
- 1 -

SERIE B - INFORMATIK

Improved
Integration of Multithreading

into the STGM

Matthias Horn

B 96-07
July, 1996

Abstract

A variant of the Spineless Tagless G-Machine (STGM) which contains explicit support
for multithreading is introduced in [1]. The main design decisions are the separation of
demand for evaluation from case selection and the introduction of an abstract notion of
thread boundaries and thread synchronisation. This report proposes an alternative solu-
tion which does not separate demand from selection. Instead, case selections are ex-
tended by additional alternatives which handle the appearance of long latency operations.
The overhead, necessary to control multithreading, is reduced and sequentially evaluated
parts of a program are more efficient.

Institut für Informatik
Fachbereich Mathematik und Informatik
Freie Universität Berlin
Takustraße 9
D-14109 Berlin
horn@inf.fu-berlin.de             http://www.inf.fu-berlin.de/~horn



- 2 -



- 3 -

1 Introduction
In [1] a variant of the Spineless Tagless G-Machine (STGM) containing explicit sup-
port for multithreading is introduced. The main design decisions are the separation of
demand for evaluation from case selection and the introduction of an abstract notion of
thread boundaries and thread synchronisation. The new language element letpar defines
value bindings which can be evaluated independently. All case expressions with only
one alternative1 are substituted by letpar expressions. Nested letpar expressions with
only one binding are joined to expressions with multiple bindings as far as possible.
While executing a program a letpar expression creates a synchronisation frame contain-
ing a counter for the number of not yet evaluated bindings and space for the result of
each binding. If the evaluation of a value binding is blocked by a long latency opera-
tion, another value binding can be evaluated first. The results for completely evaluated
bindings are stored in the synchronisation frame. As soon as all bindings of a particular
letpar are evaluated, the body of this letpar can be evaluated. In the case of sequential
evaluation, the maintenance of synchronisation frames is additional work compared
with the original STGM.

In order to achieve high speedups for parallel programs, it is desirable that each proces-
sor does a lot of uninterrupted work between long latency operations. These sequential
parts of the program execution should be computed as fast as in the original STGM.

This report proposes an alternative integration of multithreading into the STGM, which
does not separate demand from selection. Instead, case selections are extended by addi-
tional alternatives which handle the occurrence of long latency operations. On the ma-
chine proposed here, sequential execution is almost as fast as on the original STGM.
Only two additional pointers into the execution stack have to be maintained. Synchroni-
sation frames are replaced by extensions of continuation frames, but these extended
continuation frames have to be maintained only when long latency operations have oc-
curred.

2 Abstract Machine Language

2.1 Extended Language
The abstract machine used here contains five new closure types, a new constructor De-
lay and letrem expressions.

The constructor Delay is considered to be a member of each structured type. It is re-
turned by a computation if this computation is delayed by a long latency operation.

Similar to [1] letrem expressions are used to define bindings which can be transmitted
to other processing elements. It defines tasks. Bindings defined in letrem must not have
any arguments and are marked as updateable. A dynamic load balancing algorithm
using lazy task creation [3] chooses at runtime a processing element which evaluates
the closures created by the letrem to weak head normal form.

The five new closure types behave as follows:
1. A closure containing fetch pe adr represents a closure located on pro-

cessing element pe at address adr. If a fetch closure is entered, a Fetch

                                                
1 Since strictness information is transformed in single-alternative-cases, this case is very common.
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message is sent to the other processing element. This message initiates
the evaluation of the demanded closure. The computed weak head
normal form will be sent back. In order to prevent a processing element
from fetching a closure twice, fetch closures are changed into delayR
closures after the message is sent.

2. A closure containing delayR w represents a delayed evaluation which
has already been started on another processing element. The list w
contains addresses of all evaluations which depend on this value. If a
delayR closure is entered, a Delay is returned to the topmost continua-
tion frame.

