SERIE B — INFORMATIK

&

Approximate Matching of Polygonal Shapes

Helmut Alt*
Bernd Behrends*

Johannes Blomer*

B 93-10
July 1993

Abstract

For two given simple polygons P, (@ the problem is to determine a rigid motion [ of
@ giving the best possible match between P and @, i.e. minimizing the Hausdorff-
distance between P and I(Q). Faster algorithms as the one for the general problem
are obtained for special cases, namely that [ is restricted to translations or even to
translations only in one specified direction. It turns out that determining pseudo-
optimal solutions, i.e. ones that differ from the optimum by just a constant factor
can be done much more efficiently than determining optimal solutions. In the most
general case the algorithm for the pseudo-optimal solution is based on the surprising
fact that for the optimal possible match between P and an image I(Q) of @ the
distance between the centroids of the edges of the convex hulls of P and I(Q) is a
constant multiple of the Hausdorff-distance between P and I(Q). It is also shown that
the Hausdorff-distance between two polygons can be determined in time O(nlog n),
where n is the total number of vertices.
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1 Introduction

The aim of this paper is to present methods from Computational Geometry solving
standard problems in pattern recognition which can be intuitively formulated as
follows:
Given two objects (shapes) P and (), how much do they resemble each other? (or:
Are they identical up to some tolerance 6 > 0 7)

In many applications (e.g. character recognition) P will be the input and that
() out of a set of samples has to be determined which is most similar to P. Here
we will assume that P and () are simple polygons in the plane. Geometrically the
problem above can be formulated as follows:
Given P, @, find an isometry I such that the distance between P and I(Q) is mini-
mized (and determine that minimal distance). Here an isometry is an affine mapping
in the plane which preserves distances. As is well known (see [M]) any isometry [
can be represented as

I=ropot or [=pot,

where r is the reflexion at the x—axis, p a rotation about the origin, and ¢ a transla-
tion. In this article we will wlog. mean by tsometry only isometries without reflexions
(also called rigid motions or even isometries). Reflexions can easily be included by
first matching optimally P and @ and then P and (@) by rigid motions and taking
the better of the two matches.

In this sense, any isometry [ is of the form

I(z)=M z+1 (1)

Cos @ SN

where M = ( ) for some ¢ € [0,27] and ¢ € R? is some fixed

—s8ing Ccos @
translation vector.

Throughout this article we will denote by d(z,y), z,y € R?* the Fuclidean-
distance between x and y, by ||z|| := d(z,0) the Euclidean norm of z. For a
set A C R* and € > 0 we denote by U,(A) the e-neighborhood {x € R*|Ta €
A such that d(z,a) < €} and for x € R? we will write U,(x) instead of U ({z}).

Now, for our polygons P and @) as a distance measure between P and 1(Q)) we
will use the so-called Hausdorff-metric 6y that is defined by

§1(A, B) = max(dp (A, B),du(B, A)), (2)
where 67(X,Y) = sup inf d(x,y), is the distance from X to Y.
Notice that 85 (A, B) is always defined if A, B C R? are bounded and that
§u(A, B) = inf{e > 0]A C U.(B) and B C U(A)}. (3)

Figure 1 shows two polygons P, and an isometry [ such that g(P, [(Q)) is min-
imized. (Note that throughout this paper, when considering a polygon P as a set,
we always mean the set of points on the edges of P, not the ones in the interior.)
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Figure 1:

There are some special cases of the general problem formulated above which are of
independent interest. Let P3 denote the general problem then we define problems
P2, P1, PO by the following restrictions:

P2: Only translations are allowed, i.e. in (1) M is the identity matrix Id

P1: Only translations along one fixed direction t; are allowed, i.e. M = [Id and

te{A-to|]r e R}

P0: No isometries except for the identity are allowed (M =1Id,t= (8)), i.e. the
problem is to measure the Hausdorff-distance between P and ().

A standard example for the application of P2 (or even P1) is again character recog-
nition. PO is, of course, a very fundamental problem. A linear time algorithm for it
in the case of convex polygons has been given by Atallah [At1]. An algorithm for
P2 using parametric search was given in [AST].

