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Abstract

The Earth Mover’s Distance (EMD) on weighted point sets is a distance measure with
many applications. Since there are no known exact algorithms to compute the minimum EMD
under transformations, it is useful to estimate the minimum EMD under various classes of
transformations. For weighted point sets in the plane, we will show a 2-approximation algo-
rithm for translations, a 4-approximation algorithm for rigid motions and an 8-approximation
algorithm for similarity operations. The runtime of the translation approximation is
O(TPMP(n,m)), the runtime of the latter two algorithms is O(nmIT "™ (n,m)), where
TEMD(n7 m) is the time to compute the EMD between two weighted point sets with n and m
points, respectively. We will also show that these algorithms can be extended to arbitrary di-
mension, giving higher worse time and approximation bounds, however. All these algorithms
are based on a more general structure, namely on reference points, which lead to the elegant
generalizations to higher dimensions. We give a comprehensive discussion of reference points
for weighted point sets with respect to the EMD. Finally, we will extend our discussion to
a variant of the EMD, namely the Proportional Transportation Distance (PTD) and we will
show similar results.

1 Introduction

The Earth Mover’s Distance on weighted point sets is a very useful distance measure for e.g. shape
matching, colour-based image retrieval and music score matching, see [5], [6], [7] and [11] for more
information. For these applications it is useful to have a quick estimation on the minimum distance
between two weighted point sets which can be achieved under a considered class of transformations
T. Thus we want to find algorithms to compute an approximation where EM D**(A,B) <
a-min{EMD(A,®(B)) : ® € T}. This problem was first regarded by Cohen ([5]). He constructed
an iterative Flow-Transformation algorithm, which he proved to converge, but not necessarily to
the global minimum. In this paper we will take a different approach and use reference points
to get an approximation on the problem. A reference point is a Lipschitz-continuous mapping
which is equivariant under the considered class of transformations. These points have already
been introduced in [1] to construct approximation algorithms for matching compact subsets of
R? under translations, rigid motions and similarity operations with respect to the Hausdorff-
distance. The authors of [2], [3] and [12] follow a similar approach and use pseudo-reference points
to get an approximation on the minimum Hausdorff-distance of simple polygons ([2]) and the
minimum area of symmetric difference of convex shapes ([3], [12]). A pseudo-reference point is a
mapping which is equivariant under the class of transformations and leads to a constant factor
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approximation. As you will see later, this definition is weaker than the definition using Lipschitz-
continuity, which implicates the constant factor approximation. A general discussion of reference
point methods for matching according to the Hausdorff-distance has been given in [1]. Here we
will extend the definition of reference points to weighted point sets and get fast constant factor
approximation algorithms for matching weighted point sets under translations, rigid motions and
similarity operations with respect to the Earth Mover’s Distance. Quite recently, Cabello et al.
([4]) have been working on similar problems. The advantage of our approach is that the results
given can be applied to arbitrary dimension and distance measure on the ground set, even to more
than the in this paper mentioned L,-distances. Therefore the results are widely applicable.

In the last section we will show how the results can be applied to matching of weighted point sets
with respect to a variant of the Earth Mover’s Distance, namely the Proportional Transportation
Distance, see [6].

2 Basic Definitions

Definition 2.1 (Weighted Point Set) (/6]) Let A = {a1,as, ...,an} be a weighted point set such
that a; = (p;,a;) for i =1,...,n, where p; is a point in R? and a; € ]R(J{ its corresponding weight.
Let WA = Yo, a; be the total weight of A. Let W be the set of all weighted point sets in R? and
WEE be the set of all weighted point sets in R with total weight G € Rt .

In the following we will use a considered class of transformations on both weighted point sets and
discrete subsets of R?. By a transformation on a weighted point set we mean to transform the
coordinates of the weighted points and leave their weights unchanged.

We now introduce the center of mass, a point related to each weighted point set. This point plays
an important role in our approximation algorithms. The computation time of this point is linear,
so it does not affect the runtime.

Definition 2.2 (Center of Mass) Let A = {(p;, ®i)i=1,...n} € WhE be a weighted point set for
some G € RY. The center of mass of A is defined as

1 n
C(4) = WA Z Q;Pi-
i=1

As we will see, the center of mass is an instance of a more general class of mappings, namely
reference points. Later, we will prove the correctness of abstract algorithms based on this class of
mappings. By plugging in the center of mass we will get concrete and implementable algorithms.

Definition 2.3 (Reference Point) ([1]) Let K be a subset of W¢ and & : K — R} be a distance
measure on K. A mapping r : K — R? is called a 6-reference point for IC with respect to a set of
transformations T on K, if the following two conditions hold:

a) Equivariance with respect to T: For all A € K and ® € T we have

b) Lipschitz-continuity: There is a constant ¢ > 0, such that for all A,B € K,
|Ir(A) = r(B)|| < ¢-6(A, B).

We call ¢ the quality of the §-reference point r.



In section 4.3 we will construct approximation algorithms for similarities. For this reason we will
have to rescale one of the weighted point sets. Unfortunately, rescaling in a way that the diameters
of the underlying point sets in R? are equal, does not work.

The key to a working algorithm is to rescale the weighted point set in a way that the normalized
first moments with respect to their reference points coincide. Here we give the well known definition
of the normalized first moment of a weighted point set with respect to an arbitrary point p € R?.

Definition 2.4 (Normalized First Moment) Let A = {(p;, @;)i=1,.n} € WEE be a weighted
point set for some G € Rt and let p € R? be an arbitrary point. We call

1 n
my(A) = WA Zaini =7l
i=1
the normalized first moment of A with respect to p.

Note that the normalized first moment of a weighted point set with respect to an arbitrary point
can be calculated efficiently in linear time.

Next we will introduce the Earth Mover’s Distance, a distance measure on weighted point sets.

Definition 2.5 (Earth Mover’s Distance) ([5/) Let A = {(pi,®%)i=1,..n}, B =
{(g5,B;)j=1...m} € W¢ be weighted point sets with total weights W4, WE > 0. Let
D : R x R — ]R{)" be a distance measure on the ground set R¢. The Earth Mover’s
Distance between A and B is defined as

minper 35, >oie fij D(pir j)

EMD(4,B) = min{W4, W8}

where F' = {fi;} is a feasible flow, i.e.

a) fij>0,i=1,.,n,5=1,..,m
b) 27:1 fij <agi=1,..,n
¢) Yo fij<Bji=1,..m
d) i E;nzl fij = min{W4 WB}

Throughout this paper we will often deal with weighted point sets with equal total weights. In
this case, the definition of the EMD can be simplified:

Lemma 2.6 Let A = {(pi,i)i=1,. .n}, B={(q;,B;)j=1,..m} € WEC be weighted point sets with
equal total weight G € RY. Let D : R? x R? — ]R{)" be a distance measure on the ground set RY.
Then, the Earth Mover’s Distance between A and B can be calculated as

1 ) n m
EMD(A,B) = Zminy > fi;D(pi.q5)
i=1 j=1

where F' = {fi;} is a feasible flow, i.e.
a) fij Z O,l = 1, ...,n,j = 1,...,m

b) YL fiy=ani=1,..n
C) 2?21 fij = Bj,j = 1, e, M



As you can easily see, condition d) of Definition 2.5 is implied in the case of weighted point sets
with equal total weight:

Lemma 2.7 Let A= {(pi,a;)i=1,..n}, B={(q;,Bj)j=1,..m} € WhE be weighted point sets with
equal total weight G € R*. Let F = {f;;} be a feasible flow in the sense of Lemma 2.6. Then

D> fy=GC
i=1 j=1
O

For the rest of the paper the distance measure D used in the definition of the EMD is the same
as the one used in the definition of the EMD-reference point. When working with weighted point
sets in R? we will call R? the ground set and D : RY x R? — R{ the ground distance. If D is
the Euclidean Distance, we will also use EEMD as a notation for the Euclidean Earth Mover’s
Distance. If D is any L,-distance for 1 < p < co we will write EM D, to denote the Earth Mover’s
Distance based on this distance measure.

