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Abstract

We describe a configuration (related to Horton’s constructions) of n points in gen-
eral position in the plane with less than 1.8n° empty triangles, less than 2.42n°
empty quadrilaterals, less than 1.46n? empty pentagons, and less than n®/3 empty
hexagons. It improves the constants shown by Bardny and Firedi.

*Work on this paper was partially done when the author participated at the workshop
Uniformity and Irregularity of Partitions, University Bielefeld, Bielefeld, Germany
TDepartment of Applied Mathematics, Charles University, Malostranské nam. 25, 118 00
Praha 1, Czechoslovakia.

{Graduiertenkolleg ” Algorithmische Diskrete Mathematik”, Fachbereich Mathematik, Freie
Universitat Berlin, Arnimallee 2-6, W 1000 Berlin 33, Germany, supported by ”Deutsche
Forschungsgemeinschaft” | grant We 1265/2-1



1 Introduction

We say that a set P of points in the plane is in general position if no three points of
P lie on a line. Erdés and Szekeres [ES 35] proved that for any & there is an integer
n(k) such that any set of n(k) points in general position in the plane contains k
points which are vertices of a convex k-gon.

We call a subset A of k points in P an empty k-gon if the convex hull of A
contains no point of P in its interior. Erdds [Er 75] asked whether the following
sharpening of the Erdds-Szekeres theorem is true. Is there an N(k) such that any
set of N(k) points in general position in the plane contains an empty k-gon? He
pointed out that N(4) = 5 and Harborth [Ha 78] proved N(5) = 10. On the other
hand, Horton [Ho 83] showed that N(k) does not exist for & > 7. The question
about the existence of N(6) is still open.

Denote by fr(P) the number of empty k-gons in P and let fi(n) = min{ fi(P) :
|P| = n and P is in general position}. Katchalski and Meir [KM 87] proved that
there is a constant K < 200 such that for any n > 3

(n ; 1) < f3(n) < Kn*.

Horton [Ho 83] constructed configurations giving fi(n) = 0, for & > 7. Barany
and Fiiredi [BF 87] proved

n* — O(nlogn) < f3(n) < 2n?,

0t 0n) < fulm) < 307,

o] < i) <2,

L,
fe(n) < §n )

They proved the upper bounds only when n is a power of 2. However, one
can prove them with a bit more effort for any integer n. To show the upper bounds
Barany and Fiiredi used the construction of Horton [Ho 83] giving fr(n) = 0, for k& >
7.

In Section 2 we describe two simple random configurations where the expected
number of empty triangles is 2n* + o(n?).

In Section 3 we show a construction giving the following better upper bounds:

faln) < 1.8n%,  fa(n) < 2.42n°,

fs(n) < 1.46n°, fe(n) < %nz.

Note that the construction in Section 3 is a simplified version of a complicated
construction which gives still a bit better estimations (see also remark at the end of
the paper).
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2 Random constructions

Barany and Fiiredi [BF 87] proved that the following random construction gives a
similar upper bound of f3(n) as Horton’s construction.

Theorem 1 Let Iy, 15, ..., I, be parallel unit intervals in the plane, I; = {[z,y] :
r=1,0<y <1}. For any i, choose a random point p; from I;. Then the expected
number of empty triangles in the set P = {p1,pa,...,pa} is at most 2n* + O(nlogn).

In the following we show that another random construction gives a similar result:

Theorem 2 Let K be a bounded convex area in the plane. Let P be a set of n points
placed randomly (with uniform distribution) and independently inside K. Then the
expected number of empty triangles in P is at most 2n* — 2n.

Proof.  Without loss of generality, assume the area of K equals 1. Consider
two points p;, p; from the set P = {p1, p2, ..., pn}, and denote the Euclidean distance
between p; and p; by [. Define the axes so that p; = [0,0] and p; = [I,0]. Let S;; be the
strip of width [ between the y—axis and the line = [. For all triangles p;p;p; with
the longest side p;p;, the vertex pj lies obviously inside .5;;. The expected number of
points p; from P N.S;; such that p;p;py 1s an empty triangle can be easily estimated.
For any real number y, define the line segment [, = {[z,y] : 0 < & < [}, and let
|1, N K| denote the length of the line segment I, N K. If [y| > 2 then [, N K = {)
(otherwise the area of K exceeds 1). For any k,1 <k <n,k # 1,k # j,

Prob(pi € Si; and p;p;jpi is an empty triangle) =

= / |1, 0 K| - Prob(p;p;py, is empty | pr € I,) dy =

o0

g - Lyl s /% Lyl s 4
= I,NK|-(1—-—2)""7dy < [- (1 — —=—)""dy = .

2 2
1

Hence, for any pair {i,7}, the expected number of empty triangles p;p;pr, where

pip;j 1s the longest side, is at most n%(n —2) =4, and the overall expected number
of empty triangles is at most 4(;) = 2n% — 2n.

The method from the proof of Theorem 2 can be extended to the higher dimen-
sion for the counting of the number of empty simplices.

