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Abstract

We continue the investigation of �MP��� into the relationship between classes of oracle
using Turing machines and logics enhanced by Lindstr�om quanti	ers� Let L be a
logic 
FOL or SOL� and let L�K� be the enhancement of that logic with a Lindstr�om
quanti	er for the set of structures K� We show that if for some sets of structures
A�B�C we have L�A�C� � L�B�C� then also L�A� � L�B�� This has the complexity
theoretic implication that� using the appropriate oracle computation model� 	nding
an oracle K such that LK � PK constitutes a proof that L � P� Considering the case
where L is Second Order Logic or fragments of it we use the results of Meyer and
Stockmeyer about the polynomial hierarchy to show that if �i
�i� is a fragment
of SOL capturing level �P

i 
�P
i � in the polynomial hierarchy� then the enhanced

fragment �i�K�
�i�K�� 
for arbitrary K� captures 
�P
n �

K 

�p
n�
K� 
 that level

relativized to an oracle for the set K� As a corollary the logic SOL�K� captures the
polynomial hierarchy relativized to oracle K and has a prenex normal form where
all second order quanti	ers appear outer most�
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� Introduction

The purpose of this paper is to continue the investigation of �MP��� into the close relationships
between the notion of enhancing a logic with a quanti	er for a given set of structures K and the
enhancing of a set of Turing machines which form a complexity class with an oracle to the same
set K


The study of the relationship between various logics and various complexity classes� known as
descriptive complexity is by now well established �AV��� Fag��� Imm��� Imm��� Sto��� Ste�
a�
Ste�
b� and more
 Typically either a fragment of Second Order Logic �SOL� or an enhancement
of First Order Logic �FOL� is studied and found to capture some well known complexity class
 �A
logic captures a complexity class if every set of structures or language recognizable by a Turing
machine in the class is de	nable by a formula in the logic� and every set of structures de	nable by
a formula in the logic is recognizable by a machine in the class�
 From the complexity theoretic
point of view� the hope is that by reinterpreting the big open problems of complexity theory in
logical terms� we gain new insight as to what are the correct terms to use and what are the right
questions we should ask �or hope to answer�


Following the line of investigation which extends FOL with some Lindstr�om quanti	er� we have
the well known results of Immerman �Imm����

� FOL�DTC� � L � First Order Logic enhanced by a quanti	er for deterministic transitive
closure � captures the complexity class of deterministic log space bounded machines


� FOL�TC� � NL � FOL enhanced by a quanti	er for transitive closure captures the complexity
class of nondeterministic log space bounded machines


� FOL�ATC� � P � FOL enhanced by a quanti	er for alternating transitive closure captures
the complexity class of deterministic polynomial time bounded machines


These results lead among other things to the purely complexity theoretic results of �Imm��� that
NL � Co�NL


Recent results of the above type were published by Stewart �Ste�
a� Ste�
b��

� FOL�HAM � � LNP � FOL enhanced with a quanti	er for the Hamiltonicity of graphs�
captures the class of log space machines using oracles in NP


and by the authors �MP�
��

� FOL�HEX� � PSpace � Where HEX is a quanti	er saying that on a given graph� player �
has a winning strategy in the game of HEX as de	ned in �GJ���


In �MP���� by choosing an appropriate oracle computation model� these last two results were
generalized
 For arbitrary K it was shown that

� FOL�DTC�K� �FOL�TC�K�� FOL�ATC�K�� capture LK �NLK � PK� � the class of machines
in L �NL�P� using an oracle for K


� If� furthermore� K is such that DTC �TC� ATC� is expressible in FOL�K� then FOL�K�
captures LK �NLK � PK�


As ATC is expressible in FOL�HEX� �MP�
� and HEX is PSpace�complete for P reductions

�GJ���� it follows that this logic captures PPSpace � PSpace
 Using Stewart�s results and the fact

that P � NP � LNP we obtained the complexity theoretic result that LNP � NLNP � PNP

An important aspect of this work was that for these results to hold� one must carefully de	ne

the oracle computation model for the space bounded classes� a fact which illuminates the sensitivity
of relativized�complexity results to the precise type of oracle computation model used
 �See �MP���
and references therein for details of the subject and the exact model used
 Aspects of this issue
relevant to us are presented ahead at the end of section 
�


