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The problem of the maximum number of unit distances among n points in the
plane is one of the best known and most intuitive problems in combinatorial
geometry, but it is still far from its solution. Although the upper bound has
been reduced from the initial O(n?) [6] in several steps [1],[7] to O(n3) [5)],

8], [10], [11], the lower bound Q(necﬁgfg_n) of the lattice section construction
seems as distant as before; especially since the existence of strictly convex
norms on IR? for which ¢n? unit distances are possible (3] implies that the
current methods are exhausted by this result.

For this reason we now try to obtain structural results for the extremal
sets, which may be more enlightening than the bounds on the numbers. Nat-
ural questions are the relation of the extremal sets to lattice subsets (are the
lattice section examples in any way typical for extremal sets) as well as to the
extremal sets for other similar problems (especially the number of distinct
distances). Do extremal sets
e contain many collinear points?

e determine only few directions of unit distances?

e contain many parallelograms?

e have small rational dimension?

e contain only few distinct distances?

e Are there other frequent distances?

e [s the unit distance large or small within the set?

In [2] we showed that lattice section structure holds for sufficiently big num-
ber of points if we count unit distances only in a fixed number of directions.
This behaviour starts, however, only for quite big sets, with respect to the
cardinality as well as to the diameter. But the extremal sets for the maximum
number of unit distances are quite small:

Theorem: For infinitely many n the diameter of each set of n points with
maximum number of unit distances is bounded by O ((log n)33).

A simple application of Turdn’s theorem (using that the graph of distances
smaller than one has independence number O((log n)ﬁﬁ)) show that there are
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many distances smaller than the unit distance in the point set.

Corollary: For infinitely many n the number of distances smaller than one
in a set of n points with maximum number of unit distances
is at least Q(ﬁ)

No attempt was made to find good bounds for the exponent of the logn-

factors; but the hypercube projections whose unit distance graph is the cube

graph show that we cannot expect bounds smaller than logn by this method,

since any subgraph of (); has a smaller average degree.

Proof: Let u(n) be the maximum number of unit distances among n points
in the plane, d(n) := 1<ia<};:12“—i(i) be the maximum average degree that can
be reached in a unit distance graph with at most n points, and 7 a number
such that d(n) = 21‘7(") (since d(2n) > d(n) + 1 there is always such a number
between n and 2n). Let S be a set of 7 points with u(n) unit distances. We
subdivide this set by a unit square mesh and define a directed graph on the
nonempty cells with an edge from cell @; to cell @); iff @; is one of the eight
neighbours of @; and (); NS contains at least twice the number of points of
Q;NS. Let m be the number of maximal cells, i.e. those cells with no directed
edge going out. Each nonempty cell has distance at most logn in this graph
to a maximal cell, since along a directed path the number of points in the
current cell doubles with each edge. So S is covered by at most 4(logn)*m
cells, taking a metrical disc of radius logn around each of the maximal cells.
Since the graph of unit distances of an extremal set is connected, this gives
also a bound for the diameter which is at most 2m logn.

We now consider the maximal cell Q* which contains the minimum num-
ber of points from S; let this number be k. Each of the neighbouring cells
contains at most 2k points, so Q* and its eight neighbours contain at most 17k
points. Since each subgraph of the unit distance graph of S has a smaller
average degree, each point has a degree at least %d(ﬁ) All neighbours of
points in Q* are in @ or one of the neighbouring squares, so these at most
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17k points contain at least ;d(n)k edges. So we have d(17k) > 5d(n)
Suppose now that for all but finitely many n we have an extremal set S
whose diameter is blgger than (logn)**. For these we have m(n) > (logn)3?

and k£ < ( ] < W’ so if the claim of the theorem is false, we have
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d| 17— | > d(17k) > —d(n
< (logn)32> > d(17k) 2 34 ()

for all but finitely many n. Since d increases monotonically and for all n

there is a n between n and Qn, this implies

1

This is an upper bound on the growth rate of d(n), obtained under the
assumption that the diameter of the extremal sets S, grows fast, by cutting
out small (but dense) pieces of S,. We can now compare this upper bound

with the growth rate realized by the lattice section construction:
1 _logn
Let d(n) = : y,e® Tslosn and p(n) : = (10:?%7 then
loglogp(n) = loglogn — 32%501?05—” +0 (%) and
log n. 1 _logp(n)

f)/n S 346 {19 loglogn 69 loglog p(n) ryp( )

1 logp(n)loglogn—logn loglogp(n)
9 log log n log log p(n)
€ Tp(n)

log n log log n—32(log log n) +log(34) log log n

(loglogn)“
— log n log log n+32loglogn—0O (W

((log log n)?2 ) Tp(n)

log n

= 34exp | &
Py (loglogn)2—

— 3469( 32+O(108105n))’yp( )
< 0.987,n) for all n > ny.

SO Vp-kng) < 0.98%y,, and therefore liﬁgiogf% = 0. This contradicts the

lower bound obtained by the lattice section construction (see [6], [9]) which
is liggg)lf ¥ > 1. This completes the proof of the theorem.
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