Note that the estimations of the number of empty triangles for the above three
configurations (Horton’s construction, the random constructions from Theorems 1
and 2) are the best possible in the sense that the (expected) number of empty
triangles in each of them is at least 2n? — o(n?). In Section 3 we show a configuration
with a smaller number of empty triangles.



3 Construction

We start with Horton’s construction: For any positive integer n, we will define a
point set H(n) of n points. In H(n) the set of the first coordinates is just {0, 1,...,n—
1}. First we define by induction a set H(n) when n is a power of 2. Let H(1) =
{(0,0)} and H(2) = {(0,0),(1,0)}. When H(n) is defined, set

H(2n) = {(2e.9) s (e.y) € H()} U {(20 + Ly +d,) : (2.y) € H(n))

where the numbers d,, are fastly growing, say d,, = 3" — 1. These sets H(n) are just
the sets defined by Horton [Ho 83]. Now let n be a positive integer, and let n’ be
the least power of 2 which is not smaller than n. Set

H(n)={(z,y) € H(n') : x < n}.

All y—coordinates of points of H(n) are smaller than 3". The building blocks of
our construction are sets (J(n) which are obtained from H(n) by replacing each
point (x,y) by (x,(12 + n)~'3"y). Obviously, all points of Q(n) lie in the (12 +
n)~!—neighborhood of the xz—axis ((12 + n)~! is no specific number; it is only a
sufficiently small positive number). Now let m = 4n be a positive integer divisible
by 4 (for simplicity). We construct an m—point set 5, in the following way:

Sm=Q1U QU Q35U Qy,

where
Q= Q). Qa= Q)+ (+.1)
Qo= Qn) +(0,2), Qu=Q(n)+(2.3)

47

Q(n) + (a,b) denotes the set QQ(n) shifted by the vector (a,b). So the points of
S lie in the (12+n)~!—neighborhoods of points of the set S.=NU (N + (%, 1)u
(N4(0,2)) U(N +(5,3)), where N = {(0,0), (1,0), ..., (n —1,0)}. Note now that
the number (12 + n)_l is small enough in order that the set 5,, is combinatorially
equivalent to the set S,,, except that the sets Q;,7 = 1,2,3,4, do not lie on a line.

The shifts ({,1), (0,2), (1,3) in the definition of S,, were chosen to ensure that
e.g. no triangle with one point in ()4 and two points in ()1 is empty. This, and some
related properties are used in the proof of the Lemma below.

Define, for any s > 3, the following two sets:

G5(3) ={g:gisan empty s —gonin Q1 UQUQ3,9gN Q1 #0,gN Qs # 0},
Gs(4) ={g:gisan empty s —gon in Q1 UQUQsUQs,gN Q1 #D,gNQs# 0}

Lemma 3

|G5(3)] < 3n?, |Gs(4)] < &n?,
|G4(3)] < 3n?, |G4(4)] < En?,
|G5(3)] <n?,  |Gs(4)] < 3n?,
|Gs(3)| =0,  |Ge(4)] < in.
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Proof. TFor i =1,23.4, denote the elements of ¢); by ¢ ;,7 = 1,2,...,n in the
order according to their x—coordinates. First we estimate the sizes of the sets G5(4).
Each empty s—gon ¢ € (G5(4) contains only one point of @)1 and only one point of
Q)4. For 2,5 =1,2,....n, we can easily count the number of empty polygons ¢ such

that ¢ N Q1= {q1:} and g N Qs = {4}

If ¢ = j(mod 3), then ¢ C {qu,, 2215 G352, qs;} and g is one of the
two empty triangles ¢ ; Oy 241 qaj and ¢y Q3,421 qa,j OT the empty quadrilateral
Qi Gp,245 Y3 142 qa,5-

If i = j — 1(mod 3), then ¢ C {1, Gy, 202 | U3 [0 qs;} and g is again one
of two certain triangles or a certain quadrilateral.

If e =5+ 1(mod 3), then g C {q1,, G202 | Uy, [242] G5 | 422 |+ G [i2227 qa;}
and ¢ is one of four triangles, six quadrilaterals, and four pentagons, or a hexagon.

There are {%J pairs {¢,7} such that ¢ = j 4+ 1(mod 3). Therefore
n? 2n?

= |2 a |2 <

Gl = |5 |+ [ 5] 2 <

ceor=[5] o [5]o

2
4
Gl = || < 3o
|G4|—n—2 1<12

Now we estimate the sizes of the sets G5(3). Each empty s—gon g € G(3)
contains either one or two consecutive points from (). In the second case the points

from ¢ are from one of the nin=1)

5 sets

. 7 n—1—1
{qm, q1,i4+15 92,044, G2i+A41, q3,i-|—2A-|—1}7 1 <i:<n—-1, {—5-‘ <AL {TJ .
FEach of these sets contains one triangle (¢1; ¢1i+1 ¢si4+2a+1) from G5(3), two
quadrilaterals (q1; ¢1i41 g2.i1a 312841 and 1 qriv1 G2i4a11 G3ir2ay1) from Gy(3),
and one pentagon (¢1; ¢1,i+1 ¢2i+A ¢2.i+a41 ¢3,i+2a+1) from G5(3).
Consider now the empty s—gons ¢ € (i5(3) containing only one point of the set

