Discrete Geometric Shapes: Matching,
Interpolation, and Approximation

A Survey
Helmut Alt Leonidas J. Guibas
Institut fiir Informatik Computer Science Department,
Freie Universitat Berlin Stanford University
D-14195 Berlin Stanford, CA 94305
Germany USA

December 3, 1996

Abstract

In this survey we consider geometric techniques which have been used to measure the
similarity or distance between shapes, as well as to approximate shapes, or interpolate
between shapes. Shape is a modality which plays a key role in many disciplines, ranging
from computer vision to molecular biology. We focus on algorithmic techniques based on
computational geometry that have been developed for shape matching, simplification,
and morphing.

1 Introduction

The matching and analysis of geometric patterns and shapes is of importance in various
application areas, in particular in computer vision and pattern recognition, but also in other
disciplines concerned with the form of objects such as cartography, molecular biology, and
computer animation.

The general situation is that we are given two objects A, B and want to know how much
they resemble each other. Usually one of the objects may undergo certain transformations
like translations, rotations or scalings in order to be matched with the other as well as
possible. Variants of this problem include partial matching, i.e. when A resembles only
some part of B, and a data structures version where, for a given object A, the most similar
one in a fixed preprocessed set of objects has to be found, e.g. in character or traffic sign
recognition. Another related problem is that of simplification of objects. Namely, given
an object A find the most simple object A’ resembling A within a given tolerance. For
example, A could be a smooth curve and A’ a polygonal line with as few edges as possible.

We also will discuss shape interpolation (“morphing”), a problem that has become very
interesting recently, especially in computer animation. The objective is to find for two

given shapes A and B a continuous transformation that transforms A into B via natural
intermediate shapes.

First it is necessary to formally define the notions of objects, resemblance, matching,
and transformations.

Objects are usually finite sets of points (“point patterns”) or “shapes” given in two
dimensions by polygons. Generalizations to, for example, polyhedral surfaces in three and
higher dimensions are possible, but most of the work has concentrated on two or three
dimensions.

In order to measure “resemblance” various distance functions have been used, in par-
ticular much work has been based on the so-called Hausdorff distance.

For two compact subsets A, B of the d-dimensional space IR%, we define the one-sided
Hausdorff distance from A to B as
o1 (A, B) = inlla—b
H()) r;lea’j(gé%lna’ ||a
where || - || is the Euclidean distance in IR? (if not explicitly stated otherwise). The (bidi-
rectional) Hausdorff distance between A and B then is defined as

511 (A, B) = max (SH(A,B), 51 (B, A)) .

The Hausdorff distance simply assigns to each point of one set the distance to its closest
point on the other and takes the maximum over all these values. It performs reasonably
well in practice but may fail if there is noise in the images. An variant intended to be more
robust will be presented in Section 2.2.3.

What kind of geometric transformations are allowed to match objects A and B depends
on the application. The most simple kind are certainly translations. The matching problem
usually becomes much more difficult if we allow rotations and translations (these transfor-
mations are called rigid motions, or Euclidean transformations). In most cases reflections
can be included as well without any further difficulty.

Scaling means the linear transformation that “stretches” an object by a certain factor A
about the origin and is represented by the matrix (3 5) in two dimensions. We call combi-
nations of translations and scalings homotheties and combinations of Euclidean transforma-
tions and scalings similarities. The most general kind of transformations we will consider
are arbitrary affine transformations which can occur e.g. in orthographic 2-dimensional
projections of 3—dimensional objects.

Considerable research on these topics has been done in computational geometry in recent
years. This chapter will give a survey on these results.

2 Point Pattern Matching

In this section we present a variety of geometric techniques for matching points sets exactly
or approximately, under some allowed transformation group. We discuss methods of both

theoretical and practical interest.

2.1 Exact Point Pattern Matching

A seemingly very natural question is whether two finite sets A, B C IR% of n points each can
be matched exactly by say, rigid motions, i.e. whether are A and B congruent. Of course
unless we assume that the input consists of points on a grid, this problem is numerically
very unstable. Nevertheless, studying it assuming a “real RAM” model of computation gives
some insight in the nature of matching problems and may help in designing algorithms for
more realistic cases.

In two dimensions exact point-pattern matching can easily be reduced to string match-
ing, as is shown by the following algorithm which was invented independently by several
authors, for example Atkinson [Atk87].

1. Determine the centroids cy4, cp (i.e. arithmetic means) of the sets A and B, respec-
tively.

2. Determine the polar coordinates of all points in A using c4 as the origin. Then sort A
lexicographically with respect to these polar coordinates (angle first, length second)
obtaining a sequence (¢1,71), .-, (¢n,7n). Let u be the sequence (11,71), ..., (Yn,)
where 1; = i — ¢(i11) mod n- Compute in the same way the corresponding sequence
v of the set B.

3. Determine whether v is a cyclic shift of u, i.e. a substring of wu by some fast string-
matching algorithm.

It is easy to see that A and B are congruent exactly if the algorithm gives a positive
answer. The running time is O(nlogn) because of the sorting in step 2; all other operations
take linear time.

For exact point pattern matching in three dimensions the following algorithm is given
by Alt et al. [AMWWS&8|:

1. Determine the centroid c4 and project all points of A onto the unit sphere around c»
obtaining a set A’ of points on the sphere. Label each point a € A’ with the sorted
list of distances from c4 of all points that have been mapped onto a.

2. Compute the 3-d convex hull C'4 of A'.

3. In addition to the labeling of step 2 attach to each point a € A’ an adjacency list of
vertices connected to a by an edge of C4 sorted in clockwise order (seen from outside).
This list should contain all distances of ¢ to adjacent points and all angles between
neighboring edges.

4. Execute steps 1-3 with set B, as well.

5. The hulls Cy4 and Cp can be considered as labelled planar graphs. The point sets A
and B are congruent exactly if these graphs are isomorphic. This isomorphism can
be decided by a variant of the partition algorithm of Hopcroft (see [AHUT74], section
4.13).

A detailed analysis shows that the running time of this algorithm is O(nlogn). Using
similar techniques it can be shown that the matching problem in arbitrary dimension d can
be reduced to n problems in dimension d — 1.

Consequently we have that the exact point pattern matching problem can be solved
for patterns of n points in time O(nlogn) in 2 dimensions and in time O(n%2logn) for
arbitrary dimension d > 3.

An alternative approach yielding the same bound for dimension 3 was developed by
Atkinson [Atk87].

Concerning transformations other than rigid motions, in some cases there are obvious
optimal algorithms for exact point pattern matching in arbitrary dimensions. For transla-
tions, for example, it suffices to match those two points with the lexicographically smallest
coordinate vectors and then to check, whether the other points match as well. If scaling of
the pattern B to be matched is allowed, one can first determine the diameters da, dg of
both sets. Their ratio ds/dp gives the correct scaling factor for B. Therefore, there is an
easy reduction of homotheties to translations and of similarities to rigid motions. Reflec-
tions can easily be incorporated by trying to match the set B as well as the set B’ which is
B reflected through some arbitrary hyperplane, for example, z; = 0.

Exact point pattern matching under arbitrary affine transformations is considered by
Sprinzak and Werman [SW94]. First the sets A and B are brought into “canonical form”
by transforming their second moment matrices into unit matrices. Then it is shown that
A, B can be matched under affine transformations exactly if their canonical forms can be
matched under rotations. Since the canonical forms can be computed in linear time the
asymptotic time bounds for matching under linear transformations are the same as the ones
for rigid motions described above.

2.2 Approximate Point Pattern Matching

More realistic than exact point pattern matching is approximate point pattern matching.
Here, given two finite sets of points A, B, the problem is to find a transformation matching
each point b € B into the e-neighborhood (& > 0) of some point ¢ € A. On the other hand
each point in A should lie in the e-neighborhood of some transformed point of B. Clearly,
there are many variants to this problem. The first distinction we make is whether A and
B must have the same number of points and the matching must be a one-one-mapping, or
whether several points in one set may be matched to the same point in the other. Obviously
in the latter case we consider matching with respect to the Hausdorff-distance.

2.2.1 One-to-one matching

Alt et al. [AMWWSS| give polynomial time algorithms for many variants of one-one-
matching of finite point sets. These variants are obtained by the following characteristics:

o different types of transformations that are allowed

e solving either the decision problem: given €, is there a matching?
or the optimization problem: find the minimal ¢ allowing a matching.

e a fixed one-one-mapping between A and B is either already given or one should be
found.

e different metrics, a concept generalized by Arkin et al. [AKM™92] to arbitrary “noise
regions” around the points.

We will demonstrate the techniques used with the example of solving the decision prob-
lem, for a given € as a Euclidean tolerance, of matching under arbitrary rigid motions
without a predetermined one-one-mapping between the point sets A = {aq,...,a,} and
B ={by,...,b,}.

First, it can be shown by an easy geometric argument that, if there exists a valid
matching of B to A then there is one where two points b;, b; of B are matched exactly
to the boundaries of the e-neighborhoods U.(ag), U:(a;) of two points in A. Consider this
configuration for all 4-tuples of points ay, a;, b;, b;. Mapping b;, b; onto the boundaries of
U:(ax) and U, (a;) respectively in general leaves one degree of freedom which is parametrized
by the angle ¢ € [0,27) between the vector b; — ay and a horizontal line. Considering any
other point b,, € B, m # i,j for all possible values of ¢, that point will trace an algebraic
curve Cp, (of degree 6, in fact; see Figure 1).

Being an algebraic curve of constant degree, any C,, intersects the boundary of any
U(a,) at most a constant number of times, in fact, at most 12 times. So there are at
most 6 intervals of the parameter ¢ where the image of b,, lies inside U.(a,). All interval
boundaries of this kind are collected. They partition the parameter space [0, 27) into O(n?)
intervals, so that for all ¢ in one interval the same points of B are mapped into the same
neighborhoods of points of A. All these relationships are represented as edges in a bipartite
graph whose two sides of nodes are A and B. Clearly, the decision problem has a positive
solution exactly if there is some ¢ for which the corresponding graph has a perfect matching.
This is checked by finding the graph for the first subinterval of [0,27) and constructing a
maximum matching for it. Then, while traversing the subintervals from left to right, the
maximum matching is updated until a perfect matching is found or it turns out that none
exists.

