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Abstract

For two given simple polygons P�Q the problem is to determine a rigid motion I of
Q giving the best possible match between P and Q� i�e� minimizing the Hausdor��
distance between P and I�Q	� Faster algorithms as the one for the general problem
are obtained for special cases� namely that I is restricted to translations or even to
translations only in one speci
ed direction� It turns out that determining pseudo�
optimal solutions� i�e� ones that di�er from the optimum by just a constant factor
can be done much more e�ciently than determining optimal solutions� In the most
general case the algorithm for the pseudo�optimal solution is based on the surprising
fact that for the optimal possible match between P and an image I�Q	 of Q the
distance between the centroids of the edges of the convex hulls of P and I�Q	 is a
constant multiple of the Hausdor��distance between P and I�Q	� It is also shown that
the Hausdor��distance between two polygons can be determined in time O�n log n	�
where n is the total number of vertices�
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� Introduction

The aim of this paper is to present methods from Computational Geometry solving
standard problems in pattern recognition which can be intuitively formulated as
follows	
Given two objects 
shapes� P and Q� how much do they resemble each other
 
or	
Are they identical up to some tolerance � � � 
�

In many applications 
e�g� character recognition� P will be the input and that
Q out of a set of samples has to be determined which is most similar to P � Here
we will assume that P and Q are simple polygons in the plane� Geometrically the
problem above can be formulated as follows	
Given P�Q� �nd an isometry I such that the distance between P and I
Q� is mini�
mized 
and determine that minimal distance�� Here an isometry is an a�ne mapping
in the plane which preserves distances� As is well known 
see �M�� any isometry I
can be represented as

I � r � � � t or I � � � t�
where r is the re�exion at the x�axis� � a rotation about the origin� and t a transla�
tion� In this article we will wlog� mean by isometry only isometries without re�exions

also called rigid motions or even isometries�� Re�exions can easily be included by
�rst matching optimally P and Q and then P and r
Q� by rigid motions and taking
the better of the two matches�
In this sense� any isometry I is of the form

I
x� � M � x� t 
��

where M �

�
cos� sin�

� sin� cos�

�
for some � � ��� ��� and t � R� is some �xed

translation vector�
Throughout this article we will denote by d
x� y�� x� y � R�� the Euclidean�

distance between x and y� by kxk 	� d
x� �� the Euclidean norm of x� For a
set A � R� and � � � we denote by U�
A� the ��neighborhood fx � R�j�a �
A such that d
x� a� 	 �g and for x � R� we will write U�
x� instead of U�
fxg��

Now� for our polygons P and Q as a distance measure between P and I
Q� we
will use the so�called Hausdor��metric �H that is de�ned by

�H
A�B� � max
e�H
A�B��e�H
B�A��� 
��

where e�H
X�Y � � sup
x�X

inf
y�Y

d
x� y�� is the distance from X to Y �

Notice that �H
A�B� is always de�ned if A�B � R� are bounded and that

�H
A�B� � inff� � �jA � U�
B� and B � U�
A�g
 
��

Figure � shows two polygons P�Q and an isometry I such that �H
P� I
Q�� is min�
imized� 
Note that throughout this paper� when considering a polygon P as a set�
we always mean the set of points on the edges of P � not the ones in the interior��
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Figure �	

There are some special cases of the general problem formulated above which are of
independent interest� Let P� denote the general problem then we de�ne problems
P�� P�� P� by the following restrictions	

P�	 Only translations are allowed� i�e� in 
�� M is the identity matrix Id

P�	 Only translations along one �xed direction t� are allowed� i�e� M � Id and
t � f� � t�j� � Rg

P�	 No isometries except for the identity are allowed
�
M � Id� t �

�
�
�

��
� i�e� the

problem is to measure the Hausdor��distance between P and Q�

A standard example for the application of P� 
or even P�� is again character recog�
nition� P� is� of course� a very fundamental problem� A linear time algorithm for it
in the case of convex polygons has been given by Atallah �At��� An algorithm for
P� using parametric search was given in �AST��

In Section � we will give an O

p � q� log
p � q�� algorithm for P�� where p
and q are the numbers of vertices of P�Q� respectively� Then for problem P� an
O
���
pq� log
pq�� algorithm will be presented using techniques for computing upper
envelopes of functions related to Davenport�Schinzel�sequences� Next for problems
P� and P� algorithms will be brie�y sketched whose approximate runtimes are
polynomials of degree � and �� Since that is not very e�cient any more� we present
in Section � algorithms giving pseudo�optimal solutions as an alternative� This
means that they do not necessarily compute the optimal isometry� but one where
the resulting Hausdor��distance di�ers from the optimum only by a constant factor�
For problem P� the algorithm is based on the fact that if the minimum distance
between P and an isometric image I
Q� of Q is � then the distance between the



�

centroids of the edges of the convex hulls of P and the copy of Q giving the best
possible match is at most ���


For point sets instead of polygons similar questions as the ones considered in this
paper have been investigated in �AMWW� and �S�� and more recently� �AKMSW�
and �HK�� Problems related to the ones here with respect to an alternative distance
measure have been considered in �G� and �AG�� Approximation algorithms in this
context have been developed in �ABGW� and �G��

This paper is the complete version of some parts of �ABB��

� Determining the Hausdor��distance of two poly�
gons �Problem P��

Let P�Q be two polygons with p� q vertices� respectively� In order to solve problem
P�� i�e� determine the Hausdor��distance between P and Q� we consider the Voronoi�
diagram of P� Vor
P ��

Vor
P � assigns to each edge and each vertex of P its Voronoi�cell� i�e� the set
of points in the plane which are closer to this element 
i�e� edge or vertex� than to
any other one 
see Figure ��� The edges of Vor
P � are either line segments 
if they
separate the cells of two edges or two vertices of P � or parabolic segments 
if they
separate the cell of a vertex from the cell of an edge�� Vor
P � has O
p� edges and
vertices and can be constructed in time O
p log p� 
see �Y�� �F��� In order to obtain

Figure �	 Voronoi Diagram of a Polygon P

a �nite problem we observe the following	
First consider the intersection of a �xed Voronoi�cell C with Q 
see Figure ���
Suppose that we move monotonically on an edge of Q within this Voronoi�cell C�
As easily can be seen the distance to the corresponding element of P de�ning cell
C is a bitonic function� i�e� �rst decreases and than increases monotonically 
or is
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just monotone increasing or just monotone decreasing�� It follows that the maximal
distance of a point of Q on this edge to P must be assumed at the endpoints of the
edge or at the intersection point with some Voronoi�edge bounding cell C�

It follows that the distance e�H
Q�P � must be assumed at a vertex of Q or an
intersection point of an edge of Q with a Voronoi�edge of P � Furthermore if we move
monotonically on a Voronoi�edge e of P the distance to the elements whose cells are
separated by this edge is a bitonic function as described before� Summarizing we
have

Lemma � The distance of Q to P � e�H
Q�P � is assumed either at some vertex of
Q or at some intersection point of Q with some Voronoi�edge e of P having either
the smallest or largest x�coordinate among the intersection points of Q with e �see
Figure ���


In the lemma we assume that parabolic segments having a vertical tangent are
cut into two pieces at the point where the vertical tangent occurs�� Notice that the
number of points in Lemma � is O
p�q�� It remains to show how to �nd these points
and their nearest neighbours on P � that is we have to determine the cells of Vor
P �
containing the vertices of Q and the elements of P closest to the critical intersection
points� We do this by a plane sweep across the arrangement obtained by the edges

Q

Vor(P)

Figure �	
Vor
P � and Q � � extreme intersection points�

of Vor
P � and Q� In order to obtain only the extreme intersection points of each
edge e of Vor
P �� we delete e from the data structure 
e�g� ����tree� as soon as the
�rst intersection point with Q has been found� Two such sweeps� one from left to
right and one from right to left� are necessary� Since there are O
p� q� event points
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we obtain an O

p � q� log
p � q���algorithm for determining all candidates in the
sense of Lemma �� By determining their distance to P and taking their maximum
we get ��H
Q�P �� Analogously� ��H
P�Q� and thus �H
P�Q� can be determined�

� An algorithm for P�

For problem P� we can assume wlog� that the direction of the allowed translations
is parallel to the x�axis� i�e� translation vectors are of the form 
�� ��� � � R� For
� � R and an egde e of Q we denote by I�
e� the image of e�

Suppose e� is an edge of Vor
P � bounding some cell C� For any �xed value
of � I�
e� has at most two intersection points with e�� We consider the square of
the distance of such an intersection point to the object in P de�ning cell C as a
function in �� Since e� is a parabolic or a straight line segment this function is clearly
algebraic and a detailed analysis shows that its order is at most �� It is not hard
to verify that each pair e� e�� e � Q� e� an edge of Vor
P �� generates at most � such
algebraic functions in �� whose domains are intervals 
see Figure ��� Likewise we

e

e’

I  (e)  λ

λ

Figure �	
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de�ne for each pair 
a�C�� where a is an endpoint of some edge e of Q and C a cell
of Vor
P �� the function fa�C� i�e� if the corresponding endpoint of I�
e� is contained
in C fa�C
�� is de�ned as the square of the distance of this point to the site de�ning
cell C�

Obviously� fa�C
�� is a quadratic function� According to Lemma � the Hausdor�

distance h
�� 	� f�H
I�
Q�� P � is the maximum of all functions described previously�
i�e� h is the upper envelope of all these functions 
see Figure ���

λ

Figure �	

Problem P� can now be reduced to �nding the minimum of the function h
���
Clearly h
�� is a piecewise algebraic function� Constructing upper envelopes of sets
of functions is well studied in the theory of Davenport�Schinzel sequences 
see �ASS��
�At���� There the number of pieces of the upper envelope of n functions from which
any pair can intersect at most k times is denoted by �k
n�� The upper envelope
can be constructed 
see �At��� in time O 
�k
n� log n�� No explicit expression is
known for �k
n� if k � �� but it is known that the growth rate is only slightly above
linear for any constant k� In fact �k
n� � o
n log� n� 
where log� n is the number
of times log has to be applied to get down from n to some value � ��� In our
case h
�� is the upper envelope of O
pq� algebraic functions of degree at most ��
consequently any two of them intersect in at most �� points by Bezout�s theorem

see �Fu��� Since the domain of these functions is not necessarily the whole of R but
some interval we additionaly have to take into consideration the interval endpoints
and get O 
���
pq�� as the number of pieces h
�� consists of and

O 
���
pq� log pq�

for the time to construct it 
and� thus to �nd its minimum��
In the same way� we can determine the distance from P to I�
Q� as a function

of �� By merging the two functions we can determine the optimal � in time

O
�
���
pq� log
pq�

�





�

	 Pseudo�optimal solutions for P� and P�

In �ABB� problems P� and P� were solved by observing that for the optimal place�
ment of Q the Hausdor��distance must occur at at least � for P� and � for P� dif�
ferent places 
except for degenerate cases�� This observation led to brute force algo�
rithms of runtimes O 

pq�

p� q� log
p � q�� for P� and O 

pq��
p� q� log
p� q��
for P�� Meanwhile in �AST� an algorithm for P� of runtime O

�

pq�� log

pq�

�
has

been found using the technique of parametric search�
In this section� we will present a di�erent approach� which gives much more

e�cient and practical algorithms� However� it does not necessarily �nd the optimal
solution but one which is not too bad in the following sense	

De�nition � An algorithm is said to produce a pseudo�optimal solution for problem
P	 �P��� i� there is a constant c � � such that on input P�Q the algorithm 
nds a
translation �isometry� I with �H
P� I
Q�� � c�� where � is the minimal Hausdor��
distance determined by the optimal solution�

A pseudo�optimal solution for P� can be found very easily	
For a polygon P let rP 	� 
xP � yP � where xP 
yP � is the smallest x�coordinate 
y�
coordinate� of any point in P 
see Figure ��� Let P�Q be two polygons and I a