The equivalence of the classes LNP � NLNP � PNP naturally raises the question of whether
such results are a coincidence dependent on the choice of the oracle and what conclusions �if any�
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one can draw from such results about the unrelativized classes
 Speci	cally� does DK �� CK imply
D �� C�

The 	rst result of this paper is a �logical� characterization of the cases for which this implication
is true


Theorem�� For A�B�C sets of structures� If FOL�A�C� �� FOL�B�C� then FOL�A� �� FOL�B��

From which we get

Corollary�� If there is an oracle K such that LK �� PK �LK �� NLK � NLK �� PK� then L �� P
�L �� NL� NL �� P��

Note� The fact that from LK �� NLK we have L �� NL was already observed in �Si��� RS��� Wil���


To the best of our knowledge� as yet� no such separating oracles were found

On the other hand� Baker� Gill and Solovey ��BGS���� demonstrated K such that PK �� NPK 


Further work along this line �see Ko �Ko��� and references therein� show oracles which separate
the polynomial hierarchy at any desired level and also from P and PSpace �where ��P

n���
K is

de	ned as NP��P

n
�K �
 Contrasting such results with the above gives a strong motivation to 	nd

logics or fragments of logics which capture relativized levels of the polynomial hierarchy

This is the second result of this paper
 We de	ne an extension of our framework in �MP���

� SOL�K� � the enhancement of second order logic by a quanti	er for the set K
 This de	nition
can be built up such that for any fragment �i or �i of SOL the enhanced fragment �i�K� or
�i�K� is well de	ned �where �i��i contain only formulas where all SO quanti	cations are outer
most and there are no more than i alternations of such quanti	ers� starting with ����
 Using well
known results by Fagin� Meyer and Stockmeyer �Fag��� MS��� Sto��� GJ��� which show that each
fragment �i��i� of SOL captures the appropriate �P

i ��P
i � level of the polynomial hierarchy and

that the entire hierarchy �PH� is captured by full SOL we show that

Theorem�� For each fragment i� �i or �i of SOL the enhanced fragment �i�K� captures �P
i �K�

and �i�K� captures �P
i �K��

From which we immediately get

Corollary�� ���i�K� captures PHK

and with a bit more work


Corollary�� SOL�K� captures PHK and has a normal form where all SO quanti�ers are outer
most�

One might be tempted to conclude that these results� applied to the separating oracles of
Baker Gill and Solovey or Ko� would constitute a proof that P �� NP however this conclusion is
WRONG
 While we may easily prove SOL versions of theorem � where FOL is replaced by SOL
or any �i��i� we do not have a �hybrid� theorem stating that FOL�ATC�K� � SOL�K� implies
FOL�ATC� � SOL
 In fact we argue that in general� the opposite is actually true� i
e
 that it is
possible to have two logics L� � L� such that L��K� �� L��K� for some well chosen K


To be more precise� one can de	ne a notion of natural and unnatural inclusions between logics�
where an inclusion is unnatural if the less expressive logic has more expressive syntactical constructs
�as is the case when a logic formed by enhancing FOL with some generalized quanti	ers is more
expressive than a logic based on SOL or its fragments�
 Our argument is that in cases of unnatural
inclusion one can utilize the di�erence in the expressive power of the syntactical constructs to
construct a K such that L��K� �� L��K�
 This is not too surprising since in complexity theoretic
terms� this is just a restatement of a theorem due to Buss �theorem �
� in �Bus���� that if there is
a su�cient di�erence between complexity classes in terms of the number and type of queries they
can ask of an oracle� then there is an oracle which separates them
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The remainder of the paper formalizes the notions above as follows� Section � gives the basic
de	nitions of a logic enhanced by a Lindstr�om quanti	er
 Section � states and proves our theorem
�� its variations and its corollaries
 Section 
 states and proves our theorem 
 and its corollar�
ies
 Finally in section � we use the notion of natural and unnatural inclusions between logics to
characterize conclusions which can and cannot be drawn from our results


We assume the reader is familiar with the basics of complexity theory as presented in �GJ��� or
the excellent surveys �Sto��� Joh���� and with the basics of abstract model theory as presented in
�EFT��� CK��� or in �Ebb��� of �BF���
 Throughout this work� we assume that all structures under
consideration are 	nite and ordered �although in some cases the order requirement is super�uous�
and that all sets of structures under consideration are closed to isomorphism
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� Basic De�nitions