3 EMD-Reference Points

In this section we discuss the existence of EMD-reference points. We start with a negative result.

3.1 Non-Existence of EMD-Reference Points for Unequal Total Weight

Theorem 3.1 There is no EMD-reference point for weighted point sets with unequal total weights
with respect to all transformation sets that include the set of translations.

Proof. Assume there is an EMD-reference point r with quality ¢ > 0. Let p,q € R? be any two
distinct points. Define the three weighted point sets A := {(p,1)}, B :={(¢q,1)} and C = AU B.

Since EMD(A,C) = 0 we see by using Lipschitz-continuity that ||r(4) — r(C)|| = 0, meaning
r(A) = r(C). For the same reason holds r(B) = r(C), implicating r(A) = r(B). Conversely,
observing that B is A translated by ¢ — p, we see that r(B) is r(A) translated by ¢ — p using the
equivariance under translation. Since ¢—p # 0 and therefore r(A) # r(B) we have a contradiction.

O

Since the points p and ¢ can be chosen independently, the result is valid for any diameter of the
weighted point set. Additionally, since all weights are chosen to be 1, it is independent of the ratio
of the weights.

Corollary 3.2 The same result holds, even if you restrict yourself to the consideration of bounded
diameter of the ground set or bounded ratio of point weights.

Unfortunately, Theorem 3.1 has a deep impact on the usability of the reference point approach for
shape matching since it makes it impossible to use this approach for partial matching applications.
For a more detailed discussion on partial matching using Mass Transportation Distances, see [6].

Now we will extend the last result and show, that there is no mapping on weighted point sets
with unequal total weights which is equivariant under translations and leads to a constant factor
approximation, namely we show that there is no pseudo-reference point for those sets.

Theorem 3.3 There is no EMD-pseudo-reference point for weighted point sets with unequal total
weights with respect to all transformation sets that include the set of translations.



Proof. Let K € R, K > 1, O the origin and e; the first unit vector in R?. Let EM D" denote the
Earth Mover’s Distance where the pseudo-reference points coincide and EM D°Pt(A, B) the EMD
under an optimal translation. Let ¢ : W? — R? be a pseudo-reference point with approximation
factor a. Consider the following four weighted point sets:

A = {(0,1)}
B = {(er, 1)}
Ci = {(O,K),(e1,1)}
C: = {(0,1),(e1, K)}

By equivariance we know that

Let i € {1,2}. Then

EMD(C;, A

- EMD'"(C;, A

= EMD(C;, A+r(C;) —r(A)
= EMD(C;, {(r(Ci) —r(A),1)}
= (r(C;)—r(A) =0 Vv r(C;)—r(4) =e1)

Tz e =
o
o o o o

e Analogously:

EMD(C;,B) = 0
= (r(C;) —r(B)=0

<
=
~~
S
N
[
<
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&
N
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Let us now consider the four possibilities left:

a)
(r(Ci) —r(4) =0 A r(Ci) —r(B) =0)
=r(B) = r(A)~ Contradiction.
b)
(r(Ci) —r(A) =0 A r(Ci) —r(B) =e1)
=r(A) —r(B) = e~ Contradiction.
c)
(r(C)) —r(A)=ex A r(C;)—r(B)=0)
=>r(B) = r(C)
Q)

(r(C)—r(A)=e1 AN r(C;))—1r(B)=¢€1)
= r(B)+e —r(4) = e ~ Contradiction.



Thereby we have show that for i = 1,2 we have r(B) = r(C;) and therefore r(C7) = r(C2). Now,
the minimum EMD under translations is smaller or equal the EMD when C5 is translated in a
way that the two points of Cy and Cy with weight K coincide. Therefore we have

2
EMD°Pt < .
(01702) > K+1

On the other hand, since the pseudo-reference points of C'y and C; coincide, we see

2(K -1)
EMD" =—
(Cl ) 02) K + 1
and follow EMD(C1,Cs) _ 2(K —1)(K +1
(C1.Co) L 2AK-DE+D _ o
EMDert(Cy,C5) (K+1)-2
This, of course, leads to a contradiction because we assumed that the EMD-pseudo reference point
r induces a constant factor approximation and K can be chosen arbitrary high. |

3.2 The Center of Mass as a Reference Point

In the next section we will present approximation algorithms for the EMD under transformations
using EMD-reference points. Since this would be useless if there was no EMD-reference point, we
will restrain the consideration to weighted point sets with equal total weight and show that in this
case the center of mass is a reference point:

Theorem 3.4 The center of mass is an EMD-reference point for weighted point sets with equal
total weight with respect to affine transformations. Its quality is 1. This result holds for any
dimension d and any norm on the ground set.

Proof. Let A= {(pi,ai)i=1,...n}, B ={(q;,05)j=1,..,m} € W?E be two arbitrary weighted point
sets with equal total weight G € RT of dimension d € N. We have to prove to the equivariance of
the center of mass under affine transformations and its Lipschitz-continuity:

a) Equivariance:
The fact that the center of mass is equivariant under affine transformations is well known.

b) Lipschitz-Continuity:
Note that this proof appeared already in [10] as a proof for a lower bound on the EMD. We
have to show that
IC(A) — C(B)|| < EMD(A, B).

Let F' = {fij}i:l,...,n,j:l,...,m be a flow determining E'MD(A, B) Then
1 o 1 «
e el = 15> awi— 5> bl
i=1 j=1
1 n m
= &l > aipi =Y Bigll
i=1 j=1
Using the flow conditions of Lemma 2.6, we get

e -o@ll = SIS furi— D03 fuasl

i=1 j=1 j=1i=1
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i=1 j=1 i=1 j=1

= 2D fulei - o)

i=1 j=1

1 n m
< EZZfinPi — gl

i=1 j=1

= EMD(A,B)

3.2.1 Reference Points and Different Transformations

We have seen that the center of mass is a reference point for weighted point sets with equal total
weights with respect to affine transformations. Now we will discuss the existence of other reference
points with respect to different classes of transformations.

Starting with translations we can prove the following result:

Theorem 3.5 Let v : WHG — R? be an arbitrary EMD-reference point for weighted point sets
with equal total weight with respect to translations. Then r' : WH¢ — R4, A s r(A) + v, where
v € R? is any fized vector, is an EMD-reference point with respect to translations. The quality ¢’
of v’ is equal to the quality ¢ of r.

Proof. Again we have to show the equivariance and the Lipschitz-continuity of r':

a) Equivariance:
Let T be any translation and let T}, be the translation by v. We have to show that ' (T'(A)) =
T(r'(A)).

P(T(4)) = r(T(A

b) Lipschitz-Continuity:
We have to show that ||r'(4) — r'(B)|| < EMD(A, B):
IF'(A4) ="' (Bl = Ir(4) +v—(r(B) + vl
|Ir(4) = r(B)I|
< ¢ EMD(A,B)

O

We have just seen that there are infinitely many EMD-reference points with respect to translations.
However, these reference points are not really distinct because in our approximation algorithm they
lead to the same position of the sets with respect to each other and therefore lead to the same
value of the approximative EMD. An attempt finding a really different reference point can be
found in Section 3.4.



We will now show that the center of mass as a reference point with respect to affine transformations
is unique for weighted point sets with 3 points where the weights on the points are equal. This is
done by mimicking a proof by Knauer ([8]). The proof is done for weighted point sets in R%. An
extension to higher dimensions is straightforward.

Theorem 3.6 Let r : W»¢ — R2 be an EMD-reference point with respect to affine transforma-
tions and let A = {(p;,@)}iz1,.. 3 € W2, Then r(A) = C(A).

Proof. Let A = {(¢;;a)}i=1,..3 € W2 be a weighted point set where the coordinates of the
points are the vertices of an equilateral triangle in counterclockwise order. Let R be the rotation
by 27 /3 around the center of mass in counterclockwise order. Let Ar be the image of A under

this rotation. Of course, the geometry and the weights of Ar and A are equal and we have that
EMD(A,Ag) = 0. Using Lipschitz-continuity we get that r(A) = r(Ag). Then

r(A) =r(Agr) =r(R(A)) = R(r(A)).