P

r P

Figure �	

solution to P�� i�e� � 	� �H
P� I
Q�� is minimal� Obviously d
rP � rI�Q�� �
p
���

Therefore� if eI is the translation mapping rQ onto rP � its di�erence to the optimal
one is a vector of length at most

p
��� Hence�

�H
P� eI
Q�� � 
� �
p
���

i�e� eI is a pseudo�optimal solution� Since rP � rQ can be determined in time O
p� q��

the same holds for eI� if we also want the value of �H
P� eI
Q�� we have to apply the
algorithm for P� and �nally get a runtime of O

�

p � q� log
p � q�

�
�

Of course� the point rP is not a suitable choice for problem P� since its position
relative to P is not invariant under rotations� Instead� we de�ne for a polygon P
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SP to be the centroid of the edges of the convex hull eP of P � 
In the following eP
will always denote the boundary of the convex hull of P not its interior�� One way

to compute SP 
in time O
p�� is to assign for each edge e of eP the length of e as a
weight to the midpoint of e and compute the weighted arithmetic mean of all these
midpoints�

An alternative de�nition of SP � which we will use here� is by parametrizations ofeP � i�e� continuous mappings � 	 �a� b� � R�� where �a� b� is a real interval such that

the image of � equals eP 
see �E��� In addition to the standard de�nition we will
assume here that � is injective everywhere� except that� since we are considering
closed curves� �
a� � �
b�� In particular� we will consider natural parametrizations�

i�e� parametrizations � 	 ��� L
eP
� � R�� where L

eP
is the length of eP � i�e� the total

length of its edges� Furthermore for any t � ��� L
eP
� the arc�length from point �
��

on eP to �
t� on eP equals t� Now elementary geometric considerations show that

SP �
�

L
eP

Z L
eP

�

�
t�dt�

if � is a natural parametrization of eP �
The following lemma states that SP is indeed a suitable choice for �nding a

pseudo�optimal solution	

Lemma � Let P�Q be polygons and I the isometry minimizing � 	� �H
P� I
Q���
Assume furthermore wlog� that I
Q� contains the origin� Then

d
SP � SI�Q�� � 
�� � ���


For proving Lemma � we need a few facts about parametrized curves� First we
consider an alternative distance measure for curves� the so�called Fr�echet�distance

see also �E�� �AG��	

De�nition � Let C�� C� be curves� Then the Fr�echet�distance is de
ned as

�F 
C�� C�� 	� inf
�

maxfd
nC�


t�� �
t��jt � ��� LC�
�g�� 
��

where � ranges over all possible injective parametrizations

� 	 ��� LC�
� � R�

of C� and nC�
is a natural parametrization of C�


�F can be visualized as follows	
Suppose there is a man walking his dog� the man walking on curve C�� the dog on
C�� �F 
C�� C�� is the minimal length of a leash that is possible�
It has been proven in �ABGW�	



��

Lemma � For any pair of convex closed curves C�� C� 	 �F 
C�� C�� � �H
C�� C���
in fact to any natural parametrization nC�

of C� there exists a parametrization � 	
��� LC�

�� R� of C� with d 
nC�

t�� �
t�� � �H
C�� C�� for all t � ��� LC�

��

Lemma � �Ben� Thm� 
��
	� Let C� and C� be convex closed curves� LC�
� LC�

their
lengths and � � �H
C�� C��� Then jLC�

� LC�
j � ���


Lemma 	 Let A�B � R� compact� and eA� eB their convex hulls� Then �H
 eA� eB� �
�H
A�B��

Proof
 Let � 	� �H
A�B�� A � U�
B� implies eA � gU�
B�� Since U�
B� � U�
 eB�

and U�
 eB� is convex� it follows gU�
B� � U�
 eB�� so eA � U�
 eB�� Analogously�eB � U�
 eA�� which proves the lemma�

Now we can give the proof of Lemma �


Let R	�eP � T 	�gI
Q�
�
� I
 eQ�

�
� � a natural parametrization of R� and e
 a parame�

trization of T such that according to Lemma �	

d
�
�
t�� e

t�� � �H
R�T � for all t � ��� LR� 
��

� � by Lemma �



��

Let 
 	 ��� LT � � R� be the natural parametrization of T with 

�� � e

��� and the

orientation in which 
 traverses T is the same as the one of e
� Now�

d
SP � SI�Q�� � k �

LR

Z LR

�

�
t�dt� �

LT

Z LT

�



t�dtk

� �

LR

Z LR

�

k�
t�� 

t�kdt

� k
�

�

LR

� �

LT

�Z LR

�



t�dtk

�
�

LT

k
Z LT

LR



t�dtk�

assuming wlog� that LT 	 LR� Let us denote the three terms in the last expression
by J�� J�� J
� respectively�

In order to get an upper bound on J� and J
 observe �rst that T is a closed
curve� hence its length LT is at most twice its diameter� Since T also contains the
origin it follows

k

t�k � LT�� 
��
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for all t � ��� LT �� Hence

J� �
�

�

LR

� �

LT

�Z LR

�

k

t�kdt

� LT � LR

LTLR

LR

LT

�
by 
�� 
��

� �� by Lemma �

and

J
 � �

LT

Z LT

LR

k

��kdt

� �

LT


LT � LR�
LT

�
� ��

again by 
�� and Lemma �� In order to get an upper bound for J�� we show

Claim
 k�
t�� 

t�k � 
�� � ��� for all t � ��� LR�

Proof
 For a �xed t � ��� LR� consider the curve segments from �
�� to �
t� of R

and from e

�� to e

t� of T and close them by line segments �R and �T 
see Figure ���
The resulting curves R�� T � have Hausdor��distance � �� By de�nition 
see 
��� this

(0)=

T

R

T

R

(0)

 

(t)

  (t)

 β

 α
 β β(0)

  α

l

l

Figure �	

is correct for the curve segments themselves� for the line segments �R� �T it holds
because their respective endpoints have distance at most �� By Lemma � it follows

jLR� � LT �j � ��� 
��

Now� if b is the arc�length of T from e

�� to e

t�� and lR� lT the lengths of �R� �T �
respectively� then

jLR� � LT �j � jt� �R � b� �T j 
���

	 jt� bj � j�R � �T j



��

Since jlR � lT j � ��� we have by 
�� and 
���	

jt� bj � 
�� � ���

On the other hand since b is the arc�length of T between e

�� and e

t� and t the

arc�length of T between 

��
�
� e

��� and 

t�� we get

ke

t�� 

t�k � jt� bj
So k

t�� �
t�k � k

t�� e

t�k� ke

t�� �
t�k

� 
�� � ��� � �

and the claim follows�
Clearly� the claim implies that J� � 
�� � ���� hence

d
SP � SI�Q�� � 
�� � ����

which �nishes the proof of Lemma ��

From Lemma � we obtain with the same arguments as for problem P�	

Lemma � Let eI be an isometry which gives a minimal Hausdor��distance among
the ones mapping SQ onto SP � Then

�H
P� eI
Q�� � 
�� � ����

where � is the optimal solution� i�e� eI is a pseudo�optimal solution�

eI can be found by translating Q such that SQ is mapped onto SP and then
rotating the image of Q around SP � The angle e� of rotation which gives the optimal
solution eI can be determined by a technique analogous to the one used for solving
problem P��

In fact� let us �rst assume that e� � ��� ��� the case e� � ��� ��� can be solved
analogously� Rather than using the angle � itself as a parameter for the rotation�
we use c 	� cos� � ���� �� which is bijective on the interval considered� Also� by
applying a simple translation� we may assume that the rotation is about the origin
and� thus� is described by some rotation matrix

Ic �

�
c s
�s c

�

where

c� � s� � �
 
���

Analogously to P�� we want to describe the one�sided Hausdor��distancef�H 
Ic
Q�� P �
as a function in c� As for P� this function is the upper envelope of O
pq� functions
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obtained from pairs e� e� where e is an edge of Q and e� one of Vor
P � and O
pq�
functions obtained from pairs v� f where v is a vertex of Q and f a vertex or edge
of P �

Let us �rst consider the intersection points of edges e� e�� If e� is a parabolic
segment 
see Figure �� let

q
x� y� � � 
���

be a quadratic equation describing the corresponding parabola� Let �
x� y� � � be

ed(c)(x(c),y(c))

e’

I (e)c

Figure �	

a linear equation describing the straight line through e� Then Ic
e� is described by
� 
I��c 
x� y�� � � which is a 
inhomogeneous� bilinear form in x� y� c and s� i�e�

B
x� y� c� s� � �
 
���

From 
���� 
��� and 
��� with four unknowns we can eliminate y and s and obtain
x as 
constantly� many branches of an algebraic function in c� Then from 
��� we
obtain y as function in c� The function we are �nally looking for is the distance d
c�
of 
x
c�� y
c�� to the edge of P whose Voronoi cell is bounded by e�� It has the form

d
c� � a�x
c� � a�y
c� � a
 
���

for constansts a�� a�� a
 and therefore is also an algebraic function of constant degree

A detailed analysis shows that its degree is at most �����

In the case where e� is a straight line segment� equation 
��� is linear instead of
quadratic and equation 
��� the square root of a quadratic function instead of linear



��

function� It can be shown that d
c� is then an algebraic function of degree less than
���

The functions resulting from the distances between Ic
v� and f� v a vertex of Q
and f a vertex or edge of P are� as a detailed analysis shows� algebraic functions
in c of degree at most �� Altogether� we have O
pq� algebraic functions of constant
degree so they intersect pairwise in constantly many points 
using Bezout�s theorem�
see �Fu��� Since in our case the functions are only de�ned on �nite intervals� like
in the analysis for P� we have to add the endpoints of these intervals as critical
points� So the number of segments the upper envelope consists of is �k
pq� for some
constant k and it can be constructed in time

O 
�k
pq� log
pq�� 
���


see �At���� Likewise� within the same runtime we can construct f�H
P� Ic
Q�� as a
function in c� determine the maximum f of both functions and the minimum of f
which is �H
P� eI
Q��� Since SP and SQ can be found in linear time this bounds also
the runtime of the whole algorithm�

A detailed analysis shows that k � ���� is su�cient in 
���� As was mentioned
before �k
pq� � O 
pq log�
pq�� for any constant k� but the constant in the O�
term may become quite large� But although the analysis is rather complicated the
algorithm of �At�� is simple and it should behave reasonably in practice for our
problem�

Also the constant of �� � � 
 �� in Lemma � may seem large� but with the fol�
lowing idea 
cf� �S�� it can be reduced to any �xed constant c � � without increasing
the asymptotic runtime	
We know by Lemma � that the optimal isometry I maps SQ into the 
�� � ����
neighborhood U of SP � We place onto U a su�ciently small grid so that no point
in U has distance greater than 
c� ��� from a gridpoint� Since c is �xed� there are
constantly many gridpoints within U � We place SQ instead of onto SP only� onto
each one of these gridpoints and proceed as described before� It follows from the
previous discussion that for the solution eI found this way it holds	

�H
P� eI
a�� � c�



 Conclusion

Let us summarize the results of this paper� using explicit upper bounds for �k
pq�� k
constant	

Theorem � The di�erent versions of the problem of measuring the resemblance be�
tween polygons P�Q with p� q vertices respectively� can be solved within the following
time bounds�
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P� 	 O 

pq� log
pq��

P� 	 O 

pq� log
pq� log�
pq��

P� 	 O 

pq� log
pq��

P� 	 O 

pq� log
pq� log�
pq�� �

where the algorithms for P� and P� give optimal� the ones for P� and P� pseudo�
optimal solutions�

Finally observe that we never really used in our algorithm that P and Q are
polygons� In fact� we obtain	

Corollary �
 Theorem � not only holds for polygons� but also for more general
structures like polygonal chains� in fact� for arbitrary sets of nonintersecting line
segments�
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