We de	ne L�K� � the enhancement of L � a logic �or a syntactic fragment of a logic� with a 	rst
order Lindstr�om quanti	er for K � a set of structures
 As a basis one can think of L as either
First Order Logic �FOL� or Second Order Logic �SOL�� however the de	nition can be extended
inductively to more than one quanti	er such that L can itself be a logic formed by enhancing FOL
or SOL with some set of Lindstr�om quanti	ers

Note� Our de	nition of L�K� is similar to the way Ebbinghaus de	nes Lindstr�om quanti	ers in
�Ebb��� of �BF��� �where the enhanced logic is denoted as L�QK��
 The modi	cations being that
as in �MP��� we include vectorization already in the de	nition and that here we allow free second
order variables in the QK� formula


De
nition�� �Feasibility
 Let � � fR�� � � � � Rmg be some vocabulary
 For Ri a relation symbol�
let 	�Ri� denote its arity
 Let � � h
�� 
�� � � � � 
mi be formulas of L over a �possibly di�erent�
vocabulary �
 We say that � is k�feasible for � over � if the following hold�

�i� 
� has k distinguished distinct �	rst order� free variables

�ii� Each 
i �m � i � �� has k	�Ri� distinguished distinct �	rst order� free variables


�iii� It is possible for � to have other non�distinguished free �	rst and second order� variables

These do not have to be distinct among the component formulas of �


� is feasible for � over � if it is k�feasible for � over � for some integer k


Observe that if � is feasible for � over �� it can be regarded as a logical reduction transforming
a � structure into a � structure
 We formalize this notion as follows�

De
nition�� �The structure A�
 Let A �with universe A� be a ��structure and � be k�feasible
for � over �
 Given a substitution Z for all none�distinguished free variables of � �FO variables
to elements of A and SO variables to appropriate subsets of A�� the structure A� is de	ned as
follows�

�i� The universe of A� is the set A� � f�a 	 Ak � A�Z j� 
���a�g 
�ii� The interpretation of Ri in A� is the set

A��Ri� � f�a 	 A�
��Ri� � A�Z j� 
i��a�g 

Note that A� is a ��structure of cardinality at most jAjk
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De
nition�� �The QK Formation Rule
 Let K be a set of ��structures and � be a set of
��formulas of the logic L feasible for � 
 The QK formation rule� states that

QK�

is a formula� where all the distinguished free variables of � are bound
 Given a substitution Z to
the remaining free variables of �� A�Z j� QK� i� A� 	 K


De
nition�� �The Logic L�K� � The enhancement of a logic L by a quanti	er for K �L�K�� is
obtained by adding the QK formation rule to the set of formation rules of L and by adding the
interpretation of this rule to the set of interpretation rules of L


The above de	nition allows us to speak of FOL�K�� SOL�K� and inductively about
FOL�K� � � �Kn� �SOL�K� � � �Kn��
 For some of our purposes� it is convenient also to de	ne L�K�
where L is a syntactic fragment of SOL
 We formalize this notion as follows�

De
nition��� �Sub logics of SOL�K�


�i� INSOL�K� is the restriction of SOL�K� to formulas where all second order quanti	ers appear
outside any QK quanti	er
 �The closure of FOL�K� to the formation rules of SOL�


�ii� NFSOL�K� �Normal Form SOL� is the restriction of SOL�K� to formulas where all second
order quanti	ers appear outside any other elements of the formula
 �The closure of FOL�K�
to quanti	cation over relation variables�


�iii� �i�K� ��i�K�� � is the restriction of NFSOL�K� to formulas with at most i � � alternations
of SO quanti	ers starting with � ���
 Note that all formulas with less than i � � alternations
are formulas of both �i�K� and �i�K��


We observe that from the de	nitions it is not clear that for arbitrary K NFSOL�K� � SOL�K�
and even for K�s where it is so the �transformation rules� which produce an NFSOL�K� formula
given an arbitrary SOL�K� formula� might be K�speci	c
 However we can show the following�

Lemma��� �Syntactic Lemma
 Every formula in INSOL�K� has an equivalent formula in
NFSOL�K��

Proof	 Follows by standard �normal form� techniques for SOL
 Clearly any formula of INSOL�K�
can be formed by applying some formation rules of SOL to a set of NFSOL�K� formulas
 We show
that after each application of a formation rule the resulting INSOL�K� formula has an equivalent
NFSOL�K� formula
 The lemma follows by induction


The formation rules of SOL are� 
� ���� First order quanti	cation and second order quanti	�
cation


� By de	nition applying SO quanti	cation leaves us with a formula in NFSOL�K�

� For 

 the equivalent formula is obtained by �pulling� the negation inside while changing each
���� quanti	er on the way to ����


� For 
 � 
 �
 � 
� we rename relation variables to ensure that no quanti	ed relation variable
appears in both 
 and 
� and then �pull� out all quanti	cations of second order variables


� For 	rst order quanti	cation observe that an �x�R
 ��x�R
� is semantically equivalent to
�R�x
 ��R�x
�
 For �x�R
 where R is of arity n we observe that the formula � �R�x
 is
semantically equivalent if �R is a relation of arity n! � and 
 is obtained from 
 by replacing
any appearance of R�y� with �R�x�y�
 The argument for �x�R
 is similar
 Hence 	rst order
quanti	ers can be �pulled� inside all second order quanti	ers


Observe that from our proof each INSOL�K� formula has an equivalent NFSOL�K� one with the
same number of alternations �though possibly with higher arity relation variables and a di�erent
leading quanti	er�
 �
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� FOL�A�C� �� FOL�B�C� implies FOL�A� �� FOL�B�

We are now ready to state and prove our 	rst theorem�

Theorem��� Let A�B�C�K be sets of structures over possibly di�erent vocabularies� such that
K is de�nable in FOL�B�C� but not in FOL�A�C�� Then B is not de�nable in FOL�A��

Proof	 Let 
K denote the FOL�B�C� formula which de	nes the set K
 Over all possible sets of
structures de	nable in FOL�B�C� but not in FOL�A�C�� let K be the set of structures such that

K has a minimum number of formation rules� �any FOL�B�C� formula requiring less formation
rules has a semantically equivalent formula in FOL�A�C�� where w
l
o
g
 we assume FOL�B�C� to
have only the 	ve formation rules 
� �� �x� QB and QC


Clearly 
K cannot be a term and cannot be of the forms 

 and 
� � 
�


Claim��� 
K cannot be of the form �x
�x�

Proof	 Let � be the vocabulary of 
K 
 Consider the formula 
�c� over the vocabulary �� which
extends � with one constant symbol c
 If the set of ���structures de	ned by 
�c� cannot be
de	ned in FOL�A�C� we contradict the minimality of 
K and if it can be de	ned by some formula

��c� 	 FOL�A�C� then �x
��x� de	nes K where 
��x� is formed from 
�c� by substituting the
variable x for the constant symbol c� thus contradicting the unde	nability of K in FOL�A�C�
 �

Claim��� If 
K � Qh
�� 
�� � � � � 
mi �where Q is either QB or QC	 then for each of the 
i
subformulas there is an equivalent formula in FOL�A�C� such that for every possible substitution
of the free variables the two formulas describe the same set of structures�

Proof	 Assume the contrary� then by replacing the free variables of 
i with constant symbols over
an extended vocabulary� we de	ne in FOL�B�C� a set of structures not de	nable in FOL�A�C�

But 
i uses less formation rules than 
K � a contradiction
 �

Corollary ��� 
K cannot be of the form QC��

Claim��� 
K is of the form QBh
�� 
�� � � � � 
mi where all the 
i
s are terms�

Proof	 That 
K is of the form 
K � QB� follows by elimination of all other formation rules

Assume that some 
i is not a term and consider the formula

QBh
�� 
�� � � � � 
i��� Ri� 
i��� � � � � 
mi � �xiRi�xi� 
� 
i�xi�

over a vocabulary �� extending � with the relation symbol Ri of arity equal the number of distin�
guished free variables 
i
 This new formula de	nes a set of ���structures K �
 If K� is de	nable by
some 
 	 FOL�A�C� then so is K� substitute the FOL�A�C� equivalent of 
i in place of Ri in the
formula 