In Section 2 we will give an O((p + ¢)log(p + ¢)) algorithm for PO, where p
and ¢ are the numbers of vertices of P, (), respectively. Then for problem P1 an
O(Ms(pq) log(pgq)) algorithm will be presented using techniques for computing upper
envelopes of functions related to Davenport-Schinzel-sequences. Next for problems
P2 and P3 algorithms will be briefly sketched whose approximate runtimes are
polynomials of degree 7 and 9. Since that is not very efficient any more, we present
in Section 5 algorithms giving pseudo-optimal solutions as an alternative. This
means that they do not necessarily compute the optimal isometry, but one where
the resulting Hausdorff-distance differs from the optimum only by a constant factor.
For problem P3 the algorithm is based on the fact that if the minimum distance
between P and an isometric image 1(Q)) of @) is € then the distance between the



centroids of the edges of the convex hulls of P and the copy of () giving the best
possible match is at most 17e.

For point sets instead of polygons similar questions as the ones considered in this
paper have been investigated in [AMWW] and [S], and more recently, [AKMSW]
and [HK]. Problems related to the ones here with respect to an alternative distance
measure have been considered in [G] and [AG]. Approximation algorithms in this
context have been developed in [ABGW] and [G].

This paper is the complete version of some parts of [ABB].

2 Determining the Hausdorff-distance of two poly-
gons (Problem PO0)

Let P, () be two polygons with p, ¢ vertices, respectively. In order to solve problem
PO, 1.e. determine the Hausdorft-distance between P and (), we consider the Voronoi-
diagram of P, Vor(P).

Vor(P) assigns to each edge and each vertex of P its Voronoi-cell, i.e. the set
of points in the plane which are closer to this element (i.e. edge or vertex) than to
any other one (see Figure 2). The edges of Vor(P) are either line segments (if they
separate the cells of two edges or two vertices of P) or parabolic segments (if they
separate the cell of a vertex from the cell of an edge). Vor(P) has O(p) edges and
vertices and can be constructed in time O(plog p) (see [Y], [F]). In order to obtain

Figure 2: Voronoi Diagram of a Polygon P

a finite problem we observe the following:

First consider the intersection of a fixed Voronoi-cell C' with @ (see Figure 3).
Suppose that we move monotonically on an edge of ¢} within this Voronoi-cell C'.
As easily can be seen the distance to the corresponding element of P defining cell
(' is a bitonic function, i.e. first decreases and than increases monotonically (or is
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just monotone increasing or just monotone decreasing). It follows that the maximal
distance of a point of ) on this edge to P must be assumed at the endpoints of the
edge or at the intersection point with some Voronoi-edge bounding cell C'.

It follows that the distance ég(Q, P) must be assumed at a vertex of () or an
intersection point of an edge of () with a Voronoi-edge of P. Furthermore if we move
monotonically on a Voronoi-edge e of P the distance to the elements whose cells are
separated by this edge is a bitonic function as described before. Summarizing we
have

Lemma 1 The distance of () to P, gH(Q,P) is assumed either at some vertexr of
Q) or at some intersection point of () with some Voronoi-edge e of P having either
the smallest or largest x—coordinate among the intersection points of Q) with e (see

Figure 3).

(In the lemma we assume that parabolic segments having a vertical tangent are
cut into two pieces at the point where the vertical tangent occurs.) Notice that the
number of points in Lemma 1 is O(p+¢). It remains to show how to find these points
and their nearest neighbours on P, that is we have to determine the cells of Vor(P)
containing the vertices of () and the elements of P closest to the critical intersection
points. We do this by a plane sweep across the arrangement obtained by the edges

Figure 3:

Vor(P) and () O - extreme intersection points.

of Vor(P) and Q. In order to obtain only the extreme intersection points of each
edge e of Vor(P), we delete e from the data structure (e.g. 2-3-tree) as soon as the
first intersection point with () has been found. Two such sweeps, one from left to
right and one from right to left, are necessary. Since there are O(p+ ¢) event points



we obtain an O((p + ¢)log(p + ¢))-algorithm for determining all candidates in the
sense of Lemma 1. By determining their distance to P and taking their maximum

we get SH(Q, P). Analogously, SH(P, @) and thus 6y (P, Q) can be determined.