Observe, that this procedure is carried out O(n?) times for all 4-tuples ay, a;, b;, b;.
A detailed analysis shows that the total running time of the algorithm is O(n®). In addi-
tion, determining the intersection points of the curves of degree 6 with circles could cause

Figure 1: Curve of point by, when b;, b; are moved on the boundaries of U, (ax), U.(ae).

nontrivial numerical problems. However, simpler and faster algorithms were found for eas-
ier variants of the one-one-matching problem. For the case of translation only, Efrat and
Itai [EI96] improve the bounds of [AMWWS8] using geometric arguments to speed up the
bipartite graph matching involved (for fixed sets, they can compute what they call the op-
timum bottleneck matching in time O(n'?logn)). Arkin et al. [AKM*92] give numerous
efficient algorithms mostly assuming that the e-neighborhoods or other noise-regions of the
points are disjoint. For example, the problem considered above is shown to be solvable
in O(n*logn) time under this assumption. Also a generalization from rigid motions to
similarity transformations is given in that article.

Heffernan and Schirra [HS92a] take an alternative approach to reduce the complexity
of the decision problem in point pattern matching, which they call approzimate decision
algorithms. They only require the algorithm to give a correct answer if the given tolerance
€ is not too close to the optimal solution; more precisely, it has to lie outside the interval
[€opt — @, €opt +] for fixed «, 3 > 0. This way, using network flow algorithms, they can
reduce the running time for solving the problem described above to O(n?%). Behrends
[Beh90] also considers approximate decision algorithms. Assuming in addition that the e-
neighborhoods are disjoint, he obtains a running time of O(n?logn). The best results in
the case that the mapping between A and B is predetermined, are due to Imai, Sumino,
and Imai [ISI89] who analyze the lower envelope of multivariate functions in order to find
the optimal solution.

2.2.2 Point pattern matching with respect to Hausdorff-distance

Now A and B may have different cardinalities, let A = {a1,...,a,} and B = {by,..., by }.
The Hausdorff-distance between A and B can be computed straightforwardly in time

O(nm). It is more efficient to construct the Voronoi-diagrams VD(A) and VD(B) and
to locate each point of A in V D(B) and vice versa in order to determine its nearest neigh-

bor in the other set. This way the running time can be reduced to O((n + m)log(n + m))
(see [ABB91)).

Algorithms for optimally matching A, B under translations for arbitrary L,-metrics in
2 and 3 dimensions using Voronoi diagrams are given by Huttenlocher, Kedem, and Sharir
[HKS93]. The idea of these algorithms is as follows:

The Voronoi-surface of the set A is the graph of the function
d(z) = min [}z —

which assigns to each point z the distance to the nearest point in A. Clearly, d(z) is the
lower envelope of all d,(x) = ||z —a||, where a € A. For example, for Ly and dimension 2 the
graph of d,(x) is an infinite cone in 3-dimensional space whose apex lies in a (see Figure 2).

A

Figure 2: Voronoi surface of A.

The graph of d(z) is piecewise composed of these cones and the projection of the bound-
aries of these pieces is the Voronoi diagram of A.

If B is translated by some vector ¢ the distance of any b € B to its nearest neighbor in
Ais
0p(t) = mi — (b+t)|| = mi —b) —t|| =de_p(t
o(t) = min[la — (b + 1) = min [[(a — b) —t]| = do—y(?)

so the graph of g, is the Voronoi surface of A translated by the vector —b. The directed
Hausdorff distance dp (B +t, A) is the function

f(t) = max 6,(t)

and, consequently, the upper envelope of m Voronoi surfaces, namely those of A — by, A —
by, ..., A — by,. On the other hand we consider

g(t) =0y (A, B +t).

Since g(t) = oz (A + (—t), B) we can define g(t) by upper envelopes like f(t), interchanging
the roles of A and B and replacing ¢ by —t. The Hausdorff-distance between A and B + ¢
is then

h(t) = maz(f(t),g(t))-

Again, for Lo the graph of h is composed of piecewise “conic” segments. We are searching for
ming A(¢). This minimum is found by determining all local minima of h(t). By the bounds
on the number of these minima derived in [HKS93|, algorithms are obtained for matching
2- and 3-dimensional finite point sets under translations minimizing the Hausdorff distance.
In 2 dimensions their running times are O(nm(n + m)lognm) for the Li- and Ly-metric
and O(nm(n + m)a(nm)log(n + m)) for other L,-metrics, » = 2,3,.... In 3 dimensions
time O((nm)?(n +m)'*¢) is obtained for the Ly-metric.

At first glance it is not clear how the technique described earlier can be generalized
from translations to arbitrary rigid motions. However, this is done by Huttenlocher et al.
in [HKK92] by considering so called dynamic Voronoi diagrams. Here, it is assumed that
we have a point set consisting of k rigid subsets of n points each. Each of the subsets may
move according to some continuous function of time. The dynamic Voronoi diagram is the
subdivision of the 3-dimensional space-time such that every cross section obtained by fixing
some time ¢t equals the Voronoi diagram at time ¢. The authors investigate how many topo-
logical changes the Voronoi diagram can undergo as time passes which gives upper bounds
on the complexity of the dynamic Voronoi diagram.

These results are applied to matching under rigid motion by representing the optimal solu-
tion as

D(A,B) = glgl5H(T@(A),B +)

where z € IR? is the translation vector, and rg is the rotation around the origin by angle
© € [0,27). For fixed © we have the situation described before in the case of translations.
The (directed) optimal Hausdorfi-distance can be determined by finding the minimum of
the upper envelope of m Voronoi surfaces, namely the ones of rg(A) — by,...,re(A) — by,.
The minimum algorithm keeps track of this for changing values of ©® by considering the
dynamic Voronoi diagram of these sets where © is identified with the time parameter. As
a consequence, an optimal match of two point sets under arbitrary rigid motions can be
found in time O((m + n)® log(mn)).

Matching of point patterns under translations in higher dimensions is investigated by
Chew et al. [CDEK95]. For the decision problem in case of the L..-metric, the space of
feasible translations is an intersection of unions of unit boxes. This space is maintained
using a modification of the data structure of orthogonal partition trees by Overmars and
Yap [OY91]. This gives algorithms for the decision problem which are used to solve the
optimization problem by parametric search [Meg83], [Col84]. In particular, for the L-
metric an algorithm of running time O(n(*¢=2)/3 10g? n) is obtained where n is the number

of points in both patterns. For d-dimensional point patterns under the Lo-metric, the
matching takes time O(n[3%/21+1 1og3 n).

The methods described before are probably quite difficult to implement and numeri-
cally unstable due to the necessary computation of intersection points of algebraic surfaces.
A much simpler but practically more promising method is given by Goodrich et al. in
[GMOY4]. For a “pattern” P and a “background” B of m and n points, respectively, it
approximates the optimal directed Hausdorfl-distance ming 0y (T'(P),B) up to some con-
stant factor. 71" ranges over all possible transformations which are translations in arbitrary
dimensions or rigid motions in 2 or 3 dimensions. The approximation factors are between
2+ ¢ for translations in JR? and 8+ ¢ for rigid motions in JR?. The running times are consid-
erably faster than the ones of algorithms computing the optimum exactly. The algorithm
for rigid motions in IR? essentially works as follows:

1. Fix a pair (p, q) of diametrically opposing points in P.
2. Match the pair by some rigid motion as good as possible to each pair of points of B.

3. For each such rigid motion determine the distance of the image of each point in P
to its nearest neighbor. Choose that match where the maximum of these distances is
minimized.

In higher dimensions the nearest neighbor search is done approximately by the data
structure of Arya et al. [AMN™194].

2.2.3 Practical Variations

Percentile-Based Hausdorff Distance

As was mentioned above, the Hausdorff-distance is probably the most natural function
for measuring the distance between sets of points. Furthermore, it can easily be applied
to partial matching problems. In fact, suppose that sets A and B are given where A is a
large “image” and B is a “model” of which we want to know whether it matches some part
of A. This is the case exactly if there is some allowable transformation 7' such that the
one-way Hausdorf-distance d (T'(B), A) is small. In fact, many of the matching algorithms
with respect to Hausdorff-distance presented previously can be applied to partial matching
as well. An application of this property to the matching of binary images is given by
Huttenlocher et al. in [HKR93] where a discrete variant of the Voronoi-diagram approach
for matching under translation with respect to Hausdorff-distance is used.

In the same article a modification of the Hausdorff-distance is suggested for the case
that it is not necessary to match B completely to some part of A but only at least &k of the
m points in B. In fact, the distance measure being used is

hi(B, A) = miny, min ||a — b|

where ming denotes the k-th smallest rather than the largest value. This percentile definition
allows us to overcome the sensitivity of the Hausdorff-distance to outliers, which is very
important in practice.

The paper [HKR93] is also interesting in that the authors show how to adapt some of
the conceptual geometric ideas presented earlier to their rasterized context so as to obtain,
after several other optimizations they invented, efficient practical algorithms for the partial
Hausdorff matching described above.

Alignment and Geometric Hashing

A number of other techniques for point pattern matching have been developed and used
in computer vision and computational molecular biology. In computer vision the point
pattern matching problem arises in the context of model-based recognition [EG90, Bai84]
— in this case we are interested in knowing whether a known object (we will call it the
model M) appears in an image of a scene (which we will denote by S). Both the model
and the scene are subjected to a feature extraction process whose details need not concern
us here. The outcome of this process is to represent both M and S as a collection of
geometric objects, most commonly points. The same principle applies to the molecular
biology applications — typically molecular docking [NFWNO94]. In that context we are
trying to decide if the pattern, usually a small molecule (the ligand), can sterically fit into a
cavity, usually the active site of some protein. Again through a feature extraction process,
both the ligand and the active site can be modeled by point sets. The dimensionalities
of the point sets M and S, as well as the transformation group we are allowed to use in
matching M to S, are application dependent. In computer vision S is always 2-D while M
can be either 2-D or 3-D; both are 3-D in the biology context.