 �By claim �� such an equivalent to 
i exists�
 Hence K� is unde	nable in FOL�A�C�

But as

�xiRi�xi� 
� 
i�xi�

can be de	ned in FOL�A�C�� we conclude that the set of structures de	ned by

QBh
�� 
�� � � � � 
i��� Ri� 
i��� � � � � 
mi

cannot be de	ned in FOL�A�C�� thus contradicting the minimality of 
K 
 �

Therefore� the set of structures de	ned by QBhR�� R�� � � � � Rmi cannot be de	ned in FOL�A�C�
and hence cannot be de	ned in FOL�A�
 �

Remark� Similar arguments prove the following variations of the above theory�

�i� When FOL is replaced by SOL
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�ii� When FOL is replaced by �i or �i for arbitrary i

�iii� When FOL is replaced by L where L is either FOL� SOL� �i or �i enhanced by some

quanti	ers� If for some sets K� � � �Km and L� � � �Ln we have L�K� � � �Km� �� L�L� � � �Ln� then
there must be some Li not expressible in L�K� � � �Km�


�iv� When FOL�A�B� and FOL�A�C� are restricted to formulas where the QC quanti	er cannot
be nested within itself


Corollary��� Under the appropriate oracle computation model for log space bounded machines
we have that� If there is an oracle K such that LK �� PK �NLK �� PK� LK �� NLK� then L �� P
�NL �� P� L �� NL��

Proof	 By direct application of the above theorem we get that FOL�DTC�K� �� FOL�ATC�K�
implies FOL�DTC� �� FOL�ATC�
 For any K under the appropriate oracle model we get
from �MP��� that LK �� PK i� FOL�DTC�K� �� FOL�ATC�K� and by �Imm��� L �� P i�
FOL�DTC� �� FOL�ATC�
 �The NL cases are similar�
 �

Because of the importance of this corollary and the delicate role played by the oracle computa�
tion model �in space bounded cases�� we repeat here the details of the model� denoted in �MP���
as u���� for which these results hold�

�i� The oracle tape is write only and exempt from the space bound

�ii� The machine has two distinguished states start query and answer query
 Using these states

the oracle tape can be regarded as a stack of tapes
 Each time start query is entered a new
tape is pushed and each time answer query is entered the top tape is popped and execution
continues in either an oracle accepted or an oracle rejected state
 Note that this has the e�ect
of erasing each query as it is asked


�iii� For non deterministic machines � nondeterministic moves are allowed only when the oracle tape
stack is empty


�iv� If q�� q� � � � qk are the �partial� queries written on the stack at a given moment� then the space

used by the stack is
Pk

i��max�logjqij� ��

�v� Each machine has a constant n such that the depth of the stack cannot be more than n


The last requirement characterizes our u��� model
 It contrasts with the unbounded model of
Buss �Bus��� and the model of Wilson �Wil��� where the depth of the stack is bounded only by
condition �iv� and with the models of Ladner and Lynch �LL��� and Ruzzo� Simon� and Tompa
�RST��� where the stack depth is bounded to � �no stack�


We observe that applying variation �iv� of theorem � to results in �MP��� we get that corollary
�� holds also in the Ruzzo� Simon� Tompa model for the classes L�NL�P and in the Ladner� Lynch
model for L and P
 The case of LK �� NLK implying L �� NL was already observed in �Wil��� for
the Ruzzo� Simon� Tompa model� and in �Si��� RS��� for an oracle model where the oracle tape is
subject to the space bound


� Capturing the Relativized Polynomial Hierarchy

Theorem��� �i	 For each fragment �i��i� of SOL the enhanced fragment �i�K���i�K�� cap�
tures �P

i �K���P
i �K���

�ii	 NFSOL�K� � ���i�K� captures PHK �
�iii	 SOL�K� also captures PHK and hence is equivalent to NFSOL�K� �every formula of SOL�K�

has a normal form where all SO quanti�ers are outermost�

We prove this theorem as follows� First we prove model the checking part of �i� � each set
of structures de	nable by a formula of the logic is recognizable by a machine of he complexity
class
 Then we prove the expressibility part of �i� � every set recognizable by a machine in the
complexity class is de	nable by a formula of the logic
 Thus we get part �i�
 Part �ii� follows as