3 An algorithm for P1

For problem P1 we can assume wlog. that the direction of the allowed translations
is parallel to the x-axis, i.e. translation vectors are of the form (A,0), A € R. For
A € R and an egde e of () we denote by I,(e) the image of e.

Suppose €' is an edge of Vor(P) bounding some cell C'. For any fixed value
of A I(e) has at most two intersection points with ¢’. We consider the square of
the distance of such an intersection point to the object in P defining cell C' as a
function in A. Since €’ is a parabolic or a straight line segment this function is clearly
algebraic and a detailed analysis shows that its order is at most 4. It is not hard
to verify that each pair e, €/, e € @), ¢’ an edge of Vor(P), generates at most 3 such
algebraic functions in A, whose domains are intervals (see Figure 4). Likewise we

Figure 4:
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define for each pair (a,C'), where @ is an endpoint of some edge e of () and C a cell
of Vor(P), the function f, ¢, i.e. if the corresponding endpoint of I)(e) is contained
in C' f, () is defined as the square of the distance of this point to the site defining

cell C'.
Obviously, f,.c(A) is a quadratic function. According to Lemma 1 the Hausdorff

distance h()) := (?;;(]A(Q), P) is the maximum of all functions described previously,
i.e. h is the upper envelope of all these functions (see Figure 5).

Figure 5:

Problem P1 can now be reduced to finding the minimum of the function h(A).
Clearly h()) is a piecewise algebraic function. Constructing upper envelopes of sets
of functions is well studied in the theory of Davenport-Schinzel sequences (see [ASS],
[At2]). There the number of pieces of the upper envelope of n functions from which
any pair can intersect at most k times is denoted by Ag(n). The upper envelope
can be constructed (see [At2]) in time O (Ag(n)logn). No explicit expression is
known for Ag(n) if & > 4, but it is known that the growth rate is only slightly above
linear for any constant k. In fact Ag(n) = o(nlog™n) (where log™n is the number
of times log has to be applied to get down from n to some value < 1). In our
case h()) is the upper envelope of O(pq) algebraic functions of degree at most 4,
consequently any two of them intersect in at most 16 points by Bezout’s theorem
(see [Fu]). Since the domain of these functions is not necessarily the whole of R but
some interval we additionaly have to take into consideration the interval endpoints
and get O (As(pg)) as the number of pieces h(\) consists of and

O (Ms(pq) log pq)

for the time to construct it (and, thus to find its minimum).
In the same way, we can determine the distance from P to [,(Q) as a function
of A. By merging the two functions we can determine the optimal A in time

O(Ms(pQ) 10%(}79))‘



4 Pseudo-optimal solutions for P2 and P3

In [ABB] problems P2 and P3 were solved by observing that for the optimal place-
ment of () the Hausdorff-distance must occur at at least 3 for P2 and 4 for P3 dit-
ferent places (except for degenerate cases). This observation led to brute force algo-
rithms of runtimes O ((pq)®(p + ¢) log(p + ¢)) for P2 and O ((pq)*(p + ¢) log(p + ¢))
for P3. Meanwhile in [AST] an algorithm for P2 of runtime O ((pq)2 log?’(pq)> has
been found using the technique of parametric search.

In this section, we will present a different approach, which gives much more
efficient and practical algorithms. However, it does not necessarily find the optimal
solution but one which is not too bad in the following sense:

Definition 2 An algorithm is said to produce a pseudo-optimal solution for problem
P2 (P3), iff there is a constant ¢ > 0 such that on input P,Q the algorithm finds a
translation (isometry) I with ég(P, 1(Q)) < ¢b, where 6 is the minimal Hausdor(f-
distance determined by the optimal solution.