To illustrate the methods of alignment and of geometric hashing we use below an example
in which both M and S are planar point sets of cardinalities m and s respectively. In the
example we will assume that the allowed transformation group when matching M to P is
the group of similarities, i.e. Euclidean transformations and scalings. We are interested in
one-way matches from M to P, in the sense of the one-way percentile Hausdorff distance:
we will be looking for transformations that place many (most) points of M near points of
P. The extension of these ideas to the case of other dimensions and other transformation
groups is in general straightforward; the one exception is when the allowed transformations
include a (dimension-reducing) projection — about which more below.

In the alignment method [HU90], two points a and b of M are first chosen to define a
reference coordinate frame [a; b] for the model. We can think of the first point as the origin
(0,0) and the second point as the unit along the z-axis (1,0). This choice also fixes the y-
axis and thus an orthogonal coordinate system in which all points of M can be represented
by two real values. Note that this representation of the points in M is invariant under
translations, rotations, and scalings. We now align the points of ¢ and b of M with two
chosen points p and ¢ of S respectively. Up to a reflection, this fixes a proposed similarity
mapping M to S (we will ignore the reflection case in what follows). In order to test the
goodness of this proposed transformation, we express all points of S using coordinates in
the frame [p; ¢]. Now that we have a common coordinate system for two sets, we just check

10

for every point of M to see if there is a point of S nearby (within some preselected error
tolerance). The number of points on M that can thus match in this verification step is the
score for the particular transformation we are considering.

The alignment method consists of trying in this way to align pairs of points of M with
pairs of points of S and in the process discover those transformations that have the highest
matching score. If we could assume that all points of M are present in S, in principle we
could get by by matching and verifying a specific pair from M with all its counterparts in
S. Because of occlusions, however, this assumption cannot be made in practice and usually
we need to try many pairs of points from M before the correct match is found. Alignment is
thus an exhaustive method and its worst-case combinatorial complexity is bad, O(m?3s?) —
even assuming only a linear O(m) verification cost (O(m log s) would be a more theoretically
correct bound). Things get worse as the size of the frames we need to consider increases
with higher dimensions or larger transformation groups. Thus in the vision context a lot
of attention must be given to the feature extraction process, so that only the most critical
and significant features of each of M and § are used during the alignment.

Since we may want to match the same model M into many scenes or, conversely, we may
be looking for the presence of any one of a set of models My, My, ..., My in a given scene, it
makes sense to try to speed up the matching computation through the use of preprocessing.
This leads to to the idea of geometric hashing [LW88, LSW88a, LSW88b]. Let us describe
geometric hashing in the same context as the in the above alignment problem, but with
several models My, Mo, ..., M. As above, for each model M; and each frame [a;b] of two
points for that model, we calculate coordinates for all other points of M; in that frame. The
novel aspect of geometric hashing is that these coordinates are then used as a key to hash
into a global hash table. We record at that hash table entry the model index and frame
pair the entry came from. The computation of this hash table completes the preprocessing
phase of the algorithm. Note that there is a hash table entry for each triplet (model, frame
for that model, other point in that model); multiple triplets may hash to the same table
entry, in which case they are linked together in a standard fashion.

At recognition time, we choose a frame pair [p;q| in the scene S and compute the
coordinates of all points of S in that frame. Using then these coordinates as a key, we then
hash into the global hash table and ‘vote’ for each (model, frame) pair stored at that hash
table entry. If we were lucky to choose two scene points which correspond to two points [a; b]
in an instance of some model M;, we can then expect that the pair (M;, [a; b]) will get many
votes during that process, thus signaling the presence of M; in the scene and also indicating
the matching transformation involved. In general, of course, we cannot expect to be so lucky
in choosing p and ¢ the first time around, so we will have to repeat the voting experiment
several times. In the worst case, preprocessing for a model M of size m costs O(m?) and
the recognition by voting also costs O(s®) (we assume throughout that the cost of accessing
the hash table is constant). Note that by appropriately rounding the coordinates used as
a key to the hash table we can allow for a certain error tolerance in matching points of M
and S. Also, once some promising (model, frame) pairs have been identified, the votes for
the winner actually give us a proposed correspondence between model and scene points.
The matching transformation can then be calculated more accurately using a least-squares

11

fit [LSWSSb].

As was mentioned above for the alignment problem, these ideas also extend to matching
point sets in 3-D, as well to other transformation groups, such as the group of affine maps.
One noteworthy aspect of this in the vision case is the dimension-reducing projection maps
that must be allowed in matching (as when M is 3-D but S is 2-D). This makes the problem
harder, as the projection map is not invertible and a point in .S has an inverse image which
is a line in 3-D. This can be handled in geometric hashing by having each point of S, after
a frame has been chosen, generate samples along a line of possible matching points from M
in 3-D and vote for each of them separately [LW88].

Geometric hashing has been successfully used in both identifying CAD/CAM models
in scenes, as well in the molecular docking problem [LW88, LSW88a, LSW88b, NFWN94,
NLWN94]. Performance in practice tends to be much better than the above combinatorial
worst-case bounds would indicate. Recent theoretical studies also suggest that random-
ization can improve the above bounds for alignment and geometric hashing, especially in
cases where the model is not present in the the scene, or when the point sets involved have
limited ‘self-similarity’ [IR].

3 Matching of Curves and Areas

Apart from point patterns, research has been done in recent years also on the resemblance
of more complex patterns and shapes, mostly in two dimensions. These objects usually
are assumed to be given by polygonal chains or one or more simple polygons representing
their boundary. As a measure for their resemblance usually the Hausdorff-distance is used,
though some articles are concerned with other variants, as described in Section 2.2.3.

3.1 Optimal Matching of Line Segment Patterns

Throughout this section we will assume, if not explicitly stated otherwise, that the input
to the algorithms consists of two sets A, B of n, m line segments in two dimensions,
respectively. The aim is to find an optimal match between A and B, i.e. a transformation
T minimizing the Hausdorff-distance dy (A, T(B)). Here, A and B are identified with the
sets of points lying on their line segments and the metric underlying the Hausdorff-distance
is LQ.

Notice that while there is a straightforward O(nm) algorithm for computing the Haus-
dorff distance between fixed finite point sets A and B, this is no longer the case for sets of
line segments. In the case of convex polygons Atallah [Ata83] gave a linear time algorithm.
For arbitrary sets of line segments an asymptotically optimal O(n logn) algorithm was given
by Alt et al. in [ABB91]. This algorithm is based on the fact, that the Hausdorff distance
can only occur at endpoints of line segments or at intersection points of line segments of
A with the Voronoi diagram of B or vice versa. Furthermore, for any Voronoi edge this
can happen only at the two extreme intersection points with line segments of the other set.
These points are then determined by a line sweep algorithm.

12

In [ABB91] it was also observed that the matching problem under translations or rigid
motions can be solved in polynomial time. These results are based on the fact that if the
transformation has k degrees of freedom (e.g. k = 3 for rigid motions) then in the optimal
position the Hausdorff-distance essentially must occur at at least k£ 4 1 different places.

More sophisticated techniques leading to asymptotically faster, but probably practically
quite complicated algorithms are used by Agarwal et al. [AST94] for translations and Chew
et al. [CGHT93] for arbitrary rigid motions. Both articles start with essentially the same
idea. They first solve the decision problem whether for given A, B, and € > 0 there exists
a transformation 7" such that dy(A,T(B)) < e. Let us consider the one-way Hausdorff-
distance in detail, with just a few technical details it can be extended to the two way
Hausdorff distance.

Let C. be the disk of radius € around the origin and A, the Minkowski sum A @ C,. Clearly,
A, is the union of so called “racetracks” ([AST94]), i.e. rectangles of width 2¢ with semidisks
of radius € attached at their ends (see Figure 3).

Figure 3: The set A..

Now, for a transformation T’ the one-way Hausdorff-distance 0y (T(B), A) < ¢ exactly if
T(B) C A.. Let us consider the case of translations first. Suppose ¢ is a translation vector
not satisfying the inclusion above. So we have B+t ¢ A., in particular t+b; ¢ A, for some
line segment b; € B. This is equivalent to t € A, @ (—b;), where A, denotes the complement
IR%\ A, of A.. Conversely, a translation ¢ moves B into A, exactly if t € A, @ (—b;) for
i = 1,...,m. The latter set we will denote by A%, (see Figure 4) so there is a one way
match exactly if the set

m
S = ﬂ A;
i=1
is nonempty.
Figure 4 shows that in the construction of the sets A7, ¢ = 1,...,m, we use the circular

arcs and line segments bounding A, and, additionally, these curves translated by the vector
bi; altogether there are O(nm) circular arcs and line segments. Each A is a union of
some of the cells of the arrangement A defined by these curves. The decision problem for
translations can be solved by a sweep line algorithm. While sweeping across the arrangement
the algorithm computes the depth of the cells, i.e. the number of different A; that cover a
cell. Clearly, S is nonempty, exactly if there is a cell of depth m.

13

Figure 4: The set A; (shaded).

Since the complexity of the arrangement is O((mn)?) the sweep line algorithm solves
the decision problem for translations in O((mn)?log(mn)) time (see [AST94]). In the case
of rigid motions (see [CGHT93]) we assume that first the set B is rotated around the origin
and then translated in order to match the set A. For each orientation 6 € [0, 27) we consider
the sets A; (#) which are defined like A%, only that b; is rotated by angle 6 around the origin.
Likewise the arrangement 4(f) depends on the orientation 6.