Therefore, r(A) is a fixpoint under R and, since the center of mass is the only fixpoint of R, it
follows that r(A) = C(A). To prove the lemma, we can consider the weighted point set A as the
image of A under some affine transformation F'. We now get

r(4) =r(F(A)) = F(r(A)) = F(C(A)).

Since the center of mass is invariant under affine transformations,

We can now use the last lemma to prove the following result:

Theorem 3.7 There are no EMD-reference points with respect to every transformation class con-
taining the projective transformations.

Proof. Since the class of projective transformations contains all affine transformations, the only
candidate for an EMD-reference point for weighted point sets with 3 weighted points and equal
weight in each point is the center of mass according to the last Lemma 3.6. Since the center of
mass is not equivariant for these weighted point sets, the theorem follows. O

3.3 Lower Bound on the Quality of an EMD-Reference Point

Using the center of mass to construct implementable algorithms raises the question if there is a
better reference point. In this section we will show that the center of mass as an EMD-reference
point is optimal in the sence that there is no EMD-reference point with quality smaller than 1.
This holds for any transformation set including the set of translations and any distance measure
on the ground set.

Theorem 3.8 Let r: WHE — R? be an EMD-reference point with respect to any transformation
set including the translations for some G € RT and some dimension d, and let ¢ be its quality.
Then ¢ > 1. This holds for any distance measure on the ground set.

Proof. Assume there is a reference point r with quality ¢ < 1. Let O be the origin and e; be the
first unit vector. Consider the two weighted point sets

A = {01}
B = {(e,1)}



Since r is Lipschitz-continuous, we see
|Ir(A) = r(B)|| < ¢- EMD(A,B) = c- |le1]| < [lex]]-

On the other hand, using the equivariance of r with respect to translations, we see that r(B) =
r(A) + e;. Therefore

[Ir(A) = r(B)|| = |Ir(4) = (r(A) —e)l| = [leal-

Contradiction. O

3.4 Fermat-Weber Point

A point which comes to mind thinking about another reference point on weighted point sets is the
so-called Fermat-Weber Point:

Definition 3.9 (Fermat-Weber Point) Let A = {(p;,a;)} € WY be a weighted point set.
Then

n
FW(A) = arg min a;llpi —
(4) ngRd; Ipi — pll
is called the Fermat-Weber point of A.

Unfortunately, the Fermat-Weber point does not fulfill the Lipschitz-continuity condition, which
immediately proves the following lemma:

Lemma 3.10 The Fermat-Weber point is no EMD-reference point for weighted point sets with
equal total weight.

Example 3.11 Consider the following two sets (6, p € RY,0 < u < 1/2):

A = {((0,0),50-8),((1,0), 50 - 8). (1,0),5))

B = {((0.0),50-8),((1,0), 5(1-5).((1 - ,0),5)}

Obviously, FW (A) = (u,0), FW(B) = (1 — u,0) and therefore
[FW(A) - FW(B)|| = 1-2u
EMD(A,B) = 6(1—p—p)=6(1-2p)
Assuming that FW (-) is Lipschitz-continuous, there is a constant ¢ > 0 such that

IFW(4) — FW (B)|| < c- EMD(A, B)
& 1-2p < ed(l—2p)
S 1<

If now § tends to zero, ¢ has to be arbitrary high. Contradiction.

Remark 3.12 The example deals with more than 2 points on a line. The same example holds if
you move the inner points slightly to the top, thereby getting two weighted point sets with points
in general position showing the non-Lipschitz-continuity of the Fermat-Weber point.
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In the last lemma we have shown that the Fermat-Weber point is no reference point. Since being
a reference point is only a sufficient condition to induce an approximation algorithm, it may be
possible that this point does induce an approximation algorithm anyway, namely that the Fermat-
Weber point is a pseudo-reference point. But that this is not the case is proven by the same sets
given in the last proof:

Example 3.13 Let us consider the set of translations. The position of A and B in the last proof
easily shows that
EMD" (A, B) < 6(1 — 2u).

On the other hand, matching the Fermat- Weber points of the sets leads to
EMD"W(A,B) = (1 —2u)(1 = 96).

And therefore

EMD"W(A,B) _ 16
EMDP(A,B) = 0§

which tends to infinity as § tends to zero.

4 Approximation Algorithms Using EMD-Reference Points

The following three sections are organized as follows: In each section we consider a class of
transformations, construct an approximation algorithm for matching under these transformations
for general EMD-reference points and finally use the center of mass to get a concrete algorithm.

For the whole chapter let A = {(pi,i)i=1,...n}, B = {(¢;,06;)j=1,..m} € W be two weighted
point sets of dimension d with positive equal total weight G € Rt. Please be reminded that
the following results do not hold for weighted point sets with unequal total weight. Further, let
r: WhE 5 R? be an EMD-reference point for weighted point sets with respect to the considered
class of transformations with quality c. Let T7¢/(n) be the time to compute the EMD-reference
point of A, TEMP(n,m) and TF¥MP(n,m) be the time to compute the EMD and EEM D
between A and B and T"°(n,m) be the time needed to find a rotation R around a fixed point
minimizing EM D(A, R(B)).

An upper bound on T¥MP(n m) and TFFMP(n,m) is O((nm)?log(n + m)) using a strongly
polynomial minimum cost flow algorithm by Orlin ([9]). In practice, an algorithm using the
simplex method to solve the linear program will be faster. Since we are developing approximation
algorithms anyway, one can consider using an (1 + €)-approximation algorithm for the Earth
Mover’s Distance by Cabello et al. ([4]) with runtime O(’E‘—j logQ(g)).

4.1 Translations

Consider the following algorithm to get an approximation on the problem of finding a translation
minimizing the EMD under translations:

Algorithm TranslationApz:

a) Compute r(A) and r(B) and translate B by r(A) — r(B). Let B’ be
the image of B.

b) Output B’ as an approximately optimal solution together with the
approximate distance EM D(A, B').
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Theorem 4.1 Algorithm TranslationApz finds an approximately optimal matching for transla-
tions with approzimation factor c+ 1 in time O(T"f (max{n,m}) + TFMP (n,m)). This holds for
arbitrary dimension d and distance measure on the ground set.

Proof. Let A= {(pi,:)i=1,..n}> B={(q;,58;)j=1....m} € WHC for some G € Rt and dimension
d € N be two weighted point sets in optimal position. Let F* = {f/} be a flow determining
EMDP*(A,B) and T" := r(A) — r(B) be the translation moving B in a way that the EMD-
reference points r(A4) and r(B) coincide. When B is translated by T, denote the EMD of the two
sets by EM D" (A, B) and the distance of two points p; € A, ¢; € T"(B) by Dj;. Then

EMD"(A,B) = 1 o SN fiiDy;

IN
Ql=
N
MS |
3

i=1 j=1
1 n m . .
= aZZfij||pi_(Qj+T)||
i=1 j=1
I v r
< 522fij(||pi_QJ'||+||_T 1)
i1 j—1
1 n m . 1 n m . .
= EZZfij”pi—Qj||+522fij||T I
i1 j—1 i1 j—1
= EMD°P'(A B)+—||Tr||2n:§:f~*-
’ G i1 j—1 Y
= EMDM(4,B) + ||T"|
= EMD(A, B) + [|r(4) — r(B)||
< EMD"(A,B) +¢- EMD(A, B)

= (1+c)- EMD"(A,B)

O

Corollary 4.2 Algorithm TranslationApz using the center of mass as an EMD-reference point
induces an approzimation algorithm with approzimation factor 2. Its runtime is O(TFMP (n,m)).

Proof. The quality of the center of mass as an EMD-reference point is 1 and can be computed in

O(max{n,m}) time. The overall runtime is clearly dominated by the time to compute the Earth
Mover’s Distance. i

4.1.1 Lower Bound for Algorithm TranslationApx

We presented the center of mass as an EMD-reference point with quality 1, thus inducing an
approximation algorithm for translations with factor 2. We now show that this bound is tight:

Theorem 4.3 There are weighted point sets where the upper bound on the approximation factor
for algorithm TranslationApz using the center of mass as an EMD-reference point is assumed.