A pseudo-optimal solution for P2 can be found very easily:
For a polygon P let rp := (xp,yp) where xp(yp) is the smallest z-coordinate (y-
coordinate) of any point in P (see Figure 6). Let P,Q) be two polygons and [ a

p
Figure 6:

solution to P2, i.e. ¢ := ég(P,1(Q)) is minimal. Obviously d(rp,ryq)) < V26.
Therefore, if I is the translation mapping rq onto rp, its difference to the optimal
one is a vector of length at most v/26. Hence,

Su(PI(Q) < (1+V2)6

ie lisa pseudo-optimal solution. Since rp,rg can be determined in time O(p+ ¢q),
the same holds for I; if we also want the value of o (P, ]N(Q)) we have to apply the
algorithm for PO and finally get a runtime of O((p + q)log(p + q))

Of course, the point rp is not a suitable choice for problem P3 since its position
relative to P is not invariant under rotations. Instead, we define for a polygon P
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Sp to be the centroid of the edges of the convex hull P of P. (In the following p
will always denote the boundary of the convex hull of P not its interior.) One way
to compute Sp (in time O(p)) is to assign for each edge e of P the length of € as a
weight to the midpoint of e and compute the weighted arithmetic mean of all these
midpoints.

_An alternative definition of Sp, which we will use here, is by parametrizations of
P, i.e. continuous mappings « : [a,b] — R?, where [a, b] is a real interval such that
the image of a equals P (see [E]). In addition to the standard definition we will
assume here that « is injective everywhere, except that, since we are considering
closed curves, a(a) = a(b). In particular, we will consider natural parametrizations,
i.e. parametrizations « : [0, L] — R?, where Lz is the length of ﬁ, i.e. the total
length of its edges. Furthermore for any ¢ € [0, L] the arc-length from point «(0)

on P to a(t) on p equals 1. Now elementary geometric considerations show that

1[5
S:—/ a(t)dt,
Sy i (1)

if a 1s a natural parametrization of P.
The following lemma states that Sp is indeed a suitable choice for finding a
pseudo-optimal solution:

Lemma 3 Let P,Q be polygons and I the isometry minimizing 6 := ég(P,1(Q)).
Assume furthermore wlog. that 1(Q)) contains the origin. Then

d(Sp, Si(g)) < (47 +3)6.

For proving Lemma 3 we need a few facts about parametrized curves. First we
consider an alternative distance measure for curves, the so-called Fréchet-distance

(see also [E], [AG]):

Definition 4 Let Cy,Cy be curves. Then the Fréchet-distance is defined as

O (Ch, C2) i= inf(max{d(ne, (1), a(t))[t € [0, Le,}), (4)
where o ranges over all possible injective parametrizations
a:[0,Le] — R?
of Cy and ne, is a natural parametrization of C.

O can be visualized as follows:

Suppose there is a man walking his dog, the man walking on curve Cj, the dog on
Cy. 0p(C1,Cy) is the minimal length of a leash that is possible.

It has been proven in [ABGW]:
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Lemma 5 For any pair of convex closed curves Cy,Cy : 6p(Cy,C) = ép(Cq, Cy),
in fact to any natural parametrization ne, of Cy there exists a parametrization o :

[0, Ley] — R? of Oy with d(ne, (1), a(t)) < 6u(Cy, Cs) for all t € [0, Le,].

Lemma 6 [Ben, Thm. 14.12] Let Cy and Cy be convex closed curves, Le,, Lo, their
lengths and 6 = 6p(C1,Cy). Then |Ley — Lo, | < 276.

Lemma 7 Let A, B C R* compact, and X,E their convex hulls. Then 5H(g, E) <
ou(A, B).

Proof: Let § := §y(A, B). A C Us(B) implies A C Us(B). Since Us(B) C Us(B)

and Ug(é) is convex, it follows Us(B) C Ug(é), so A C Ug(é). Analogously,
B C Us(A), which proves the lemma.