A(0) and the depth of its cells can be determined as described before. Then while
increasing 6 the algorithm keeps track of the changes that occur in the arrangement and
of the depth of the newly appearing cells. The arrangement only changes topologically for
orientations 6 where two sets of the form (a; ® €) ® (—b;) touch each other, a so-called
“double event” (see Figure 5 a)), or the boundaries of three of them intersect in one point,
a “triple event” (see Figure 5 b)).

Altogether, there are O(m>®n3) events. The algorithm determines them and sorts them
in a preprocessing phase. Then it makes use of a suitable data structure where all local
changes in the arrangement due to an event can be processed in constant time. In this
manner, starting from 4(0) all arrangements are inspected whether for some 6 there is a
cell in A(#) of depth m. If so, a positive answer is given to the decision problem. Altogether
the algorithm requires O(m?®n? log(mn)) time.

In both cases the algorithms for the decision problem can be turned into ones for the
optimization problem by parametric search (see [Meg83] [Col84]) on the parameter ¢. For
matching by translation, Agarwal et al. [AST94] describe a parallel algorithm which first
computes the arrangement 4. Then it determines the depth of its cells by considering
the dual graph, finding an Eulerian path in it and using that to traverse the cells sys-
tematically. This parallel algorithm is used to direct the parametric search. Altogether,
an O((mn)?log®(mn)) algorithm for finding the optimal matching under translations is
obtained.

For optimal matching by rigid motions Chew et al. [CGH'93] use an EREW-PRAM
sorting algorithm for the events to direct the parametric search. Whenever this algorithm
attempts to compare two events 01 (e), f2(c), the set of critical parameters ¢ is determined

14

a) b)

Figure 5: Orientations where the arrangement changes: a) double event b) triple event.

and sorted. Then a binary search is done on these critical parameters in each step involving
the decision algorithm described before to determine the interval containing the optimal e.
Altogether an O((mn)?log?(mmn)) algorithm is obtained for optimal matching under rigid
motions.

With essentially the same ideas and the usage of dynamic Voronoi diagrams efficient
algorithms for point pattern matching are obtained in [CGH'93], as was mentioned in
section 2.

Huttenlocher et al. [HKS93] also extend the Voronoi diagram approach described in
section 2 to sets of line segments. This method leads to rather complicated surfaces if the
Hausdorff-distance with respect to the Lo-metric is considered. However, if the underlying
metric is L; or Ly the situation is simpler and an O((mn)?a(mn)) algorithm can be
obtained.

3.2 Approximate Matching

As we have seen in the previous sections the algorithms for finding the optimal solution
of the matching problem use quite sophisticated techniques from computational geometry
and, therefore, are probably too complicated to implement. Also the asymptotic running
times are, although polynomial, rather high. One approach to overcome these problems are
approzimation algorithms for the optimization problem. These are algorithms that do not
necessarily find the optimal solution, but one whose distance is within a constant factor ¢
of the optimum. Again, if not explicitly stated otherwise we will consider matching of sets

15

of line segments with respect to Hausdorff-distance based on the Lo-metric.

Approximation algorithms in this context were considered first by Alt et al. [ABB9I1,
ABBY95] using so called reference points. These are points r4, rp that are assigned to the
sets A and B and have the property that when B is transformed to match A optimally then
the distance of the transformed rp to r4 is also bounded by a constant factor a times the
Hausdorff-distance of the matching. « is called the quality of the reference point.

A reference point can be found very easily in the case of translations as allowable trans-
formations. In fact, to a set A assign the point ra = (x4,) where z/t.~(yz.) is
the lowest z-coordinate (y-coordinate) of any point in A. So r4 is the lower left corner of

the smallest axes-parallel rectangle enclosing A. Observe that if in an optimal match A
B < ¢ and

and the translated image B’ of B have Hausdorff-distance ¢ then ‘xfun — Ty in

A B’
‘ymin ~ Ymin
image of rp under the translation, is at most v/26. So 74 is a reference point for A of quality

V2.

< § (see Figure 6). Consequently, the distance of r4 and rg/, which is the

§ 2

A

Figure 6: Optimal match between A and B under translations.

Now, suppose that instead of finding the optimal translation of B to match A we use
just the one that matches rg to r4 obtaining an image B” of B. Then, since B’ is obtained
from B" by translation by the vector rg: — 74, 6 (B, B") < v/25. Consequently

6H(A7 B”) 6H(A7BI) +6H(B,7B”)

(V2 +1)d.

<
<

So the Hausdorff-distance of the match found by the reference points is at most by a factor
V2 + 1 ~ 2.4 worse than the optimal one. In general, matching with respect to a reference

16

point of quality a for translations yields a match that is at most a factor a + 1 worse
than the optimal one. Observe that the approximation algorithm has linear running time,
since only the reference points need to be determined. So it is much faster and much
simpler than the best known algorithm for finding the optimal match which has running
time O((mn)? log® mn) [AST94].

Reference points for rigid motions are not that easy to find. Obviously the one for
translations given above does not work any more. Nor do the seemingly obvious choices
like the center of gravity of the convex hull of a set A or the center of the smallest enclosing
circle. It was shown by Alt et al. [ABB91] that for an arbitrary bounded set A the center of
gravity of the boundary of the convex hull is a reference point with respect to rigid motions.
However, the upper bound given for the quality of this reference point is rather large, in
fact, it is 47 + 4 ~ 16.6.

Aichholzer et al. in [AAR94] found a better reference point. In fact, imagine that the
axes-parallel wedge determining the reference point for translations given above is circled
around the set A. Then its apex describes a closed curve. For the “average point”on this
curve no particular direction is preferred, so it might be a candidate for a reference point
under rigid motions. Formalizing and slightly simplifying this idea, we obtain the following
definition for arbitrary bounded sets A:

27
s(4) = — [(@) (‘;Oj jf) s

where h4(¢) is the so called support function of A which assigns to ¢ the largest extent of
A in direction ¢.

The point s(A) is the so called Steiner-point of A. The Steiner point is well investigated
in the field of convex geometry [She66, Grii67] as well as in functional analysis [PY89].
Using these results it is shown in [AAR94] that the Steiner point is a reference point not
only for translations and rigid motions but even for similarities and not only for two but for
arbitrary dimensions. Its quality is 4/7 ~ 1.27 in two, 1.5 in three and between \/2/—7r\/3
and \/2/mv/d + 1 in d dimensions. Usually the Steiner point is defined for convex bodies
only, it can be extended to arbitrary bounded sets by taking the Steiner point of the convex
hull. In the case of sets of line segments we obtain convex polygons for which the Steiner
point can easily be computed. In fact it is the weighted average of the vertices where each
vertex is weighted by its exterior angle divided by 27. Furthermore, Przeslawski and Yost
[PY89] showed that for translations there is no reference point whose quality is better than
the one of the Steiner point.

In the case of translations the usage of a reference point for approximate matching
was obvious. In the case of rigid motions first the two reference points are matched by a
translation and then the optimal matching is sought under rotations around the common
reference point. This is easier than the general optimization problem since the matching of
the reference points reduces the number of degrees of freedom by two (in two dimensions).
In the case of similarities, figure B is first stretched by the factor d4/dp, where d4 and dp
are the diameters of A and B, respectively. Then the algorithm for rigid motions is applied.

17

In [AARY4] it is shown that from reference points of quality a approximation algorithms
are obtained yielding a solution within a factor of a + 1 of the optimal one in the case of
rigid motions and within a factor of a + 3 of the optimal in the case of similarities. The
running times for both approximate matching algorithms are O(nm log(nm) log*(nm)).

Finally it should be mentioned that by an idea due to Schirra [Sch88] it is possible to get
the approximation constant of reference point based matching with respect to translations
or rigid motions arbitrarily close to 1. In fact, suppose that the quality of the reference
point is a. This means that in the optimal match the distance of reference point rg is
mapped into the ad-neighborhood U of r4. In order to achieve an approximation constant
14 € for a given £, we place onto U a sufficiently small grid so that no point in U has
distance greater than € from the nearest grid point. Instead of placing rp onto r4 only
we place it onto each grid point and proceed as described before. Since at some point rp is
placed at a distance of at most £d of its optimal position, the approximation constant is at
most 1 4+ . Notice, that for a constant ¢ only constantly many grid points are considered
so the running time only changes by a constant factor.

3.3 Distance Functions for Non-Point Objects

In some applications, the simplicity of the Hausdorff-distance can be a disadvantage. In
fact, when the distance between curves is measured the Hausdorff-distance may give a wrong
picture. Figure 7 shows an example where two curves have a small Hausdorff-distance
although they have no resemblance at all.

AT
TV -

Figure 7: Two curves with small Hausdorff-distance §.

The reason for this problem is that the Hausdorff-distance is only concerned with the
point sets but not with the course of the curves. A distance considering the curves’ courses
can informally be illustrated as follows: Suppose a man is walking his dog, he is walking
on one curve, the dog on the other. Both are allowed to control their speed but not to go
backward. What is the shortest length of a leash that is possible? Formally, this distance
measure between two curves in d-dimensional space can be described as follows

op(f,9) = inf max |[f((t)) — g(B6(2))]]

a,B t€[0,1]

where f,g : [0,1] — IR? are parameterizations of the two curves and «, : [0,1] — [0,1]
range over all continuous and monotone increasing functions. This distance measure is

18

known under the name Fréchet-distance.

The Fréchet-distance seems considerably more difficult to handle than the Hausdorfi-
distance. No matching algorithms have been developed yet, the following algorithm for
measuring the Fréchet-distance between two polygonal chains has been given by Alt and
Godau [AG92, AGY95].

Let P and @Q be the given polygonal chains consisting of n and m line segments respec-
tively. First we consider the decision problem, so in addition to P and) some £ > 0 is
given and we want to decide whether 6 (P, Q) < e. We first consider the m x n-diagram
D.(P,Q) shown in Figure 8 which indicates by the white area for which points p € P,
g € Q |lp — q|| < e. The horizontal direction of the diagram corresponds to the natural
parameterization of P and the vertical one to that of (. One square cell of the diagram
corresponds to a pair of edges one from P and one from () and can easily be computed since
it is the intersection of the bounding square with an ellipse.