Proof. Consider the following two weighted point sets, where K € RT is some constant.

a) A:={((0,0),1),((1,0), K)}
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Figure 1: A with center of mass

@
by

Figure 2: Matching according to center of mass

b) B:={((0,0),1),((0,1),K)} (A rotated by 90 degrees)

c
We now show that % — 2 as K — oo, where EM DY denotes the Earth Mover’s

Distance where the centers of mass coincide and EM D°P'(A, B) the EMD under an optimal
translation.

a) Calculation of EM D (A, B). First we start calculating the centers of mass of both sets. By
definition

1 n
o) = mzaipi
i=1

1

= 710,07 +K-(1,07)
K

= 1 10"

Since B is just a rotation of A it follows directly that

oB) = =

=—.(,1)7.
K+1 0,1)

See Figure 2 for an illustration of the matching according to the centers of mass.

For the following calculation, note that the distance of as and by to the center of mass is

1-— KLH = &7 To avoid case distinctions, we calculate the EMD for both of the two
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@
by

Figure 3: Matching in Version 1

following possibilities of the flow. Note that according to general flow theory these are the
only two possibilities to get a minimum cost flow.

(@) fir=1,f12=0, fo1 =0 and fa3 = K, see Figure 3:

EMDC(A,B) = K+1< Ky /2( K+1 .1/2(KL+1)2>
- K+1<K+1 f+K—+1 ﬁ)
_ KLHKLHQ\@
- (Kfl) 2 V2

(b) f11 = 0,f12 = 1,f21 =1 and f22 =K — 1, see Figure 4:

1 K ., 1 12
EMD(4,B) = i@ + (g + (K~ D2y )
1 K*+1 1
= @ mrye T E VY2
1 K1 K-1 .

- K+1( K+l K+l

b) Calculation of EM D°Pt(A, B). We do not calculate it exactly but find an upper bound by
fixing the translations where a» and by coincide.
In this situation we have

1
EMD P < 2.
- K+ 1\/_

EMD®

C) Estimation Of EMDept
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Figure 5: Translation where a, and b, coincide
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(@) fii=1,fi2=0,fo1 =0and foo = K

EMD  _  weie "in? 20 V2
— 1
EMDovt V2

2K
= K—ﬂ—)?asK—)oo

(b) fii=0,fiz=1,fan =1and fo =K — 1

EMD¢ w2y &+ xav2)
EMDort = K—+1\/§
= V2 K— —V24+1las K — o0
K+1

Since v2 + 1 > 2 the statement follows.

O

Remark 4.4 The proof is independent of the considered diameter, so bounding this will not lead
to a better approximation factor. The proof depends on the weights of the points, exploiting an
unbounded ratio of weights. It would be nice to see a lower bound not depending on high numbers.

4.2 Rigid Motions

The following algorithm gives a first approach to get an approximation of the EMD under rigid
motions, i.e. combinations of translations and rotations:

Algorithm RigidMotionApz:
a) Compute r(A) and r(B) and translate B by r(A) — r(B). Let B’ be
the image of B.
b) Find an optimal matching of A and B’ under rotations of B’ around
r(A) = r(B'). Let B" be the image of B’ under this rotation.

c) Output B" as an approximately optimal solution together with the
approximate distance EM D(A, B").

Theorem 4.5 Algorithm RigidMotionApz finds an approximately optimal matching for rigid mo-
tions with approzimation factor ¢ + 1 in time O(T"*f (max{n,m}) + TEMP (n,m) + T (n,m)).
This holds for arbitrary dimension d and distance measure on the ground set.

Proof. Let A = {(pi,®s)i=1,...n}, B = {(4j,6;)j=1,..m} € WeE for some G € Rt and
dimension d € N be two weighted point sets. Let M*(B) be an optimal rigid motion of
B and § := EMD(A,M*(B)) the minimum EMD of A and B under rigid motions. Let
T := r(A) — r(M*(B)). Then M := T" o M*(B) is a rigid motion mapping r(B) onto r(A).
Let the rigid motion M’ minimize EM D(A, M (B)) while mapping r(B) onto r(A). Note that M’
is the solution we get by algorithm RigidM otion Apx. Then

EMD(A,M'(B)) < EMD(A, M(B))

Further:

EMD(A,M'(B)) < EMD(A,M(B))
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EMD(A,T" o M*(B))

< EMD(A,M*(B)) + EMD(M*(B),T" o M*(B))
— 6+ EMD(M*(B),T" o M*(B))
< G2 D AIIM @) - (@) + T

IT"]]
< s+l IS g,
< 0+ ;6

o+ 177
6+ [Ir(A) —r(M™(B))|
d+c- EMD(A,M*(B))
(I4+¢)-6

IA I

The runtime of this algorithm depends on the time to compute the EMD-reference points, translate
B such that the EMD-reference points coincide, find the optimal rotation of the translated version
of B around r(A) and compute the EMD of A and the optimal rotation of the translated version
of B. |

In the next corollary we again apply the center of mass as an EMD-reference point to the last
result:

Corollary 4.6 Algorithm RigidMotionApz using the center of mass as an EMD-reference
point induces an approzimation algorithm with approzimation factor 2 in time O(T"°!(n,m) +
TEMD (n_m)). This holds for arbitrary dimension d and distance measure on the ground set.

Proof. The quality ¢ of the center of mass as an EMD-reference point is 1 and this point can be
computed in O(max{n,m}) time, which is clearly dominated by the time to compute the EMD.
O

Since the position of the EMD-reference point as rotation center is fixed, several degrees of freedom
have been eliminated and the problem to find the optimal rotation is easier than the one finding the
optimal rigid motion itself. Unfortunately, even for this problem no efficient algorithm is known so
far. Therefore it would be nice to have at least an approximation algorithm for this problem. In
the next lemma we will show an approximation for the Euclidean distance as the ground distance.
This result was already published in [4]. After that we will use this lemma to extend the result to
all Ly-distances for 1 < p < oco. Unfortunately, as you will see, the approximation factor will be
worse than 2 for p # 2.

Lemma 4.7 Let A and B be two weighted point sets and p* be any point. Let Rot(p*) be the set
of all rotations around p*. Then there is a rotation R' € Rot(p*) such that

EEMD(A,R'(B)) <2- min EEMD(A,R(B)),
ReRot(p*)

where R’ aligns p* and any two points of A and B.

Proof. Let w.l.o.g. A and B be in optimal position with respect to rotations of B around
p*.  Let F* := {fx} be a flow defining EMD(A,B). Let R := {R € Rot(p)

R(B) alignes p* and any two points p; € A and ¢; € B}. For all R € R let ¢(R) € (—m, 7]
be the rotation angle induced by R. Take R’ € R, such that for all R € R : |¢(R')| < |#(R)|.
Let ¢’ be this angle and, w.l.o.g., R' be a counterclockwise rotation. Since we took the minimum
angle, ¢' € [0,7/2]. The last fact can be seen easily. Assume all angles between pairs of points
are bigger than 7/2. Then, rotating B by an angle of 7 around p* will lead to a position where
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Figure 6: Case 1.

every point a; € A is closer to any point b; in the rotated version of B. Therefore the EMD in
this constellation is smaller than before rotating, which leads to a contradiction.

Let now pi € A and ¢; € B be two matched points. We now show that

IR (1) = prll2 < 2[la — |2 (1)

This will imply that after rotation the distance is at most double and therefore, since the amount
of moved mass between each pair of points stays the same, the EMD between the two sets will
be at most double. We will assume that ¢ # 0 and pr # 0 because in those cases we have

1B (1) = prlle = [lar = prll2-
Let w.lo.g. p* = (0,0)T and p;, = (1,0)T.