Now we can give the proof of Lemma 3:
Let R::]B, T:=1(Q) <: ](@)), « a natural parametrization of R, and 3 a parame-

trization of T such that according to Lemma 5:

d<oz(t),§(t)> < 6u(R,T) foralltel0,Lg] (5)
< ¢ by Lemma 7.

(6)

Let 8 : [0, L] — R? be the natural parametrization of T with 5(0) = g(()), and the

orientation in which 3 traverses T' is the same as the one of 3. Now,

1 [hke 1 i
ASr.Suay) = N [ atvir— 7 [ s
1 [hke
< 7= la(t) — B(t)]|dt
R Jo

11 Lr
+o{—=-= t)dt
(- ) [ s
1, [
+ 7| B(t)di|,
7 Ji,

assuming wlog. that Ly > Lp. Let us denote the three terms in the last expression
by Jy, Js, J3, respectively.

In order to get an upper bound on J, and J3 observe first that T is a closed
curve, hence its length Lz is at most twice its diameter. Since T" also contains the
origin it follows

1B < Lz /2 (7)
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for all ¢t € [0, Ly]. Hence

1 1 Lr
) < (E—E) [ s

r—Lr_ Lt
< == b
Y L y (7) (8)
< 76 by Lemma 6
and
1 fEr
Js = - 13 ()] dt
T Jr,
1 Lt
< —(Ly—Lp)—
< LT(1~ R) 5
< 7

again by (7) and Lemma 6. In order to get an upper bound for .J;, we show
Claim: ||a(t) — B(1)]| < (27 + 3)6 for all t € [0, Lg]

Proof: For a fixed t € [0, Lg] consider the curve segments from «(0) to a(t) of R

and from 5(0) to g(t) of T' and close them by line segments { and (7 (see Figure 7).
The resulting curves R',T" have Hausdorff-distance < é. By definition (see (5)) this

B =P

a(0)

Figure 7:

is correct for the curve segments themselves, for the line segments (g, {7 it holds
because their respective endpoints have distance at most 6. By Lemma 6 it follows

|LR’ — LT’| S 27d (9)

Now, if b is the arc-length of T from g(()) to g(t), and [g, [y the lengths of (g, (1,
respectively, then
|Lp — L] = [t+Llp—b— (7] (10)
> |t =0 = [lr — 1]
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Since |lgp — Ip| < 26, we have by (9) and (10):
[t — b < (27 4+ 2)6

On the other hand since b is the arc-length of T" between 5(0) and g(t) and t the
arc-length of T' between 3(0) <: 5(0)) and (1), we get

I sl < =0
So [|8(t) —a@)ll < [8(1) = B+ [8(8) — )]
< (27 42)0+96

and the claim follows.
Clearly, the claim implies that J; < (27 + 3)4, hence

d(Sp, SI(Q)) < (47‘— + 3)57

which finishes the proof of Lemma 3.

From Lemma 3 we obtain with the same arguments as for problem P2:

Lemma 8 Let [ be an isometry which gives a minimal Hausdorff-distance among
the ones mapping Sq onto Sp. Then

o (P, 1(Q)) < (47 + 4)6;
where 6 is the optimal solution, i.e. Iisa pseudo-optimal solution.

I can be found by translating () such that Sg is mapped onto Sp and then
rotating the image of () around Sp. The angle ¢ of rotation which gives the optimal
solution I can be determined by a technique analogous to the one used for solving
problem P1.

In fact, let us first assume that ¢ € [0, 7], the case ¢ € [r,27] can be solved
analogously. Rather than using the angle ¢ itself as a parameter for the rotation,
we use ¢ := cosp € [—1,1] which is bijective on the interval considered. Also, by
applying a simple translation, we may assume that the rotation is about the origin
and, thus, is described by some rotation matrix

]c:< c 5)
—S C

st =1. (11)

where

Analogously to P1, we want to describe the one-sided Hausdorff-distance S (1.(Q), P)
as a function in ¢. As for P1 this function is the upper envelope of O(pq) functions
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obtained from pairs e, €’ where e is an edge of @) and €’ one of Vor(P) and O(pq)
functions obtained from pairs v, f where v is a vertex of ) and f a vertex or edge

of P.