P

V

Er—— Q

Figure 8: P, @, € and the diagram D.(P, Q).

Now it follows from the definition that dz(P, Q) < e exactly if there is a monotone
increasing curve from the lower left to the upper right corner of the diagram. These consid-
erations lead to an algorithm of running time O(mn) for the decision problem. Then Cole’s
variant of parametric search [Col87] can be used to obtain an algorithm of running time
O(mnlog(mn)) to compute the Fréchet-distance between P and Q. In practice, it seems
more reasonable to determine dz(P, Q) bit by bit using binary search where in each step
the algorithm for the decision problem is applied.

Arkin et al. [ACH"91] consider a distance function between shapes in two dimensions
that is based on the slope of the bounding curves. In fact, for a given shape A some starting
point O on the bounding curve is chosen and the curve is then parametrized with the natural
parameterization n4 (i.e. parameterization by arc length) which is normalized so that the
parameter interval is [0,1]. To each parameter ¢ € [0, 1] the angle © 4(¢) between the counter-
clockwise tangent of A in the point n4(t) and a horizontal line is assigned. © 4 is called
the turning function of A. © 4 is piecewise constant for simple polygons (see Figure 9), it
is invariant under translations and, because of the normalization of the parameterization
under scaling. A rotation of A corresponds simply to a shift in ©—direction and a change

19

of the origin to a shift in ¢—direction.

JT—

Y
-+

Figure 9: Turning function of a simple polygon.

Now, as a distance measure between shapes A and B the L,-metric (p € IN) between
O 4 and Op is being used, i.e. we define

1 P
5,(A, B) = </|®A(s) —@B(s)v’ds) .

0

Then this distance measure is made invariant under translations and the choice of the
starting point 0:

. 1
p— 1 - p
dy,(A, B) eegtlél[o,l] (0/ |©a(s +1t) —Op(s) + O] ds) .

It is shown that d, is a metric for all p € IV.

An algorithm is given for computing do(A, B) where A, B are simple polygons with n and
m edges, respectively. It can be shown that the minimum in the definition of d, can occur
at at most O(mn) “critical” values of ¢. By considering partial derivatives with respect to
O it is shown that for any fixed ¢ the optimal © can easily be computed. Altogether, an
O(mnlogmn) algorithm is obtained. An extension of this algorithm to deal with scaling as
well was recently given by Cohen and Guibas [CG97].

The drawback of this distance measure is its sensitivity to noise, especially non-uniformly
distributed noise, but it works properly if the curves are sufficiently smooth.

A generalization of this distance to a distance measure that is invariant under affine
transformations is given by Huttenlocher and Kedem [HK90]. With respect to this distance,
matching of two polygons with n and m vertices under affine transformations is possible in
time O(mnlogmn).

A different idea is to represent shapes by their areas rather than by their boundaries.
In this context the probably most natural distance measure between two shapes is the area

20

of their symmetric difference. However, this measure seems to be much more difficult to
handle than Hausdorff-distance. Within computational geometry it was first considered
in a paper by Alt et al. [ABGW90] in connection with the very special problem of opti-
mally approximating a convex polygon by an axes—parallel rectangle. Only recently some
more results on the symmetric difference have been obtained. In fact, de Berg et al. in
[dBDvK™96] consider matching algorithms maximizing the area of overlap of convex poly-
gons which is the same as minimizing the symmetric difference. They obtain an algorithm
of running time O((n + m) log(n + m)) for translations where n and m are the numbers of
vertices of the two polygons. In addition, it is shown that if just the two centers of gravity
are being matched by a translation this yields a position of two convex figures where the
area of overlap is within a constant factor of the maximal one. A lower bound of 9/25 and
an upper bound of 4/9 is obtained for this constant, so the center of gravity is a reference
point with respect to maximizing the overlap under translations.

As easily can be seen this does not imply directly that it is a reference point with respect
to the area of the symmetric difference. However, this can be shown, as well. In fact, Alt
et al. [AFRW96] show that if the centers of gravity of two convex figures are matched the
area of the symmetric difference is at most 11/3 times the minimal one. It is demonstrated
with an example that this bound is tight. The center of gravity is also a reference point for
other sets of transformations such as rigid motions, homotheties, similarities, and arbitrary
affine mappings.

4 Shape Simplification and Approximation

In manipulating shape representations, it is often advantageous to reduce the complexity of
the representation as much as possible, while still staying geometrically close to the original
data. There is a vast literature on shape simplification and approximation, both within
computational geometry and in the various applied disciplines where shape representation
and manipulation issues arise. In this section we cannot possibly attempt to survey all the
approaches taken and the results obtained. We will focus on a small subset of results giving
efficient algorithms for shape simplification under precise measures of the approximation
involved.

4.1 Two-dimensional Results

To focus our attention, let us consider the problem of simplifying a shape represented as a
polygonal chain in the plane. Our goal is to find another polygonal chain with a smaller
number of links and which stays close to the original. Let the original chain be C, defined
by n vertices v1, va, ..., v, (we assume in this discussion that C is open), and let the desired
approximating chain A be defined by m vertices wy, wo, ..., wp. A number of variations on
the problem are possible, depending on exactly how the error, or distance, between C' and
A is measured, and on whether the w;’s need to be a subset of the v;’s, or can be arbitrary
points of the plane. In general we have to solve one of two problems in finding A:

21

The min-# problem: Find an A which minimizes m (the combinatorial complexity of
A), given some a priori bound € on the maximum allowed distance between C and A,
or

The min-e¢ problem: For a given m, find an A which minimizes the distance ¢ between
C and A.

In order to illustrate some of the ideas involved in solving these problems, let us further
assume that both C' and A are z-monotone chains — in other words, C' and A are piecewise
linear continuous functions C'(z) and A(z). For such chains a very natural measure of
distance is the so-called wuniform or Chebychev metric defined as

d(A,C) = max|A(z) — C(x)|,

where the max is taken over the support on the z-axis for C. Let us consider the case
when the vertices of A can be arbitrary points, i.e. need not be vertices of C'. Imai and Iri
(1186, 1188], and Hakimi and Schmeichel [HS91] gave optimal O(n) algorithms for the min-#
problem in this context. Their methods can be viewed as an extension of the linear-time
algorithm of Suri [Sur86] for computing a minimum link path between two given points
inside a simple polygon (here the polygon is the chain C' appropriately ‘fattened’ vertically
by the allowed error €) and make crucial use of the concept of weak-visibility from an edge
inside a simple polygon [AT81]. Similar ideas were also used by Aggarwal, Booth, O’'Rourke,
Suri, and Yap [ABOT89] to give an O(nlogk) algorithm for finding a convex polygon with
the smallest number k of sides nested between two given convex polygons of total complexity
n.

For the min-e variant of the chain simplification problem, Hakimi and Schmeichel gave
an O(n?logn) algorithm by cleverly limiting the critical values of € to a set of size O(n?)
and then using a certain kind of binary search. More recently, Goodrich [Goo94] used
a number of new geometric insights to reduce the set of critical e values to O(n) and
thus obtained an O(nlogn) algorithm through several applications of pipelined parametric
searching techniques. For a survey of results when A and C' are not constrained to be x-
monotone, see the paper of Eu and Toussaint [ET94] and related work by Hershberger and
Snoeyink [HS94], and Guibas, Hershberger, Mitchell, and Snoeyink [GHMS93]. In general,
algorithms for the min-# problem have linear complexity, while those for the min-e have
quadratic complexity.

Next let us consider the problem variant where the vertices of A have to be a subset
of the vertices of C. Now we do not require that A or C' be z-monotone (so we revert to
using the Hausdorff distance function). One of the oldest and most popular algorithms for
this problem is the heuristic Douglas-Peucker [DP73] line simplification algorithm from the
Geographical Information Systems community; Hershberger and Snoeyink showed how to
implement this algorithm to run in O(nlogn) time [HS92b]. A more formal approach to
the problem was initiated in the papers by Imai and Iri cited above. For the min-# variant,
Imai and Iri reduce the problem to a graph-theoretic problem as follows. A line segment
v;U; joining vertices v; and v; of C is called a shortcut for the subchain v, v;41,...,v; of
C. A shortcut is allowed if the error it induces is at most the prescribed error €; the error

22

of the shortcut v;v; is defined to be the maximum distance from ;05 to a point v, where
t < k < j. It is easy to see that this is also the Hausdorff distance from #;v; to the subchain
Vi, Vit1, - -,0j. Our goal is to replace C' by a chain consisting of allowed shortcuts.

So we consider a directed acyclic graph G whose nodes V are the vertices vy, vs,..., v,
of C and whose edges E are the pairs (v;,v;) if and only if ¢ < j and the shortcut 7;v; is
allowed. A shortest (in terms of the number of edges) path from v; to v, corresponds to
a minimum vertex simplification of C; such a path can be found in time linear in the size
of G by topological sorting [CLR90]. The size of G is O(n?) and it can be computed by an
obvious method in O(n?) time. Thus constructing G is the bottleneck in the computation.
Melkman and O’Rourke [MO88] showed how to reduce the construction time to O(n?logn),
and Chan and Chin [CC92] further reduced it to optimal O(n?).

The Chan and Chin algorithm starts from the observation that the error of a shortcut
V05, 1 < J, is the maximum of the errors of two half-lines: the one starting at v; and going
towards v; (call it [;;), and of the one starting at v; and going towards v; (call it [;;). To
compute the graph G we intersect the graphs G and G, where G| contains the edge (v;, v;)
if and only if ¢ < j and the error of /;; is less than € and G contains the edge (v;,v;) if and
only if i < j and the error of [;; is less than e. We show how to compute G; in O(n?) time;
the computation of G is entirely symmetric by reversing the number of the vertices of C.