To prove Equation 1 we make a case distinction according to the position of ¢, and R'(g;).

e x-coordinate of ¢; and R'(¢;) < 0.
Then

llaullz = (1R (@)1l
|k |2

Il — prll2
lla — prll2

vV v

Therefore, we have:
IR () = prll2 < 1B (@)ll2 + Ipell2 < 2lla = pell2

e x-coordinate of ¢, <0 and R'(g;) > 0.
Then

1R (@) — pellz <llat — pellz2 < 2|l — prll2

e x-coordinate of ¢; > 0.
Let R, be the rotation counterclockwise by angle a € [0, n]. Then for a > o'

1Ra(a1) = Pell2 2 || Ror (@) = P |2-

. Ro(a)=pill2 . .
Therefore, the function f(a) := % is monotone increasing.
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Figure 7: x-coordinate of ¢; > 0

We can now write ¢; as a rotation of p; around p* by some angle ¢ and scaling by some
number A > 0. Then ¢; = ARy (pr) and R'(q;) = ARp+¢ (pr). It remains to show that

[IARg1¢ (k) — Di|]2
[IARy(pr) — prll2

is bounded by two. Since © > 2¢ > ¢ + ¢' and according to the above remark it suffices to
show that

f:RT 5 R~

[|AR2y (pr) — Dr|2

R =R A=
f o) —pello

is bounded by 2.
Proof for that:

[|ARag (pr) — pr||2
A =
TN = Rt~ pils
V—4Xcos?2(¢) + A2 +2X + 1
V/—2Xcos(¢) + A2 + 1

Easy computation shows that this function has a maximum at A\ = 1 independent of the
concrete angle ¢, therefore the maximum is always attained at a point ¢ having the same
distance to the rotation center as py.

Now,
—4cos?(B) +4

—2cos(f) + 2

is the function f for points located at the same distance to the rotation center as pp. We
are now interested at what angle this function is maximized:

g:0,7/2] > R S —

—4cos?(f) +4 Vo 1 — cos?(f)

—2cos(3) + 2 1 — cos(f)
_ \/5\/(1 —cos(B))1 + cos(B))
1 —cos(f)

V24/1 + cos(B)
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This function is clearly maximized for 8 = 0. This leads to f < 2 and therefore we have
proven that

IR (q1) — prll2 < 2|la — prl|2

The remaining cases can be easily derived be the cases above and altogether we have:
IR (a1) — prll2 < 2lla — prl2- (2)

We can now use Equation 2 to prove the lemma:

1 . n m
EMD(A,R(B)) = Zmind > f;D(pi, R(q))
i=1 j=1
1 n m .
< EZZfijD(pi;Rl(qj))
i=1 j=1
1 n m .
< G Z Zf””Pz — R'(g5)]l2
i=1 j=1
1 n m .
< 5zsz2||pl = gjll2
i=1 j=1
1 n m .
< 2- EZZLJ - D(pi, q5)
i=1 j=1
— 2.EMD(A,B).

O
As mentioned above, we will now use the last lemma to extend the result to all L,-distances for
L <p<oo:

Lemma 4.8 Let A,B € W¢ be two weighted point sets and p* be any point. Let Rot(p*) be the
set of all rotations around p*. Then there is a rotation R' € Rot(p*) such that

EMD,(A,R'(B)) <2Vd- min EMD,(A, R(B)),
RERot(p*)

where R’ aligns p* and any two points of A and B.

Proof. Let 1 < p < co. Following the strategy of the proof of Lemma 4.7, we have to prove that
IR (@) — pillp < 2Vdl|a — pll,-

a) 1<p<2
Then:
IR (@) —pell, < VAR (@) = prll
< 2Vd||R'(q;) — pk|]2, proof of Lemma, 4.7
< 2VA||R (1) — pell,
b) 2<p< oo
Then:
IR (1) — prllp IR (@) — prl|2

<
< 2||R' (@) — pkl|2, proof of Lemma 4.7
< 2Vd||R (@) — prlly

Like in the proof of Lemma 4.7 the claim of this lemma follows immediately. |
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a4
@ g Q * PS
® + . a + q a

= 2P
Two arbitrary weighted point sets. Now with coinciding reference points.
a
,
O °
a, e+ @ .o
(] @) N a3
a, )
a,
After first rotation with pointson aline. After second rotation.
a

a
) @) \
.o 9. -

2 az.

After third rotation. After fourth, there are two more!

Figure 8: Tllustration of algorithm RigidMotionApzUsingRotationApzx.

4.2.1 An Applicable Algorithm in the Plane

Based on the last lemma we are able to construct approximation algorithms for the problem of
finding an optimal rotation of a weighted point set around their coinciding reference points.

In this section we will discuss the case of weighted point sets in the plane. The general case will
be discussed in the following section.

Algorithm RotationApz
a) Compute the minimum EEMD over all possible alignments of the
coinciding reference points and any two points of A and B.

Since there are O(nm) possibilities to align the reference point and any two points of A and
B, the runtime of this algorithm is O(nmTPFMPD(n m)). Using this algorithm combined with
EMD-reference points we now get an easy to implement and fast approximation algorithm for
rigid motions. Unfortunately, the fact that we now constructed an implementable algorithm must
be paid by the increased approximation factor 2(¢ + 1). Figure 8 shows an illustration of this
algorithm.

Algorithm RigidMotionApzUsingRotationApz
a) Compute r(A) and r(B) and translate B by r(A) —r(B). Let B’ be
the image of B.
b) Find a best matching of A and B’ under rotations of B" around r(A4) =
r(B') where r(A) and any two points in A and B’ are aligned. Let
B" be the image of B’ under this rotation.

c¢) Output B" as an approximately optimal solution together with the
approximate distance EEM D(A, B").
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Theorem 4.9 Regarding EEMD in the plane, Algorithm RigidMotionApxzUsingRotationApx finds
an approzimately optimal matching for rigid motions with approzimation factor 2(c + 1) in time
O(T¢f (max{n,m}) + nmTFEMD (n_m)).

Proof. Let A = {(pi,i)i=1,...n}, B = {(qj,5})j=1,..m} € W% for some G € R be arbitrary
weighted point sets. Let M,,:(B) be the optimal rigid motion and § := EEM D (A, M,p:(B)). Let
M* be the rigid motion minimizing EEM D(A, M (B)) while mapping r(B) onto r(A) and M** be
the rigid motion, minimizing EEM D(A, M (B)) while mapping r(B) onto r(A) and additionally
aligning r(A) and any two points of A and B. Note that this is the rigid motion found by the
algorithm. We now have that

EEMD(A, M**(B)) 2. EEMD(A, M*(B)), Lemma 4.7

<
< 2(1+ ¢)d, see proof of Theorem 4.5

The runtime of this algorithm depends on the time to compute the EMD-reference points, translate
B such that the EMD-reference points coincide and compute the EEMD at all O(nm) possible
alignments of points in A, B and r(A4). O

Theorem 4.10 Algorithm RigidMotionApxUsingRotationApz finds an approximately optimal
matching for EMD,, 1 < p < oo, under rigid motions in the plane with approximation factor
2v/2(c + 1) in time O(T"% (max{n,m}) + nmTFMP»(n,m)).

Proof. The proof for this theorem is the same as the proof for Theorem 4.9, using Lemma 4.8
instead of Lemma 4.7. a

In the next corollary we apply the center of mass to the last two theorems and prove results about
an implementable algorithm for matching weighted point sets und rigid motions in the plane:

Corollary 4.11 Algorithm RigidMotionApxzUsingRotationApx using the center of mass as an
EMD-reference point induces an approximation algorithm with approzimation factor 4 in case
of the Euclidean Distance in the plane and 4v/2 for any other L, distance, 1 < p < oco. Its
runtime is O(nmTPMPr (n,m)).