�

a direct corollary
 To get part �iii� we show that every set of structures de	nable by a formula of
SOL�K� is recognizable by a machine in PHK 


Before we present the proofs we repeat the de	nitions of PHK as they appear in �Ko��� and
elsewhere�

��P
� �K � ��P

� �K � PK

��P
n���

K � NP��P

n
�K ��P

n���
K � Co� ���P

n���K�

PHK � ����P
i �K

��� Model Checking

Lemma��� Every formula in FOL�K� has a model checker in PK�LK��

Proof	 Every formula of FOL�K� is also a formula of FOL�ATC�K� �and FOL�DTC�K��
 The
proof follows by the model checking theorems of �MP���
 �

Theorem��� Every formula in �i�K� ��i�K�� has a model checker in ��P
i �K

�
��P

i �K
�
�

Proof	 By induction on i

Basis �i � ��� For 
 � �R� � � �Rm
 a formula in ���K�� let the model checker operate as

follows� First it nondeterministically generates the relations R� � � �Rm and then using them as
substitutions simulates the model checker of 
 �on a vocabulary extended by R� � � �Rm�
 As all
relations are polynomial in the size of the input structure and the model checking itself is in P the
whole operation is in ��P

� �K � NPK 

Induction hypothesis� For every i � n model checking of �i�K� can be done in ��P

i �K 

Inductive step I� The set of structures satisfying a formula 
 	 �n�K� is in ��P

n �K 

Proof� This set is the complement of the set satisfying 


 But 

 is equivalent to a formula

of �n�K� and hence has a model checker in ��P
n �K 


Inductive step II� Any formula of �n���K� has a model checker in ��P
n���

K 

Proof� Any 
 	 �n���K� can be written as �R� � � �Rm
 where 
 is in �n�K�
 By inductive step

I� given a substitution for R� � � �Rm� the set of structures satisfying 
 is in ��P
n �K 
 Let the model

checker of 
 guess these relations and copy them together with the original input to an oracle tape
for the appropriate �n�K� set
 As a nondeterministic step was done and an oracle for ��P

n �K was
used� this model checker is in ��P

n���K 
 �

Corollary ��� Every formula in NFSOL�K� has a model checker in PHK �

��� Expressibility

The proofs below are mere variations on similar proofs in �MP��� or on Fagin�s and Stockmeyer�s
proofs and hence are given only in outline


Lemma��� ���K� is as expressive as NPK �

Proof	 Let M be a machine in NPK � then there is a number d such that for any input of size n�
M makes no more than nd moves
 Without loss of generality we can assume that the 	rst nd��
moves of M nondeterministically generate a string of bits on a special tape which we shall call the
nondet tape� while the remaining nd�� are deterministic� �using bits of the nondet tape to resolve
any possible nondeterminism�


Using an arbitrary order relation we can encode steps of the computation of M as d�tuples
over the universe of the input structure


As nd is also a bound on the amount of information on a tape of M � we can use a d�tuple
of elements over the input structure to represent a tape position
 Therefore a d�ary relation can
describe the state of a tape of M if the alphabet is binary
 If the alphabet is larger or if we wish
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to encode the head position too� a d! ��ary relation is necessary
 Altogether a �d! ��ary relation
can represent the evolution of a tape during the computation of M 
 Using � such relations Rstate�
Rinput� Rnondet� Rwork and Roracle we can represent the complete evolution of a computation of
M 
 �Actually Rinput� Rstate and Rnotdet can be of arity d! ��


Claim� The answer of the oracle for K at a given computation step� is de	nable by a FOL�K�
predicate over Roracle where the QK quanti	er is outer most


Claim� The predicate V ALIDM over the � relations saying that these relations indeed represent
the evolution of the computation of M is FOL�K� de	nable
 Note that this includes saying that
all � relations are valid encodings of their appropriate objects� For each step j each tape position
has a unique and valid value� each tape has only one head position� and only one state is active
at a time
 It also includes saying that for step zero Rinput encodes the input and the work and
oracle tapes are empty� all heads are properly positioned and M is in its initial state
 Finally� we
have to say that the computation states indeed evolve according to the transition table of M 
 Here
we use the fact that M acts deterministically as we cannot represent nondeterminism� using 	xed
arity relations� while insisting on each tape cell having a unique value
 Also here we use the QK

quanti	er �for those transitions requiring oracle consultation�

Claim� The predicate ACCEPTING�x� saying that a d ! ��tuple of 	rst order variable x

represents a 	nal and accepting state of the computation is 	rst order de	nable


The set of all structures accepted by a machine M 	 NPK can be represented then as an ���K�
formula�

�Rinput� Rstate� Rnondet� Rwork� Roracle� �xACCEPTING�x��

V ALIDM �Rinput� Rstate� Rnondet� Rwork� Roracle�

�

Theorem��� For every i �i�K� is as expressive as ��P
i �K ��i�K� is as expressive as ��P

i �K��

Proof	 By induction
 The basis is lemma ��


Induction hypothesis� Assume the theorem to be true for all �i�K� with i � n


Inductive step I� �n�K� is as expressive as ��P
n �K 


Let S be a set in ��P
n �K 
 By de	nition its complement is in ��P

n �K and so by the inductive
hypothesis it can be written as a formula in �n�K�
 Negating this formula and applying the
syntactic lemma gives the �n�K� formula de	ning S


Inductive step II� �n���K� is as expressive as ��P
n���

K 

A machine M 	 ��P

n���
K is just an NP machine with access to an oracle in ��P

n �K 
 From
inductive step I such an oracle can be de	ned by a �n�K� formula
 Following arguments similar
to the proof of lemma �� the set of structures it accepts can be de	ned by a formula


 � �Rinput� Rstate� Rnondet� Rwork� Roracle� �xACCEPTING�x��

�V ALIDM �Rinput� Rstate� Rnondet� Rwork� Roracle�

where the predicate V ALIDM now contains� instead of an FOL�K� expression representing the
answers of a K oracle� a �n�K� expression representing the answers of a ��P

n �K oracle
 Applying
the syntactic lemma we get that

ACCEPTING�x� � V ALIDM �Rinput� Rstate� Rnondet� Rwork� Roracle�

has an equivalent formula in �n�K� ��n�K�
 Hence 
 has an equivalent formula in �n��
 �

Corollary��� NFSOL�K� is as expressive as PHK



��

��� Proof of Main Results

Putting the above theorems together we proved part �i� of our theorem �� and as an immediate
corollary also part �ii�
 We conclude by proving part �iii��

Theorem��� SOL�K� � NFSOL�K� and hence SOL�K� captures PHK and has a prenex normal
form�

Proof	 as NFSOL�K� � SOL�K� and NFSOL�K� captures PHK it remains to show that every
formula in SOL�K� has a model checker in PHK 
 We prove by induction


Basis� For 
 containing no QK quanti	ers� model checking can be done in PH �Sto��� GJ���

Inductive step I� Assume � to be a set of formulas feasible for K such that each sub formula of

� has a model checker in PHK then QK� has a model checker in PHK 

Proof� Generating the structure A� requires a polynomial number of model checkings ��MP�
�

MP����
 As each model checking of a sub formula of � is in PHK the whole operation is in PHK 

A single query to the K oracle then completes the model checking


�
 Assume 
 and 
 are formulas having model checkers in PHK then every formula obtained
from them via one application of an SOL formation rule also has a model checker in PHK 


Proof� For negation use closure to complement of PHK 
 For � ��� apply the model checkers
of the components and accept if either �both� accept
 For 	rst order quanti	cation iterate over
all elements of the universe of the input structure �an increase in time complexity by no more
than a factor of jAj�
 For existential second order quanti	cation � nondeterministically produce the
required relation and perform the model checking for 
 using this relation as a substitution
 For
universal SO quanti	cation use closure to negation
 �

� Natural and Unnatural Inclusions Between Logics

In section 
 we gave a logical characterization of cases where separation via oracles implies sep�
aration in the unrelativized case
 In section � we showed that the enhancement of SOL with a
Lindstr�om quanti	er for K captures the polynomial hierarchy relativized to K
 We now re�ect on
what conclusions can and cannot be drawn from combining these two results


As guiding examples� we investigate the relationships between the logic FOL�HAM � and ��

and the logic FOL�HEX� and full SOL
 It is known that FOL�HAM � � LNP while �� � NP
hence