We examine the vertices of G; in the sequence v, vs,...,v,. When we process vertex
v;, we calculate in turn the errors determined by all half-lines /;;, where j takes on the
values 7 + 1,7 + 2,...,n. Let D, denote a closed disk of radius € centered at vg. The
error of [;; is at most € if and only if /;; intersects all disks Dy with s < k < j. Thus
the algorithm works by maintaining the cone of half-lines from v; which intersect the disks
Dii1,Diyo,...,D; (which is nothing but the intersection for the corresponding cones for
all these disks separately). When we process v;,1 it suffices to update this cone, which is a
constant time computation. If the cone stays non-empty, then (v;,vj11) is in G1; otherwise
we are done with v; as all further half-lines will also have error which is too large. Thus
the computation of G, and therefore of G and of our desired shortest path can be done
in O(n?) time. Figure 10 illustrates the situation with the disks and the cone of v; a some
intermediate point.

Methods based on the Imai-Iri graph construction seem inherently quadratic as, if €
is large enough, the graph will have Q(n?) allowed shortcuts. Very recently, Varadarajan
[Var96] was able to use graph clique compression techniques such as those proposed by Feder
and Motwani [FM91] to obtain an O(n*/3%9) algorithm for this min-# problem in the case
of z-monotone chains. Varadarajan gave a randomized and a more complex deterministic
algorithm for the min-€ version of this problem as well, with the same time bound.

In the general (non-z-monotone) case of the above chain simplification problems it is
quite possible that A may end up being self-intersecting, even though C itself is simple. This
is clearly undesirable in many application contexts. Even worse, one is often simplifying
several chains at once, as in the case of boundaries between regions in, say, a geographical
map. In this case it is important that the topological structure of the regions be maintained
after simplification, so the simplifications of disjoint chains are not allowed to end up crossing

23

Ui

Figure 10: The computation of the allowed shortcuts starting at v;

each other. Guibas, Hershberger, Mitchell, and Snoeyink [GHMS93] showed that the min-#
problem is NP-hard in this case, when the positions of the approximating vertices can be
arbitrary. When the vertices of the approximating chain have to be a subset of the original
chain and we are in the z-monotone setting, de Berg, van Kreveld, and Schirra [dBvKS95]
gave an O(n(n + m)logn) algorithm for the min-# problem for a chain C' of n vertices so
that the resulting approximating chain A is guaranteed to be simple and to be on the same
side of each of m given points as C is. Using this algorithm as a local subroutine, they give
a method for polygonal subdivision simplification which is guaranteed to avoid topological
inconsistencies (but which need not be globally optimal).

4.2 Three dimensions

Unfortunately the situation is not an equally happy one in three dimensions. Nearly all
natural extensions of the above problems are NP-hard, so most of the extant work to-date
has focussed on approximation algorithms.

The analog of an z-monotone chain in 3-D is that of a polyhedral terrain, which is
just a continuous bivariate (and possibly non-total) function z = T'(x,y) which happens to
be piecewise linear. The complexity of a terrain can be measured by its total number of
vertices, edges, and faces. The numbers of these are linearly related by Euler’s relation, so
most often we will use the number of faces as our measure of the complexity of a terrain.
There is a plethora of techniques in the literature for simplifying polyhedral terrains, by
effectively deleting vertices which lie in relatively flat neighborhoods (and retriangulating
the hole thus created). Unfortunately not much has been proved about such methods.
In fact, Agarwal and Suri [AS94] have shown that even the simpler problem of deciding
the approximability within a vertical tolerance e of a collection of n isolated points by a
polyhedral terrain with at most k faces is NP-hard. Similarly, though more surprisingly,
Das and Joseph [DJ90] showed that finding a convex polytope of at most k facets nested
between two other convex polytopes P and () with a total of n facets is also NP-hard, thus

24

settling an old question first posed by Klee.

With these results in sight, researchers turned their effort to approximation algorithms.
Mitchell and Suri [MS92] formalized the nested convex polytope problem as a set-cover
problem by considering the regions defined on the outer polytope by tangent planes to
the inner polytope. They showed that the greedy method of set covering computes a
nested polytope with O(klogn) facets, where k is the complexity of an optimal nested
polytope. The same approach also works for the approximation by a convex surface of n
points themselves sampled from another convex surface. These algorithms run in O(n?)
time. These results were extended by Clarkson [Cla93], who gave a randomized algorithm
with expected time complexity O(kn!'T?) for computing a nested polytope of size O(x log).
Brénnimann and Goodrich [BG94] further improved the set cover algorithm using VC-
dimension ideas to obtain a deterministic algorithm that computes a nested polytope which
is to within a constant factor of the optimal one.

The set cover formulation, unfortunately, does not work for the terrain approximation
problem, as we cannot independently select faces in the approximating surface. Agarwal and
Suri in the paper cited above formulate instead the terrain fitting problem as a geometric
partitioning problem: first we project all the points to be approximated on the zy-plane;
then we seek a disjoint collection of triangles in the zy-plane which cover all these points
and such that each triangle satisfies a certain legality constraint w.r.t. the points it covers.
This constraint, which can be formulated as a linear program, is that the triangle can
be lifted to 3-D so that it e-approximates all the points it contains. Agarwal and Suri
gave an approximation algorithm which solves this problem and produces a covering set
of legitimate triangles whose size is O(k log k), where again x is the minimum number of
triangles possible. Unfortunately their algorithm has a very high complexity O(n®).

5 Shape Interpolation

Shape interpolation, more commonly known as morphing, has recently become a topic
of active research interest in computer graphics, computer animation and entertainment,
solid reconstruction, and image compression. The general problem is that of continuously
transforming one geometric shape into another in a way that makes apparent the salient
similarities between the two shapes and ‘smoothes over’ their dissimilarities. Some of the
relevant graphics papers are [KR91, SG92, KCP92, SGWM93]. The morphing transforma-
tion may be thought of as taking place either in the time domain, as in animation, or in
the space domain, as in surface reconstruction from planar sections. The latter area has
already an extensive literature of its own [FKU77], and computational geometric techniques
have been used with good results [WW93, BS94] (though the problem is not always solvable
[GOSY6]). In general there are numerous ways to interpolate between two shapes and little
has been said about criteria for comparing the quality of different morphs and notions of
optimality. Often, the class of allowable or desirable morphing transforms in only vaguely
specified, with the result that the problem ends up being either under- or over-constrained.

In this section we will survey the rather small amount of work in this area which relates

25

to Computational Geometry. Let P and) be the two shapes we wish to morph. For now
we do not specify how the shapes P and () are described, or what is the ambient space
(2-D, 3-D, etc.). Most morphing algorithms operate according to the following paradigm:
firstly relevant ‘features’ of P and () are identified and matched pairwise; secondly, smooth
motions are planned that will bring into alignment these pairs of corresponding features;
and thirdly the whole morphing transformation is generated, while respecting other global
constraints which the shapes P, @), and their interpolants must satisfy. This paradigm
works well when the class of shapes to be morphed consists of fairly similar objects. In
cases, however, when we want to be able to morph a great variety of different shapes, the
above process is commonly subdivided into a series of stages. The shapes P and @) are first
‘canonicalized’ by mapping them into their canonical forms x(P) and x(Q) respectively —
these canonical forms are more standardized and therefore easier to morph to each other.
The whole transformation is then done by going from P to x(P) to x(Q) to Q.

As the above description makes clear, there are numerous connections between the
problems of shape matching and shape interpolation, and several of the matching techniques
already discussed are applicable to the morphing problem, especially in the feature matching
stage. It is not so obvious, but it is equally true that morphing techniques can also be used
for shape comparison problems. In a certain sense, the optimum morph from P to (@ is the
transformation that distorts P as little as possible in order to make it look like Q). In a
morphing algorithm we can assign a notion of ‘work’ or cost to the distortions the algorithm
needs to perform. The minimum work then required to morph P into () can then serve as
a measure of the distance from shape P to shape (). Note that such a distance function
based on morphing clearly satisfies the triangle inequality.

To make these matters concrete, let us discuss a few simple examples in 2-D and 3—
D. Let P be an open simple polygonal chain of m vertices P = pips...pm and @) be an
open simple polygonal chain of n vertices) = ¢1g2...q,. This problem was considered
by Sederberg and Greenwood [SG92]. According to our paradigm above, we first need to
establish a correspondence between the ‘features’ of P and (Q — for polygonal chains the
natural notion is that of vertices (though other choices also make sense in applications).
Now since m might be different from n, in general this will have to be a many-to-one, or
one-to-many mapping. But where should these duplicate vertices be added?

We can represent all possible ways to pair up vertices of P with vertices of () in sequence
by considering monotone paths in the [1..m] x [1..n] grid. An example is shown in figure
11, which shows a particular matching between a chain P of 8 vertices and a chain @ of 10
vertices. A diagonal move on the monotone path corresponds to advancing on both P and
@, while a horizontal move corresponds to advancing on @ only (and thus duplicating the
corresponding vertex of P.

We can choose an optimum correspondence, by selecting the path 7 to be of minimal
cost in some appropriate sense. For example, we may want to minimize the sum of the
distances of all the corresponding pairs of vertices. Sederberg and Greenwood developed
a physics-based measure of the energy required to stretch and bend P into @) once the
correspondence by 7 is given. The optimal 7 under such measures can be computed by
classical dynamic programming techniques [CLR90] in time O(mn). Similar ideas have

26

Figure 11: An example of matching polygonal chain vertices

been used to fit polyhedral sleeves to polygonal slices in parallel planes [BS94].

Once we have the correspondence, we can then move corresponding vertices to each
other through linear interpolation. Implicitly, at each time ¢, this defines an interpolating
polygonal chain R; and thus our construction of a morph between the polygonal chains is
complete. Note also that in order to extend this method to closed polygonal chains we
must decide first on an appropriate ‘origin’ for each chain, and this is not a trivial matter.
Figure 12 shows some successful and unsuccessful examples of this method, depending on
the origin chosen. Note in particular that the interpolating chain R; can self-intersect, even
though neither P and @ do.

