic
of active research interest in computer graphics� computer animation and entertainment�
solid reconstruction� and image compression� The general problem is that of continuously
transforming one geometric shape into another in a way that makes apparent the salient
similarities between the two shapes and "smoothes over# their dissimilarities� Some of the
relevant graphics papers are �KR�
� SG��� KCP��� SGWM���� The morphing transforma�
tion may be thought of as taking place either in the time domain� as in animation� or in
the space domain� as in surface reconstruction from planar sections� The latter area has
already an extensive literature of its own �FKU���� and computational geometric techniques
have been used with good results �WW��� BS��� �though the problem is not always solvable
�GOS���	� In general there are numerous ways to interpolate between two shapes and little
has been said about criteria for comparing the quality of di�erent morphs and notions of
optimality� Often� the class of allowable or desirable morphing transforms in only vaguely
speci�ed� with the result that the problem ends up being either under� or over�constrained�

In this section we will survey the rather small amount of work in this area which relates
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to Computational Geometry� Let P and Q be the two shapes we wish to morph� For now
we do not specify how the shapes P and Q are described� or what is the ambient space
���D� ��D� etc�	� Most morphing algorithms operate according to the following paradigm�
�rstly relevant "features# of P and Q are identi�ed and matched pairwise� secondly� smooth
motions are planned that will bring into alignment these pairs of corresponding features�
and thirdly the whole morphing transformation is generated� while respecting other global
constraints which the shapes P � Q� and their interpolants must satisfy� This paradigm
works well when the class of shapes to be morphed consists of fairly similar objects� In
cases� however� when we want to be able to morph a great variety of di�erent shapes� the
above process is commonly subdivided into a series of stages� The shapes P and Q are �rst
"canonicalized# by mapping them into their canonical forms ��P 	 and ��Q	 respectively �
these canonical forms are more standardized and therefore easier to morph to each other�
The whole transformation is then done by going from P to ��P 	 to ��Q	 to Q�

As the above description makes clear� there are numerous connections between the
problems of shape matching and shape interpolation� and several of the matching techniques
already discussed are applicable to the morphing problem� especially in the feature matching
stage� It is not so obvious� but it is equally true that morphing techniques can also be used
for shape comparison problems� In a certain sense� the optimum morph from P to Q is the
transformation that distorts P as little as possible in order to make it look like Q� In a
morphing algorithm we can assign a notion of "work# or cost to the distortions the algorithm
needs to perform� The minimum work then required to morph P into Q can then serve as
a measure of the distance from shape P to shape Q� Note that such a distance function
based on morphing clearly satis�es the triangle inequality�

To make these matters concrete� let us discuss a few simple examples in ��D and ��
D� Let P be an open simple polygonal chain of m vertices P � p�p� � � � pm and Q be an
open simple polygonal chain of n vertices Q � q�q� � � � qn� This problem was considered
by Sederberg and Greenwood �SG���� According to our paradigm above� we �rst need to
establish a correspondence between the "features# of P and Q ! for polygonal chains the
natural notion is that of vertices �though other choices also make sense in applications	�
Now since m might be di�erent from n� in general this will have to be a many�to�one� or
one�to�many mapping� But where should these duplicate vertices be added�

We can represent all possible ways to pair up vertices of P with vertices of Q in sequence
by considering monotone paths in the �
��m� 
 �
��n� grid� An example is shown in �gure


� which shows a particular matching between a chain P of � vertices and a chain Q of 
�
vertices� A diagonal move on the monotone path corresponds to advancing on both P and
Q� while a horizontal move corresponds to advancing on Q only �and thus duplicating the
corresponding vertex of P �

We can choose an optimum correspondence� by selecting the path 
 to be of minimal
cost in some appropriate sense� For example� we may want to minimize the sum of the
distances of all the corresponding pairs of vertices� Sederberg and Greenwood developed
a physics�based measure of the energy required to stretch and bend P into Q once the
correspondence by 
 is given� The optimal 
 under such measures can be computed by
classical dynamic programming techniques �CLR��� in time O�mn	� Similar ideas have
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Figure 

� An example of matching polygonal chain vertices

been used to �t polyhedral sleeves to polygonal slices in parallel planes �BS����

Once we have the correspondence� we can then move corresponding vertices to each
other through linear interpolation� Implicitly� at each time t� this de�nes an interpolating
polygonal chain Rt and thus our construction of a morph between the polygonal chains is
complete� Note also that in order to extend this method to closed polygonal chains we
must decide �rst on an appropriate "origin# for each chain� and this is not a trivial matter�
Figure 
� shows some successful and unsuccessful examples of this method� depending on
the origin chosen� Note in particular that the interpolating chain Rt can self�intersect� even
though neither P and Q do�

Sederberg et� al� also proposed another simple method for polygon interpolation based on
interpolating side lengths and angles� once a vertex correspondence is established �SGWM���
! but now the challenge becomes to get the polygons to "close up�#�

Preserving structural properties during a morph� such as the simplicity of a chain in
the example above� is a di�cult problem� Guibas and Hershberger �GH���� consider how
to morph two parallel polygons to each other while maintaining simplicity� The setting is
now that P and Q are two simple polygons in the plane of n sides each� and there is a 
�

correspondence between the sides of P and Q so that corresponding sides are parallel� The
goal is to continuously deform P to Q while at all times the interpolating polygon Rt has
its corresponding sides parallel to those of P and Q and stays simple� In this case the very
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Figure 
�� Examples of polygonal chain morphs� �a	 a good case� �b	 a bad case

statement of the problem provides the correspondence between features of the polygons�
Even so� the two polygons P and Q can look quite di�erent and the existence of a morph
which remains parallel and simple is not obvious� see �gure 
� �a morph between these two
spiraling polygons can happen by simulating the way recording tape can move from one
reel to another	�

P Q

Figure 
�� These oppositely spiraling parallel polygons are still morphable

Guibas and Hershberger showed that this is� nevertheless� always possible and gave an
algorithm which uses O�n��
��	 primitive operations called "parallel moves#� this was later
improved to O�n log n	 by Hershberger and Suri �HS���� A parallel move is a translation
of a side of a polygon parallel to itself� with appropriate modi�cations of the polygon
at the endpoints of the edge� Guibas and Hershberger �rst showed that parallel moves
can be used to take each polygon to a fractal�like canonical or reduced form in which
portions of the polygon#s boundary have been shrunk to micro�structures of widely di�erent
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scales� A polygon in this canonical form corresponds� roughly speaking� to a binary tree
whose leaf weights are the angles of the original polygon� Once P and Q are in this
canonical form� the corresponding trees can be morphed into each other through a series of
standard tree rotation transformations� certain validity conditions have to hold throughout
this process� These tree rotations can be realized geometrically through parallel moves on
the polygons� The fractal�like structure of the canonical form helps in arguing that the
translations required to implement particular rotations do not interfere with other parts of
the polygon�

Clearly the Guibas$Hershberger morph solves only a limited problem and even for that
the canonical form used introduces unnecessarily large distortions into the interpolating
shapes� Di�erent polygon morphing techniques were developed by Shapira and Rappoport
�SR���� based on the star�skeleton representation of a polygon �a decomposition of the
polygon into star�shaped pieces	� Such methods do much better in preserving the metric
properties of the polygons� but unfortunately they still do not preserve global constraints�
such as simplicity ! plus they are expensive� requiring O�n�	 time� Another idea for mor�
phing polygons can be based on the compatible triangulations result of Aronov� Seidel� and
Souvaine �ASS���� They showed that P and Q can always be "compatibly#�triangulated by
adding O�n�	 Steiner points �compatibility means that the triangulations are combinatori�
ally equivalent	� The use of conformal mappings has also been suggested�

Let us now also look at some work in three dimensions� The only case that has been
extensively studied is that of morphing convex polytopes �KCP���� If P and Q are convex
polyhedra� a natural way to construct a matching between their surfaces is to match points
on the two polyhedra that admit of the same �outwards	 normal� In general� this will match
all points on each face of P to a vertex of Q and vice versa� as well as matching �the points
of	 certain pairs of edges� one from P and one from Q� If we place the origin at an arbitrary
point of space and compute the vector sums of corresponding pairs of points from P and
Q� the resulting set of points will form the boundary of another convex polytope� called
the Minkowski sum of P and Q and denoted by P 
 Q �Lat�
� Lyu���� Armed with this
concept� we can then morph P to Q by constructing the mixed volume �
 � t	P 
 tQ� as
t varies in the range � 	 t 	 
� This type of morph was exploited by Kaul and Rossignac
�KR�
� RK���� The same technique works� of course� in ��D or dimensions higher than
three� A nice way to visualize this morph in ��D is to think of P and Q as two convex
polygons placed on parallel planes in ��D� One then constructs the convex hull of the union
of P and Q by adding a "sleeve# wrapping around P and Q� The sections of this sleeve by
a plane moving parallel to itself from that containing P to that containing Q gives us the
morph�

The "kinetic framework# of �GRS��� allows the extension of this type of morph to general
polygons in the plane� Also� since regular subdivisions of the plane or alpha shapes �EM���
can be viewed as projections of convex polytopes in one dimension higher� the above method
also gives us some possibilities for morphing such subdivisions or alpha shapes� Other
approaches to morphing ��D or ��D shapes are given in �Gla� KCP��� Ede����
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