�� � FOL�HAM �

Also� it is known that FOL�HEX� � PSpace while SOL � PH hence

SOL � FOL�HEX�

We now ask�

Question� Do such containment relationships relativize � �continue to hold when both �sides� are
enhanced with the same arbitrary K quanti	er��

A positive answer might seem appealing aesthetically� however it leads to some dramatic results�
Consider K to be the Baker� Gill and Solovey ��BGS���� oracle such that PK �� NPK 
 Clearly

FOL�ATC�K� � PK �� NPK � ���K�

If ���K� � FOL�HAM�K� we can deduce FOL�ATC�K� � FOL�HAM�K� and using our
theorem � show that the HAM quanti	er is unde	nable in FOL�ATC�� hence P �� NP" Sim�
ilarly Yao�s oracle �Yao��� Ko��� separating PK from PSpaceK can be used to show that
SOL�K� � FOL�HEX�K� implies P �� PSpace �not as astounding as P �� NP but still quit
dramatic�
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A negative answer on the other hand does not imply any new complexity theoretic results�
however it does give us some examples of logics L� and L� such that L� � L� but L��K� �� L��K�

Speci	cally ���K� �� FOL�HAM�K� and SOL�K� �� FOL�HEX�K�
 Observe that in the second
example both logics are even regular �both in the usual sense of �BF��� and in the � sense of
�MP����


As expected� given the di�culty of the P�NP question� the negative answer is the correct one

While we do not give a complete proof� we do give an outline� From �Ste�
a� Ste�
b� we have that

FOL�HAM � � FOL�DTC�HAM � � FOL�ATC�HAM �

From our theorem � we have that for any K

FOL�HAM�K� � FOL�DTC�HAM�K� � FOL�ATC�HAM�K�

However now from �MP��� we must conclude that these logics capture the complexity class

LNP�K � PNP�K � that is the class of machines in P �or even L� using two oracles � one
for HAM and one for K


Utilizing the fact that� powerful as they may be� machines in PfKg cannot ask any of their
oracles more than a polynomial number of queries� while an NP machine can ask� over all it possible
runs� an exponential number of queries� we can use sparse sets and simple diagonalizations of the
�enumerable� PfKg machines to construct a set S such that membership in it depends on precisely
those queries which the P machine never asks but which the NP machine can nondeterministically
ask
 Details are omitted as they are but minor variations on the construction in �BGS��� which
shows K such that NPK �� PK


From a point of view of logics� this can be interpreted as follows� a QK� formula which contains
free variables is in a sense a template for obtaining information about the set of structures K
 If all
these variables are 	rst order �as must be the case when the logic is an enhancement of FOL�� the
amount of information obtained is bounded by a polynomial over the size of the input structure
 On
the other hand if we allow second order variables �as is the case when the logic is an enhancement
of SOL� the amount of information becomes exponential


Using this di�erence in the �power� of free variables in the two logics it becomes clear that
regardless of how strong an �oracle� �generalized quanti	er� K we use� we can always 	nd another
�oracle� S such that SOL�S� �� FOL�K�S�


This argument can be generalized by de	ning a notion natural and unnatural inclusion relation�
ships between logics
 An inclusion is natural if any syntactical construct of the less expressive logic
has an equivalent construct in the more expressive logic
 Examples of natural inclusions include
FOL�ATC� � �� and �� � ��
 Examples of unnatural inclusions include �� � FOL�HAM ��

SOL � FOL�HEX� and �� � ���HAM � �observe that ���HAM � captures NPNP and thus has
the same expressive power as ���


While for L� � L� via natural inclusions� for all K� we have L��K� � L��K�� when the inclusion
is unnatural we can expect to 	nd sets K such that L��K� �� L��K� although the details of
constructing such sets may be technically di�cult


We conclude by returning once again to the complexity theoretic point of view and observing
that similar arguments were already made by Buss in �Bus���
 There� the equivalent of the notion of
a natural inclusion is an inclusion via general simulation of machines in one class by machines in the
other
 For this case� Buss argues that inclusion relationships should relativize �his relativization
thesis�
 For the case of unnatural inclusions �not speci	cally mentioned in his paper�� one can
apply his theorem �theorem �
� in �Bus���� stating that if there is a su�cient di�erence between
complexity classes in terms of the number and type of queries they can ask of an oracle� then there
is an oracle which separates them
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