Sederberg et. al. also proposed another simple method for polygon interpolation based on
interpolating side lengths and angles, once a vertex correspondence is established [SGWM93]
— but now the challenge becomes to get the polygons to ‘close up.’.

Preserving structural properties during a morph, such as the simplicity of a chain in
the example above, is a difficult problem. Guibas and Hershberger [GH94], consider how
to morph two parallel polygons to each other while maintaining simplicity. The setting is
now that P and @ are two simple polygons in the plane of n sides each, and there is a 1-1
correspondence between the sides of P and () so that corresponding sides are parallel. The
goal is to continuously deform P to () while at all times the interpolating polygon R; has
its corresponding sides parallel to those of P and) and stays simple. In this case the very

27

7
M

WP
W

Figure 12: Examples of polygonal chain morphs: (a) a good case, (b) a bad case

= =

(b)

statement of the problem provides the correspondence between features of the polygons.
Even so, the two polygons P and () can look quite different and the existence of a morph
which remains parallel and simple is not obvious; see figure 13 (a morph between these two
spiraling polygons can happen by simulating the way recording tape can move from one
reel to another).

P Q
Figure 13: These oppositely spiraling parallel polygons are still morphable

Guibas and Hershberger showed that this is, nevertheless, always possible and gave an
algorithm which uses O(n4/ 3+€) primitive operations called ‘parallel moves’; this was later
improved to O(nlogn) by Hershberger and Suri [HS95]. A parallel move is a translation
of a side of a polygon parallel to itself, with appropriate modifications of the polygon
at the endpoints of the edge. Guibas and Hershberger first showed that parallel moves
can be used to take each polygon to a fractal-like canonical or reduced form in which
portions of the polygon’s boundary have been shrunk to micro-structures of widely different

28

scales. A polygon in this canonical form corresponds, roughly speaking, to a binary tree
whose leaf weights are the angles of the original polygon. Once P and) are in this
canonical form, the corresponding trees can be morphed into each other through a series of
standard tree rotation transformations; certain validity conditions have to hold throughout
this process. These tree rotations can be realized geometrically through parallel moves on
the polygons. The fractal-like structure of the canonical form helps in arguing that the
translations required to implement particular rotations do not interfere with other parts of
the polygon.

Clearly the Guibas/Hershberger morph solves only a limited problem and even for that
the canonical form used introduces unnecessarily large distortions into the interpolating
shapes. Different polygon morphing techniques were developed by Shapira and Rappoport
[SR95], based on the star-skeleton representation of a polygon (a decomposition of the
polygon into star-shaped pieces). Such methods do much better in preserving the metric
properties of the polygons, but unfortunately they still do not preserve global constraints,
such as simplicity — plus they are expensive, requiring O(n*) time. Another idea for mor-
phing polygons can be based on the compatible triangulations result of Aronov, Seidel, and
Souvaine [ASS93]. They showed that P and @ can always be ‘compatibly’-triangulated by
adding O(n?) Steiner points (compatibility means that the triangulations are combinatori-
ally equivalent). The use of conformal mappings has also been suggested.

Let us now also look at some work in three dimensions. The only case that has been
extensively studied is that of morphing convex polytopes [KCP92]. If P and () are convex
polyhedra, a natural way to construct a matching between their surfaces is to match points
on the two polyhedra that admit of the same (outwards) normal. In general, this will match
all points on each face of P to a vertex of () and vice versa, as well as matching (the points
of) certain pairs of edges, one from P and one from Q. If we place the origin at an arbitrary
point of space and compute the vector sums of corresponding pairs of points from P and
Q, the resulting set of points will form the boundary of another convex polytope, called
the Minkowski sum of P and @) and denoted by P & @ [Lat91, Lyu66]. Armed with this
concept, we can then morph P to @ by constructing the mized volume (1 —t)P & tQ, as
t varies in the range 0 < ¢ < 1. This type of morph was exploited by Kaul and Rossignac
[KR91, RK94]. The same technique works, of course, in 2-D or dimensions higher than
three. A nice way to visualize this morph in 2-D is to think of P and () as two convex
polygons placed on parallel planes in 3-D. One then constructs the convex hull of the union
of P and @) by adding a ‘sleeve’ wrapping around P and (). The sections of this sleeve by
a plane moving parallel to itself from that containing P to that containing) gives us the
morph.

The ‘kinetic framework’ of [GRS83] allows the extension of this type of morph to general
polygons in the plane. Also, since regular subdivisions of the plane or alpha shapes [EM94]
can be viewed as projections of convex polytopes in one dimension higher, the above method
also gives us some possibilities for morphing such subdivisions or alpha shapes. Other
approaches to morphing 2-D or 3-D shapes are given in [Gla, KCP92, Ede95].

29

References

[AAR94]
[ABB91]
[ABB93]

[ABGW90]

[ABO*89]

[ACH*91]

[AFRW96]

[AG92]
[AGY5]
[AHU74]

[AKM*92]

[AMN*94]

[AMWWSS]
[AS94]
[ASS93]
[AST94]

[ATS81]

H. Alt, O. Aichholzer, and G. Rote. Matching shapes with a reference point. In Proc.
10th Annu. ACM Sympos. Comput. Geom., pages 85-92, 1994.

H. Alt, B. Behrends, and J. Blémer. Approximate matching of polygonal shapes. In
Proc. Tth Annu. ACM Sympos. Comput. Geom., pages 186-193, 1991.

H. Alt, B. Behrends, and J. Bloemer. Approximate matching of polygonal shapes.
Ann. Math. Artif. Intell., 13:251-266, 1995.

H. Alt, J. Blémer, M. Godau, and H. Wagener. Approximation of convex polygons. In
Proc. 17th Internat. Colloq. Automata Lang. Program., volume 443 of Lecture Notes
in Computer Science, pages 703—-716. Springer-Verlag, 1990.

A. Aggarwal, H. Booth, J. O’Rourke, S. Suri, and C. K. Yap. Finding minimal convex
nested polygons. Inform. Comput., 83(1):98-110, October 1989.

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell. An
efficiently computable metric for comparing polygonal shapes. IEEE Trans. Pattern
Anal. Mach. Intell., 13(3):209-216, 1991.

H. Alt, U. Fuchs, G. Rote, and G. Weber. Matching convex shapes with respect to the
symmetric difference. In Proc. Jth Annual European Symp. on Algorithms- ESA’96,
Springer Lecture notes in Computer science, volume 1136, pages 320-333, 1996.

H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In Proc. 8th
Annu. ACM Sympos. Comput. Geom., pages 102-109, 1992.

H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry and Applications, 5:75-91, 1995.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

E. M. Arkin, K. Kedem, J. S. B. Mitchell, J. Sprinzak, and M. Werman. Match-
ing points into pairwise-disjoint noise regions: combinatorial bounds and algorithms.
ORSA J. Comput., 4(4):375-386, 1992.

S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal algo-
rithm for approximate nearest neighbor searching. In Proc. 5th ACM-SIAM Sympos.
Discrete Algorithms, pages 573—-582, 1994.

H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity and symme-
tries of geometric objects. Discrete Comput. Geom., 3:237-256, 1988.

Pankaj K. Agarwal and Subhash Suri. Surface approximation and geometric partitions.
In Proc. 5th ACM-SIAM Sympos. Discrete Algorithms, pages 24-33, 1994.

B. Aronov, R. Seidel, and D. Souvaine. On compatible triangulations of simple poly-
gons. Comput. Geom. Theory Appl., 3(1):27-35, 1993.

Pankaj K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching
in geometric optimization. J. Algorithms, 17:292-318, 1994.

D. Avis and G. T. Toussaint. An optimal algorithm for determining the visibility of a
polygon from an edge. IEEE Trans. Comput., C-30:910-1014, 1981.

30

[Ata83]
[Atk87]
[Bai84]
[Beh90]
[BGO4]
[BS94]

[CC92]

[CDEK95)

[CGOT]

[CGH*93]

[Cla93]

[CLRYO]
[Col84]
[Col87]

[dBDvK*96]

[dBVKS95]

[DJ90]

M. J. Atallah. A linear time algorithm for the Hausdorff distance between convex
polygons. Inform. Process. Lett., 17:207-209, 1983.

M. D. Atkinson. An optimal algorithm for geometrical congruence. J. Algorithms,
8:159-172, 1987.

H. S. Baird. Model-Based Image Matching Using Location. Distinguished Dissertation
Series. MIT Press, 1984.

B. Behrends. Algorithmen zur Erkennung der e-Kongruenz von Punktmengen und
Polygonen. M.S. thesis, Freie Univ. Berlin, Institute for Computer Science, 1990.

H. Bronnimann and M. T. Goodrich. Almost optimal set covers in finite VC-dimension.
In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 293-302, 1994.

G. Barequet and M. Sharir. Piecewise-linear interpolation between polygonal slices.
In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 93—-102, 1994.

W. S. Chan and F. Chin. Approximation of polygonal curves with minimum number
of line segments. In Proc. 8rd Annu. Internat. Sympos. Algorithms Comput. (ISAAC
’92), volume 650 of Lecture Notes in Computer Science, pages 378-387. Springer-
Verlag, 1992.

L. P. Chew, D. Dor, A. Efrat, and K. Kedem. Geometric pattern matching in d-
dimensional space. In Proc. 2nd Annu. European Sympos. Algorithms, volume 77 of
Lecture Notes in Computer Science, page to appear. Springer-Verlag, 1995.

S. D. Cohen and L. J. Guibas. Partial matching of planar polylines under similar-
ity transformations. In Proc. 8th ACM-SIAM Sympos. Discrete Algorithms, page to
appear, 1997.

L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg, and
D. Kravets. Geometric pattern matching under Euclidean motion. In Proc. 5th Canad.
Conf. Comput. Geom., pages 151-156, Waterloo, Canada, 1993.

Kenneth L. Clarkson. Algorithms for polytope covering and approximation. In Proc.
3rd Workshop Algorithms Data Struct., volume 709 of Lecture Notes in Computer
Science, pages 246-252, 1993.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The
MIT Press, Cambridge, Mass., 1990.