Let us first consider the intersection points of edges e,¢’. If ¢’ is a parabolic
segment (see Figure 8) let

Q(xvy) =0 (12)

be a quadratic equation describing the corresponding parabola. Let {(x,y) = 0 be

Figure 8:

a linear equation describing the straight line through e. Then I.(¢) is described by
((I7*(x,y)) = 0 which is a (inhomogeneous) bilinear form in z,y, c and s, i.e.

B(x,y,¢,s) =0. (13)

From (11), (12) and (13) with four unknowns we can eliminate y and s and obtain
x as (constantly) many branches of an algebraic function in ¢. Then from (12) we
obtain y as function in ¢. The function we are finally looking for is the distance d(c)
of ((¢),y(c)) to the edge of P whose Voronoi cell is bounded by €’. It has the form

d(¢) = a1x(e) + azy(c) + as (14)

for constansts aq, as, az and therefore is also an algebraic function of constant degree
(A detailed analysis shows that its degree is at most 32.).

In the case where €’ is a straight line segment, equation (12) is linear instead of
quadratic and equation (14) the square root of a quadratic function instead of linear
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function. It can be shown that d(c¢) is then an algebraic function of degree less than
32.

The functions resulting from the distances between I.(v) and f, v a vertex of ()
and f a vertex or edge of P are, as a detailed analysis shows, algebraic functions
in ¢ of degree at most 4. Altogether, we have O(pq) algebraic functions of constant
degree so they intersect pairwise in constantly many points (using Bezout’s theorem,
see [Fu]). Since in our case the functions are only defined on finite intervals, like
in the analysis for P1 we have to add the endpoints of these intervals as critical
points. So the number of segments the upper envelope consists of is Ax(pq) for some
constant k and it can be constructed in time

O (A(pg) log(pq)) (15)

(see [At2]). Likewise, within the same runtime we can construct EE(P, 1.(Q)) as a
function in ¢, determine the maximum f of both functions and the minimum of f
which is 6y (P, I(Q)). Since Sp and Sg can be found in linear time this bounds also
the runtime of the whole algorithm.

A detailed analysis shows that k = 1026 is sufficient in (15). As was mentioned
before Ar(pg) = O (pglog™(pgq)) for any constant k, but the constant in the O-
term may become quite large. But although the analysis is rather complicated the
algorithm of [At2] is simple and it should behave reasonably in practice for our
problem.

Also the constant of 47 +4 ~ 17 in Lemma 8 may seem large, but with the fol-

lowing idea (cf. [S]) it can be reduced to any fixed constant ¢ > 1 without increasing
the asymptotic runtime:
We know by Lemma 3 that the optimal isometry I maps Sg into the (47 + 4)é-
neighborhood U of Sp. We place onto U a sufficiently small grid so that no point
in U has distance greater than (¢ — 1)é from a gridpoint. Since ¢ is fixed, there are
constantly many gridpoints within U. We place Sg instead of onto Sp only, onto
each one of these gridpoints and proceed as described before. It follows from the
previous discussion that for the solution I found this way it holds:

ou(P,1(a)) < cé.

5 Conclusion

Let us summarize the results of this paper, using explicit upper bounds for Ax(pq), k
constant:

Theorem 9 The different versions of the problem of measuring the resemblance be-
tween polygons P, Q) with p, q vertices respectively, can be solved within the following
time bounds:
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PO O ((pq)log(pg))
P1: O((pq)log(pq)log™(pq))
P2: O ((pq)log(pg))

log

P3: O ((pq)log(pg)log™(pq)),

where the algorithms for PO and P1 give optimal, the ones for P2 and P3 pseudo-
optimal solutions.

Finally observe that we never really used in our algorithm that P and () are
polygons. In fact, we obtain:

Corollary 10 Theorem 9 not only holds for polygons, but also for more general
structures like polygonal chains, in fact, for arbitrary sets of nonintersecting line
seqgments.
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