Proof. The proof of this corollary follows immediately using the last two theorems and the fact
that the quality of the center of mass as an EMD-reference point is 1 and can be computed in
O(max{n,m}) time. O

4.2.2 Rigid Motion Approximation in higher dimensions

The algorithm for minimizing the EMD under rigid motions in higher dimensions is similar to the
algorithm in the plane. First, we translate B in a way that the two reference points coincide, then
compute the EMD whenever at least one point of A, one point of B and the reference point are
on a line, which is a (d — 1)-dimensional space in the plane. For arbitrary dimension d we will
compute the EMD for every rotation R which rotates B around the reference point in a way that
at least d — 1 points of A, d — 1 points of B and the reference point are on a (d — 1)-dimensional

Space.
¢ ((di 1) (dT 1)) = O0(n* "' -mi )

We will now prove the approximation factor of O(2¢~1) for matching the weighted point set with
respect to the EMD under rotations defined on the Euclidean distance on the ground set. Let S

This gives

possibilities of rotations.
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be a fixed d'-dimensional space with 0 < d’ < d— 1. Let w.l.o.g A and B be in optimal position
with respect to all rotations leaving S invariant. Then, mimicking the proof of 4.7, we see that
there is some rotation R’ around the reference point, leaving S invariant and rotating in a way,
that S, at least one point of A and at least one point of B are in a d’ + 1-dimensional space.

Together with the approximation on the translation with approximation factor ¢ + 1 we get an
approximation algorithm for minimizing the EMD under rigid motions. We will call this algorithm
d-RigidMotionApzUsingRotationApx. Altogether we have a constructive proof of the following
theorem:

Theorem 4.12 Algorithm d-RigidMotionApzUsingRotationApz finds an approximately optimal
matching for rigid motions with approzimation factor 27 (c + 1) in time O(T"*f (max{n,m}) +
nd=Imd=YTEMD (n_m)). This holds for arbitrary dimension d.

Again, using Lemma 4.8 we can extend the result to the EMD defined on L,-distances and get

Theorem 4.13 Algorithm d-RigidMotionApxUsingRotationApx finds an approximately opti-

mal matching for rigid motions with approzimation factor 297d (¢ + 1) in time
O(T"¢f (max{n,m}) + n?'m4=*TEMP(n m)). This holds for arbitrary dimension d and 1 <
p < oo.

Using the center of mass, we get to one of our main results in higher dimensions:

Corollary 4.14 Algorithm d-RigidMotionApxUsingRotationApx using the center of mass as an
EMD-reference point induces an approzimation algorithm with approzimation factor 2% in case

d—
of the Euclidean Distance and 29v/d ' for any other L, distance, 1 < p < oo. Its runtime is
O Imd-1TEMDy ().

Proof. The proof of this corollary follows immediately using the last two theorems and the fact
that the quality of the center of mass as an EMD-reference point is 1 and can be computed in
O(max{n,m}) time. m|

4.3 Similarities

In this section we present approximation algorithms for matching two given weighted point
sets under similarity transformations, i.e. combinations of translations, rotations and scalings.
More precisely, we want to compute ming EM D(A, S(B)), where the minimum is taken over all
similarity operations S. Note that in this case exchanging A and B makes a difference.

Algorithm SimilarityApz:

a) Compute r(A) and r(B) and translate B by r(A) — r(B). Let B’ be
the image of B.

b) Determine the normalized first moments m,.(4)(A4) and m,g(B') and

scale B' by % around the center 7(A) = r(B'). Let B" be the

image of B’ under this scaling.

c) Find an optimal matching of A and B" under rotations of B" around
r(A) = r(B"). Let B" be the image of B under this rotation.

d) Output B" as an approximately optimal solution together with the
approximate distance EM D(A, B'"").
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To show the correctness of this algorithm we use the following two lemmata:
Lemma 4.15 Let A € W be a weighted point set with positive total weight and let m,(A) be its

normalized first moment with respect to some point p € R?. Let 11,7 be scalings around the same
center p and ratios v1 and -, respectively. Then

EMD(r(A),2(A) < |(1 = 72) mp(4).

Proof.

EMD(11(A4),m(A4) < %;aiﬂﬁ(pi)—ﬁ(l?ﬂﬂ(l)

- % Zain‘F’Yl(pi —p) — (p+n2(pi — )|

_ WlAzaln% 72)(pi = )l

’72
- 'Zaznpz p

= I(% —72)|mp(A)

In (1) we have chosen the flow between the corresponding points. This, of course, is a feasible flow
and therefore the inequality holds. |

The next lemma gives a new lower bound for the EMD of two weighted point sets:

Lemma 4.16 Let A,B € W€ for some G € Rt and let v : WHG — R? be an EMD-reference
point with quality c. Then

|mr(A) (A) - mr(B)(B)| < (1 + C)EMD(A)B)

Proof. Let F"* := {f} be a flow defining EM D(A, B).

M) (A) —my5)(B)| = Gzazllpz— Al == Zb’gllqg Bl

I

Q=
- :
Ms

<
Il

-
<.
Il

-

fijllpi = II—ZZ illgg —r(B)l

j=11i=1

fii(lpi = r(AI = llg; = r(B)I])

=1

S
I
-

I
Ql-
-
NE

5 i = (A = llg; — (B |

IN
Ql =
-
MS S

-
Il

—
<.
Il

-

Since

|lpi = (Al lpi = g5 + ¢; — r(B) +1(B) = r(4)]]

< lpi — g5l + Mlgg = (B[] + [Ir(B) = r(A)]

and analogue

g —r(B)l = llgj —pi +pi—r(A) +7r(A) —r(B)l
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< Mlgg = pill + [lpe = r(AI] + [Ir(A) = r(B)]]
= pi =gl + lpi = (A + [[7(B) = r(A)|

we get

[ lpi = (A = llg; = r(B)II |

Imypa)y — mppy| =

Ql=

Ql=

Q=
il M: il M: il M:

zg”pl (I]||+ ZZfz]”r )||

zl]l

B) + [|r(B) —r(A)l
B) + ¢- EMD(A, B)

227
Z (lpi = g5l + [Ir(B) = r(A)])
Z
D(A,
D(A,

IN

Using these lemmata we can prove the following:

Theorem 4.17 Algorithm SimilarityApz finds an approximately optimal matching for similarities
with approzimation factor 2(c+1) in time O(T"¢f (max{n,m}) +TFMP (n,m)+T"°(n,m)). This
holds for arbitrary dimension d and distance measure on the ground set.

Proof. Consider an optimal similarity transformation S,¢. It can be written as Sopt = Topt 0 Mopt,
where M, is a rigid motion and 7y is a homothety with ratio a,p+ around some point p. Let d
be the optimal earth movers distance 6 = EMD(A, Sopt(B)). Then

[Ir(A) = r(Sopt (B))|] < €,

because of the Lipschitz-continuity of the EMD-reference point r. Let 7" be the translation by
7(A) —r(Sopt (B)); then S :=T7 0 S,y is a similarity transformation mapping r(B) onto r(A) and

EMD(A,S(B)) < (¢c+ 1)é.

The proof of the last fact is easy:

EMD(A,S(B)) EMD(A,T" 0 S,p¢(B))

< EMD(A,Sopt(B)) + EMD(Sopt(B),T" 0 Sopt(B))
1 m
< +aZﬂj”Sopt((b‘)—(Sopt((Ij)‘FTT)H
=1
77| -
< o+ ITUS,
j=1
= 0+ (T
< d+¢b
Write now S as S = 7o M, where M is a rigid motion mapping r(B) onto r(A) and 7 is a
homothety with center r(A4) and ratio a,p. Let a := %, 7 the homothety with center r(A)

and ratio o, and S = 7 o M. Then

EMD(A,S(B)) < EMD(A,S(B)) + EMD(S(B),S(B)).