R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. In Proc.
25th Annu. IEEE Sympos. Found. Comput. Sci., pages 255-260, 1984.

R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM,
34:200-208, 1987.

M. de Berg, O. Devillers, M. van Kreveld, O. Schwarzkopf, and M. Teillaud. Com-
puting the maximum overlap of two convex polygons under translations. Technical
Report, Dept. of Comp. Science, Univ. of Utrecht, 1996.

M. de Berg, M. van Kreveld, and S. Schirra. A new approach to subdivision simplifi-
cation. In Proc. of Auto-Carto 12, pages 79-88, 1995.

G. Das and D. Joseph. The complexity of minimum convex nested polyhedra. In Proc.
2nd Canad. Conf. Comput. Geom., pages 296-301, 1990.

31

[DP73)]

[Ede95]
[EG90]

[E196)]

[EM94]

[ET94]

[FKU77]

[FMO1]

[GHO4]

[GHMS93]

[Gla]

[GMO94]

[Go094]

[GOS96]

[GRS83]

[Grii67]
[HK90]

[HKK92]

David H. Douglas and Thomas K. Peucker. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Canadian Cartographer,
10(2):112-122, December 1973.

H. Edelsbrunner. A combinatorial approach to cartograms. In Proc. 11th Annu. ACM
Sympos. Comput. Geom., pages 98-108, 1995.

W. Eric and L. Grimson. Object Recognition by Computer: the Role of Geometric
Constraints. MIT Press, 1990.

Alon Efrat and Alon Itai. Improvements on bottleneck matching and related problems
using geometry. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 301-310,
1996.

H. Edelsbrunner and E. P. Miicke. Three-dimensional alpha shapes. ACM Trans.
Graph., 13(1):43-72, January 1994.

D. Eu and G. Toussaint. On approximating polygonal curves in two and three dimen-
sions. Comput. Vision, Graphics, & Image Processing, 56:231-246, 1994.

H. Fuchs, Z. M. Kedem, and S. P. Uselton. Optimal surface reconstruction from planar
contours. Commun. ACM, 20:693-702, 1977.

T. Feder and R. Motwani. Clique partitions, graph compression, and speeding up
algorithms. In Proc. 23rd ACM Symp. Theory of Computing, pages 123133, 1991.

L. Guibas and J. Hershberger. Morphing simple polygons. In Proc. 10th Annu. ACM
Sympos. Comput. Geom., pages 267276, 1994.

L. J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink. Approximating
polygons and subdivisions with minimum link paths. Internat. J. Comput. Geom.
Appl., 3(4):383-415, December 1993.

A. Glassner. Metamorphosis of polyhedra. Manuscript. (1991).

M. T. Goodrich, J. S. Mitchell, and M. W. Orletsky. Practical methods for approximate
geometric pattern matching under rigid motion. In Proc. 10th Annu. ACM Sympos.
Comput. Geom., pages 103112, 1994.

M. T. Goodrich. Efficient piecewise-linear function approximation using the uniform
metric. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 322-331, 1994.

C. Gitlin, J. O’'Rourke, and V. Subramanian. On reconstructing polyhedra from par-
allel slices. Internat. J. Comput. Geom. Appl., 6(1):103-122, 1996.

L. J. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational
geometry. In Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci., pages 100-111,
1983.

B. Griinbaum. Convex Polytopes. Wiley, New York, NY, 1967.

D. P. Huttenlocher and K. Kedem. Computing the minimum Hausdorff distance for
point sets under translation. In Proc. 6th Annu. ACM Sympos. Comput. Geom., pages
340-349, 1990.

D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On dynamic Voronoi diagrams
and the minimum Hausdorff distance for point sets under Euclidean motion in the
plane. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 110-120, 1992.

32

[HKR93]

[HKS93]
[HS91]
[HS92a]

[HS92b]

[HS94]
[HS95]
[HU90]
[1186]

[1188]

[IR]

[ISI89]

[KCP92]

[KR91]

[Lat91]

[LSW88a]

[LSWSSb]

[LW8S]

[Lyu66]

D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images using
the hausdorff distance. IEEE Trans. on Pattern Analysis and Machine Intelligence,
15:850-863, 1993.

D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi surfaces
and its applications. Discrete Comput. Geom., 9:267-291, 1993.

S. L. Hakimi and E. F. Schmeichel. Fitting polygonal functions to a set of points in
the plane. CVGIP: Graph. Models Image Process., 53(2):132-136, 1991.

P. J. Heffernan and S. Schirra. Approximate decision algorithms for point set congru-
ence. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 93-101, 1992.

J. Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line simplification
algorithm. In Proc. 5th Intl. Symp. Spatial Data Handling. IGU Commission on GIS,
pages 134-143, 1992.

J. Hershberger and J. Snoeyink. Computing minimum length paths of a given homo-
topy class. Comput. Geom. Theory Appl., 4:63-98, 1994.

John Hershberger and Subhash Suri. Morphing binary trees. In Proc. 6th ACM-SIAM
Sympos. Discrete Algorithms, pages 396-404, 1995.

D. Huttenlocher and S. Ullman. Recognizing solid objects by alignment with an image.
Intern. J. Computer Vision, 5:195-212, 1990.

H. Imai and M. Iri. Computational-geometric methods for polygonal approximations
of a curve. Comput. Vision Graph. Image Process., 36:31-41, 1986.

H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms.
In G. T. Toussaint, editor, Computational Morphology, pages 71-86. North-Holland,
Amsterdam, Netherlands, 1988.

S. Irani and P. Raghavan. Combinatorial and experimental results for randomized
point matching algorithms. to appear.

K. Imai, S. Sumino, and H. Imai. Minimax geometric fitting of two corresponding sets
of points. In Proc. 5th Annu. ACM Sympos. Comput. Geom., pages 266—275, 1989.

J. Kent, W. Carlson, and R. Parent. Shape transformation for polyhedral objects. In
Computer Graphics (SIGGRAPH 92 Proceedings), volume 26, pages 47-54, 1992.

A. Kaul and J. Rossignac. Solid-interpolating deformations: construction and anima-
tion of PIPs. In Proc. FEurographics, pages 493-505, 1991.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, 1991.

Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. Object recognition by affine invariant
matching. In Proceedings of Computer Vision and Pattern Recognition, pages 335—344,
1988.

Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. On recognition of 3-d objects from 2-d
images. In Proceedings of the 1988 IEEE International Conference on Robotics and
Automation, pages 14071413, 1988.

Y. Lamdan and H.J. Wolfson. Geometric hashing: A general and efficient model-based
recognition scheme. In Second International Conference on Computer Vision, pages
238-249, 1988.

L. A. Lyusternik. Convez Figures and Polyhedra. D. C. Heath, Boston, MA, 1966.

33

[Meg83]

[MOSS]

[MS92]
[NFWN94]
[NLWNO4]
[0Y91]
[PY89]
[RK94]
[Sch8g]
[5G92]

[SGWMO3]

[She66]
[SR95)]
[Surg6]
[SW94]
[Var96]

[WW93]

N. Megiddo. Applying parallel computation algorithms in the design of serial algo-
rithms. J. ACM, 30:852-865, 1983.

A. Melkman and J. O’Rourke. On polygonal chain approximation. In G. T. Tou-
ssaint, editor, Computational Morphology, pages 87-95. North-Holland, Amsterdam,
Netherlands, 1988.

J. S. B. Mitchell and S. Suri. Separation and approximation of polyhedral surfaces.
In Proc. 3rd ACM-SIAM Sympos. Discrete Algorithms, pages 296-306, 1992.

R. Norel, D. Fischer, H. Wolfson, and R. Nussinov. Molecular surface recognition by
a computer vision-based technique. Protein Engineering, 7:39-46, 1994.

R. Norel, S.L. Lin, H. Wolfson, and R. Nussinov. Shape complimentarity at protein—
protein interfaces. Biopolymers, 34:933-940, 1994.

M. H. Overmars and C.-K. Yap. New upper bounds in Klee’s measure problem. STAM
J. Comput., 20:1034-1045, 1991.

K. Przestawski and D. Yost. Continuity properties of selectors and Michael’s theorem.
Michigan Math. J., 36:113-134, 1989.

J. Rossignac and A. Kaul. Agrels and bips: Metamorphosis as a bézier curve in the
space of polyhedra. In Eurographics °94 Proceedings, volume 13, pages 179-184, 1994.

S. Schirra. Uber die Bitkomplexitét der e-Kongruenz. M.S. thesis, Univ. des Saarlan-
des, Computer Science Department, 1988.

T. Sederberg and E. Greenwood. A physically based approach to 2D shape blending.
In Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pages 25-34, 1992.

T. Sederberg, P. Gao, G. Wang, and H. Mu. 2D shape blending: An intrinsic solution
to the vertex path problem. In Computer Graphics (SIGGRAPH 93 Proceedings),
volume 27, pages 15-18, 1993.

G. C. Shephard. The Steiner point of a convex polytope. Canadian J. Math., 18:1294—
1300, 1966.

M. Shapira and A. Rappoport. Shape blending using the skeleton representation.
IEEE Computer Graphics and Appl., 16:44-50, 1995.

S. Suri. A linear time algorithm for minimum link paths inside a simple polygon.
Comput. Vision Graph. Image Process., 35:99-110, 1986.

J. Sprinzak and M. Werman. Affine point matching. Pattern Recogn. Lett., 15:337-339,
1994.

K. Varadarajan. Approximating monotone polygonal curves using the unfirm metric.
In Proc. 12th ACM Symp. Computational Geometry, page to appear, 1996.

Emo Welzl and Barbara Wolfers. Surface reconstruction between simple polygons via
angle criteria. In 1st Annual European Symposium on Algorithms (ESA ’93), volume
726 of Lecture Notes in Computer Science, pages 397-408. Springer-Verlag, 1993.

34