1. Ost O ese po Ons are contained in one o (& e sels
Most of these polyg tained i f the U set

. 2—1 n—z1
{q1,is ©iva-1, @ita, @it2a—1, G3it2a}, 1 <o <mn, [ 5 -‘ <AL { 5 J -
Each of these sets contains 5 triangles from (/5(3), 4 quadrilaterals from G4(3),
and one pentagon from G'5(3).
For odd ¢ > 1, the points of ¢ can be also from the set {¢1;, ¢, i=1, ¢, i+1, ¢31}.
? 2 ? 2

There are an;lj such sets, each with two triangles from (/5(3) and one quadrilateral

from (G4(3). For « = 1, we have to consider only the triangle {¢11 ¢21 ¢31}-



If ¢ # n (mod 2), then the points of g can be still from the set {q1,, ¢, n+i-1,
T2

Gy ntit1, G5, }. There are | 2] such sets, each with two triangles from G5(3) and one
T2

quadrilateral from G4(3).
The required bounds follow:

|G3(3)|:n(n2—1)+n(n2—1)‘5_|_ {n—lJ 2414 {gJ L9 < 302,
o) = M My |2 |2 <
Gs(3)] = n(n2— 1) N n(n2— 1) <n?
|Gi(3)] = 0.

Theorem 4
f3(Sm) < 1.8m?, f4(Sm) < 2.42m7,

1
fS(Sm) < 1.46m2, fG(Sm) < §m2.

Proof.  Let P be a point set in the plane and consider two points uy,uy €
Pouy = (x1,y1),u2 = (22,y2), 21 < x2. We say that the line segment uqyuy is open
from below if there is no point of P inside the strip S = {(z,y) : ©1 < = <
xq9 and (z,y) lies below the line uqus}. A subset X of P is called open from below if
all the line segments connecting two points of X are open from below. Analogously,
we define open from above.

For any positive integer r, denote by h; (P) and h}(P) the number of r—point
subsets in P empty from below and above, respectively.

Barany and Fiiredi [BF 87] showed

hy(H(n)) < 2n, hi(H(n)) < 2n,

and

hs (H(n)) <n, hi(H(n)) < n.

They proved the above inequalities when n is a power of 2. However, one can
prove them for any positive integer n.
The construction of H(n) is done so that, for any r > 3,

Obviously, all the above relations are satisfied for the set H(n) as well as for the
sets Q(n) and @;,¢ = 1,2,3,4. For any s > 3, and any r,0 < r < s, the number
of empty s—gons G in Q1 U Q3 with |G N Q1] = r is equal to AF(Q1) - h,_.(Q2).
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This is carried out by the construction (more precisely, by the fact that the set @
lies entirely above any line containing two points of ()1 and similarly the set ¢); lies
entirely below any line containing two points of @)3). Thus

FlQ1U Q) = £u(Q1) + fu(Q2) + D hF(Q1) - 7 (Qa).
Since fi(Q2 U Q3) = fs(Q1 U Q2) and fi(Q2) = fs(Q1) we obtain
Fs(QrUQ2UQs) = f(Q1UQ2) + fs(Q2U Q3) — fs(Q2) + g5(3) =

= 2£,(Q1 U Q) — [+(Q1) + 65(3) = 3L.(Qu) + 2> hF(Q1) - hi_,(Q2) + g4(3).
Similarly .
F(@QiUQUQ3UQ4) = f(QUQ2UQs)+ fi(Q2UQsUQ4) — f(Q2UQ3)+95(4) =

2(3/(Q1)+2 2_: h?(Ql)'hZ_T(Q2)+gs(3))—(Qfs(Ql)+§: hE(Qu)-he_ (@2))+g:(4) =

r=1 r=1

(@) +3 3 Q) - h (@) + 20,(3) + gu(4).

Now the required bounds follow:

8 36
f3(Sm) < 4- n?4+3. (n-2n42n-n)+2- 3n? + gnz = §n2 = 1.791...m?,

8 116
f4(5m)<4-3n2—|—3-(n-n—l—Zn-Zn—l—n-n)—|—2-3n2—|—§n2:?n2:2.416...m2,
2 o A, 10, 2
f(Sm)<4-2n°43-2n-n+n-2n)+2-n —|—§n :§n = 1.458...m",
1 1 16 1
f6(5m)<4-§n2—|—3-(n-n)—|—2-0—|—§n2:§n2:§m2.

The proof that for any positive integer m (not necessarily divisible by 4) there
is a set 9, satisfying Theorem 3 requires only more computation.

Remark. The author [Va 91] constructed, for any n, a set A, of n points in general
position in the plane with the following unrelated property: The ratio between the
maximum and minimum distance is at most ©@(y/n), and the set A,, does not contain
more than O(n'/?) vertices of a convex polygon. This is essentially the best possible
result. Imre Barany suggested that the sets A, might be used to improve the best
known upper bound of f3(n). Indeed the set A, contains less than 1.68n* empty
triangles, for any large n. However, the proof of this fact which we know is involved
and so we considered the simpler construction which gives slightly worse results.
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