25

My (bi)
T Mo (b))
e M, (r(B))
Mo (1(B))
r(B)
. - 1ToptOMopt (5)=Topt O Mopt (P(B)I| __ |17opto Mopt (r(B)—pl| _
Figure 9: Mopt (b)) Mope (r(B))]] = Mg (r(B))—pl] Port

Now

(@)

EMD(S(B),S(B)) EMD(7 o M(B), 7 o M(B))

|(qtopt — @)mip(a) (M(B))|, by lemma 4.15

|(atopt — a)my gy (B)], see definition of M (3)
= |aoptmr(B) (B) — QM (B) (B)|

|optmy(B)(B) — my(ay(A)], by definition of a

M1 (S0 (B)) (Sopt (B)) = () (A)] (4)
< (14 ¢)EMD(S,p(B), A), by lemma 4.16

IN

It remains to show that equation lines 3 and 4 above hold:

e For 3 it is to show that mr(A)(]\;I(B)) = my(p)(B). This holds because M is a rigid motion
mapping r(B) onto r(A4) and a rigid motion does not affect the distances to a point which
is translated and rotated in the same way.

e For 4 it is to show that a,pm, gy (B) = my(s,,,(B))(Sopt(B))- To proof that:

Mo (Sope(B)) (Sopt(B)) = Mip(rypi0Mope (B)) (Topt © Mopt(B))
= mTopiOMopi(r(B))(Topt o Mopt(B))

1 m
= el Zﬂj”""opt 0 Mopt(bj) — Topt © Mopt(r(B))|]
j=1

= 2 A5l Mo 05) = Mo r (B, (see Fig. 9)

= QoptMM,,, (r(B)) (Mopt(B))
= Qoptm,()(B)

Altogether we have
EMD(A,S(B)) <2(c+ 1)
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for some similarity transformation S composed of a rigid motion that maps r(B) onto r(A) and
a homothety with center r(A) and ratio .. Since Algortihm Similarity Apz finds the optimum
among these similarity transformations the bound holds for it, as well. The runtime of this
algorithm depends on the time to compute the EMD-reference points, translate B such that the
EMD-reference points coincide, scale the translated version of B, find the optimal rotation around
r(A) and compute the EMD of A and the optimal rotation of the translated version of B. Since
computing the normalized first moment and therefore the scaling can be done in linear time, the
time bound stays the same as for the algorithm RigidM otion Apz. |

Corollary 4.18 Algorithm SimilarityApz using the center of mass as an EMD-reference point
induces an approzimation algorithm with approzimation factor 4. Its runtime is O(TFMP (n,m) +
T7%(n,m)). This holds for any dimension of the ground set and every norm defined on it.

4.3.1 An applicable algorithm in the plane

As for RigidMotionApz, SimilarityApz depends on finding the optimal rotation, which is imprac-
tical. Again, we make this algorithm practical and efficient by using RotationApz and again we
have to pay by a worse approximation factor. Like before, we start in the plane with the EMD
defined on the Euclidean distance on the ground set.

Algorithm SimilarityApzUsingRotationApx
a) Compute r(A) and r(B) and translate B by r(A) — r(B). Let B’ be
the image of B.
b) Determine the normalized first moments m,.(4)(A4) and m,g(B') and

scale B' by % around the center r(A) = r(B'). Let B” be the

image of B’ under this scaling.

c¢) Find a best matching of A and B” under rotations of B" around
r(A) = r(B") where r(A) and any two points in A and B" are aligned.
Let B be the image of B"” under this rotation.

d) Output B" as an approximately optimal solution together with the
approximate distance EEM D(A, B'"").

Theorem 4.19 Regarding EEMD in the plane, Algorithm SimilarityApxUsingRotationApz finds
an approzimately optimal matching for similarities with approzimation factor 4(c + 1) in time
O(Tef (max{n, m}) + nmTFEMP (n_m)).

Proof. Let A = {(pi,i)i=1,..n}, B = {(qj,5})j=1,..m} € W% for some G € R* be arbitrary
weighted point sets. Let T" = r(A) — r(B) and 7 be the scaling by #%Ef(‘])a))- Let M* be
the rigid motion minimizing EEMD(A, M o 7, o T"(B))) while mapping r(B) onto r(A) and
M** be the rigid motion minimizing EEM D(A, M o1, 0o T"(B))) while mapping r(B) onto r(A)
and additionally aligning r(A) and any two points of A and B. Let S** = M** o 7, o T"(B))
and S* = M* o 14 0o T"(B)). Note that S** is the similarity transformation found by algorithm
SimilarityApzUsingRotationApx and S* is the similarity found by algorithm SimilarityApxz. Then

EEMD(A,S™(B)) = EEMD(A,M** o1, 0T"(B))
< 2-EEMD(A,M* o1,0T"(B)), Lemma 4.7
< 4(1+¢)é, Theorem 4.17

AN

The runtime of this algorithm depends on the time to compute the EMD-reference points, translate
B such that the EMD-reference points coincide and compute the EEMD at all O(nm) possible
alignments of points in A, B and r(4). |
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Theorem 4.20 Regarding EM Dy, in the plane, 1 < p < oo, Algorithm SimilarityApzUsingRo-
tationApx finds an approzimately optimal matching for similarities with approzimation factor
4v/2(c+ 1) in time O(T"*f (max{n, m}) + nmTFMPr (n, m)).

Proof. This theorem follows immediately using the proof of Theorem 4.19 and Lemma 4.8. O

Corollary 4.21 Algorithm SimilarityApzUsingRotationApz using the center of

mass as an EMD-reference point induces an approximation algorithm with approximation factor
8 in case of the Euclidean Distance in the plane and 82 for any other L, distance, 1 < p < c0.
Its runtime is O(nmTFMPr (n,m)).

4.3.2 Similarities in higher dimensions

We can use Algorithm d-RigidMotionApzUsingRotationApx to minimize the EMD under rigid
motions in higher dimensions on A and B, where as in the last section, B is scaled by the fraction
of the normalized first moments. We will call this algorithm d-SimilarityApxzUsingRotationApz
and get the following results:

Theorem 4.22 Algorithm d-SimilarityApzUsingRotationApz finds an approximately optimal
matching for similarities with approzimation factor 2%(c + 1) in time O(T"¢f (max{n,m}) +
nd=tmd=1TEMD (n m)). This holds for arbitrary dimension d.

Theorem 4.23 Algorithm d-SimilarityApxUsingRotationApz finds an approzimately optimal
od—

matching for similarities with approzimation factor 24/d 1(c+ 1) in time O(T"¢/ (max{n,m}) +

nd=Imd=1TEMD (n_m)). This holds for arbitrary dimension d and 1 < p < oo.

Applying the center of mass, we can state our main implementable result for minimizung the EMD
with respect to similarity operations in any dimension:

Corollary 4.24 Algorithm d-SimilarityApxzUsingRotationApx using the center of mass as an
EMD-reference point induces an approzimation algorithm with approzimation factor 2% in case

d—1
of the Euclidean Distance and 297\/d for any other L, distance, 1 < p < oo. Its runtime is
O(nd—lmd—lTEMDp (n’m))

5 Proportional Transportation Distance

In the first sections we introduced EMD-reference points, proved that the center of mass is an
EMD-reference point, derived approximation algorithms based on reference points and, finally, by
applying the center of mass we got implementable algorithms. Unfortunately we have seen that
those results are only true when weighted point sets with equal total weights are considered. In
this section we will discuss another distance measure for weighted point sets, the Proportional
Transportation Distance (PTD). One of the biggest advantage for our purposes will be the fact,
that there are PTD-reference points even for weighted point sets with unequal total weight.

Definition 5.1 (Proportional Transportation Distance) (/6]) Let A = {(pi,®)i=1,..n},
B = {(gj,6))j=1,...m} be two weighted point sets with W* := Y1 o, WP := 37", §; the
total weights of A, B respectively. Then, the Proprotional Transportation Distance is defined as

minper >y 2oy fijdis
wA ’

PTD(A,B) =

where



a) fl-72077/:177n7.]:1,,m

b) Z;n:l fij=a5,i=1,...,n
WA

c) Z?ﬂfij:B{;V—B,J:l,...,m

d) Z?:l E;nﬂ fij = wA

5.1 PTD-Reference Points
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We start with the main result, showing that the center of mass is a PTD-reference point for
weighted point sets with arbitrary total weight with respect to the set of affine transformations.

Theorem 5.2 The center of mass of a weighted point set is a PTD-reference point for weighted
point sets with respect to affine transformations. Its quality is 1. This holds for any dimension d
of the ground set and every norm defined on it.

Proof.

a) The equivariance of the center of mass under affine transformations for weighted point sets

b)

is well known.

Lipschitz-Continuity
We have to show that for all weighted point sets A, B

IC(A) = C(B)|| < PTD(4, B)

Let A := {(pi,a;)},i = 1,...,n, B = {(¢;,8))},j = 1,...,m and W4 := o, WB

Z;’n:1 Bj. Further let F' = (fij)i=1,...,j=1,...,m be a flow determining PTD(A, B). Then
1 & 1 —
IC(4) —=C(B)|| = ”W > aipi - WE > Bigjll
i=1 =1

By definition we know that

m WwB ™
a; = Zfij and 3; = WA Zfij-
i=1

j=1

Therefore we get

n m m B
1) = CBI = lsrx o0 fumi = o > yrx O Jusail
i=1 j=1 j=1 i=1
= I - 30 el
i=1 j=1 i=1 j=1
= IS fsi -0
i=1 j=1
< a3 il il
i=1 j=1
= PTD(A,B)
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5.2 Approximation Algorithms

Like in the corresponding Section 4 we will now use PTD-reference points to construct approx-
imation algorithms for the PTD under transformations. Since the algorithms are the same and
the proofs carry over immediately, we will omit them and just state the results. Note that here
all algorithms work for weighted point sets with arbitrary total weight, so A and B in this section
are weighted point sets with W4, W% € Rt and possibly W4 # W2, In the description of the
algorithms, of course, EMD has to be replaced by PTD.

5.2.1 Translations

Theorem 5.3 Let r : W! — R? be a PTD-reference point for weighted point sets with respect
to translations. Let ¢ be its quality. Then algorithm TranslationApz (4.1) finds an approximately
optimal matching for translations with approzimation factor ¢+ 1 in time O(T"%f (maz{n,m}) +
TPTP(n,m)). This holds for arbitrary dimension d and distance measure on the ground set.

Corollary 5.4 Algorithm TranslationApz (4.1) using the center of mass as an PTD-reference
point induces an approrimation algorithm with approximation factor 2.  Its runtime is
O(T*TP(n,m)). This holds for arbitrary dimension d and distance measure on the ground set.

5.2.2 Rigid Motions

Theorem 5.5 Algorithm RigidMotionApz (4.2) finds an approzimately optimal matching for rigid
motions with approzimation factor c+1 in time O(T"f (max{n,m}) +TFTP (n,m) +T"°(n,m)).
This holds for arbitrary dimension d and distance measure on the ground set.

Corollary 5.6 Algorithm RigidMotionApx (4.2) using the center of mass as PTD-reference
point induces an approzimation algorithm with approzimation factor 2 in time O(T"°!(n,m) +
TPTP(n,m)). This holds for arbitrary dimension d and distance measure on the ground set.

Theorem 5.7 Regarding EPTD in the plane, Algorithm RigidMotionApzUsingRotationApz finds
an approzimately optimal matching for rigid motions with approzimation factor 2(c + 1) in time
O(Tef (max{n,m}) + nmTFFTP (n,m)).

Theorem 5.8 Regarding PT D), in the plane, 1 < p < oo, Algorithm RigidMotionApzUsingRo-
tationApx finds an approzimately optimal matching for rigid motions with approzimation factor
2v/2(c + 1) in time O(T"* (max{n,m}) + nmTFTPr(n,m)).

Corollary 5.9 Algorithm RigidMotionApzUsingRotationApx using the center of mass as PTD-
reference point induces an approrimation algorithm with approximation factor 4 in case of the
Euclidean Distance in the plane and 4v/2 for any other L, distance, 1 < p < oo. Its runtime is
O(nmTFTPe (n,m)).

Theorem 5.10 Algorithm d-RigidMotionApzUsingRotationApz finds an approximately optimal
matching for rigid motions with approzimation factor 2~ (c + 1) in time O(T7f (max{n,m}) +
nd=tmd=tTPTD (n m)). This holds for arbitrary dimension d.

Theorem 5.11 Algorithm d-RigidMotionApxUsingRotationApx finds an approrimately opti-

d—1
mal matching for rigid motions with approzimation factor 24 1\/d (c + 1) in time
O(T ¢ (max{n,m}) + n?~'md=2TFTP(n m)). This holds for arbitrary dimension d and 1 <
p < o0.
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Corollary 5.12 Algorithm d-RigidMotionApxUsingRotationApx using the center of mass as an
PTD-reference point induces an approximation algorithm with approzimation factor 2¢ in case

d—
of the Euclidean Distance and 2%v/d ' for any other L, distance, 1 < p < oo. Its runtime is
O(n?—\m1TPTDs (n m)).

5.2.3 Similarities

Theorem 5.13 Algorithm SimilarityApz finds an approximately optimal matching for similarities
with approzimation factor 2(c+1) in time O(T"¢f (max{n,m}) + TFTP(n,m) + T"°(n,m)). This
holds for arbitrary dimension d and distance measure on the ground set.

Corollary 5.14 Algorithm SimilarityApx using the center of mass a PTD-reference point in-
duces an approzimation algorithm with approzimation factor 4. Its runtime is O(TTTP (n,m) +
T7%(n,m)). This holds for any dimension of the ground set and every norm defined on it.

Theorem 5.15 Regarding EPTD in the plane, Algorithm SimilarityApxzUsingRotationApx finds
an approzimately optimal matching for similarities with approzimation factor 4(c + 1) in time
O(Tef (max{n,m}) + nmTFFTP (n,m)).

Theorem 5.16 Regarding PT D, in the plane, 1 < p < oo, Algorithm SimilarityApzUsingRo-
tationApx finds an approrimately optimal matching for similarities with approzimation factor
4/2(c + 1) in time O(T"*f (max{n,m}) + nmTFTP» (n,m)).

Corollary 5.17 Algorithm SimilarityApzUsingRotationApx using the center of mass as a PTD-
reference point induces an approximation algorithm with approzimation factor 8 in case of the
Euclidean Distance in the plane and 82 for any other L, distance, 1 < p < oo. Its runtime is
O(nmT*TPr (n,m)).

Theorem 5.18 Algorithm d-SimilarityApxUsingRotationApz finds an approzimately optimal
matching for similarities with approzimation factor 2%(c + 1) in time O(T"¢f (max{n,m}) +
nd=Imd=YTPTD (n m)). This holds for arbitrary dimension d.

Theorem 5.19 Algorithm d-SimilarityApzUsingRotationApz finds an approximately optimal
od—

matching for similarities with approzimation factor 24/d 1(c-{— 1) in time O(T7f (max{n,m}) +

nd=tmd=1TPTD (n m)). This holds for arbitrary dimension d and 1 < p < co.

Corollary 5.20 Algorithm d-SimilarityApxzUsingRotationApx using the center of mass as an
PTD-reference point induces an approzimation algorithm with approzimation factor 2*t! in case

d—1
of the Euclidean Distance and 297'\/d for any other L, distance, 1 < p < oo. Its runtime is
O(nd—lmd—lTPTDp (n’ m)) .

6 Conclusion

In this paper we introduced EMD-reference points for weighted point sets and constructed efficient
approximation algorithms for matching under various classes of transformations. In contrast to
previous work, this approach allows elegant extension to higher dimensions and more general
ground distances. Additionally, we presented the center of mass as an EMD-reference point for
weighted point sets with equal total weight. This reference point, in fact, turns out to be an
optimal reference point in the sence that there is none with a Lipschitz-constant smaller than 1.
Unfortunately, the center of mass is no EMD-reference point if you consider the set of all weighted
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point sets, including those with different total weights. This is not surprising because we have also
shown that there is no EMD-reference point for all weighted point sets and, even worse, there is
also no pseudo-reference point in this case. This smashes all attempts to find a constant factor
approximation just based on an equivariant mapping.

A variation of the EMD is the Proportional Transportation Distance (PTD). We have shown that
the center of mass is a PTD-reference point even for weighted point sets with different total weight
and all theorems and corollaries mentioned in this paper carry over.
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