3. A closure containing delay n a s f w represents an evaluation which
was delayed because n other necessary values are delayed by long la-
tency operations. s and f are stack portions which will be pushed onto
the argument and frame stacks in order to continue the evaluation. The
evaluation is continued by entering closure a. The list w contains ad-
dresses of all evaluations which depend on this value.

4. A closure containing reactivate a s f represents an evaluation which
was delayed, but can now be continued. a, s and f have the same
meaning as in the delay closure.

5. A closure containing start e s f represents the value of expression e. If a
start closure is entered it removes itself from the task queue, pushes s
onto the argument stack, f onto the frame stack and evaluates e.

2.2 Definitions
The evaluation of an STG-expression can often be started, although not all free vari-
ables of this expression are bound to proper values. Nested case expressions are a good
example for this situation:

case ea of
  va -> case eb of
          vb -> e

If the variable va is not used in eb, eb can be evaluated even if the evaluation of ea is
delayed by a long latency operation. The evaluation need not be stopped until the de-
layed value is used in e. Delayed evaluations are represented by delay and delayR clo-
sures. Since unboxed values cannot be represented by closures, they are handled in a
special way.

The property that the evaluation of an expression must be stopped if an unboxed vari-
able is not yet bound properly, leads to the definition of immediately necessary vari-
ables. The set of immediately necessary variables contains all unboxed variables which
must be bound to their real values before the evaluation of an expression can be started.
If any immediately necessary variable is delayed by a long latency operation, the
evaluation of the expression has to be delayed as well.

The set of immediately necessary variables INE(e) of STG expression e is defined in-
ductively:

(1) if e = v ∧ v unboxed, then INE(e)= {v};
(2) if e = case e’ of ... , then INE(e) = INE(e’);
(3) if e = f e1 ... en , then INE(e) =  INE(f)  ∪  (∪ INB(ei) );
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(4) if e = let(rec/par) B1,..,Bn in e’, then INE(e) = (∪ INB(Bi) )  ∪  INE(e’) 
where INB(vs \π xs → e) =

 { v | v ∈ vs ∧ v unboxed }

In the remaining parts of this report an abbreviated notation for closures with no argu-
ments is used:

〈f  a b c ... 〉

is an abbreviation for

({va,vb,vc,...} \n {} → f  va vb vc ...) {a,b,c,...}

where va, vb, vc,... are fresh variables.

2.3 Program Transformation
The semantics of STG language defines only one situation, where the evaluation of an
expression is started. Only expressions whose results are used to choose an alternative
in a case expression are evaluated in STG. This leads to the idea that long latency op-
erations can be handled in case expressions as well. Since only built-in functions de-
liver unboxed values, case expressions over unboxed types cannot be delayed. They
need not be transformed. All other case expressions which contain only one alternative
are extended by an additional Delay alternative, which is entered if the value computed
in the case is delayed.

If a case expression has only one default alternative, the evaluation can simply be con-
tinued:

      case ec of                 case ec of
        default -> e;   ---->      default -> e;
                                   Delay d -> e;

If a case expression has only one default alternative which uses the result, the evalua-
tion can be continued:

      case ec of                 case ec of
        v -> e;         ---->      v -> e;
                                   Delay v -> e;

Since case expressions over unboxed types are not transformed, v cannot be a member
of IN(e). The variable v is bound to a delay closure which delays the evaluation of e if
it is entered. Since other immediately necessary variables could be delayed, they have to
be checked prior to the evaluation of e.

If a case expression has only one constructor alternative and the unboxed components
are not immediately necessary, the evaluation can be continued:

      case ec of                 case ec of
        C v1...vn -> e;  ----> C v1...vn -> e;
                                Delay d v1...vn -> e;

When the delay alternative is entered, the vi are bound to special delay closures which
contain a select for the i-th component. Since all strictness and unboxing in STG is ex-
pressed using case expressions with only one alternative, this case in particular appears
very often.
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All other case expressions, especially those with more than one alternative, are not ex-
tended, so they propagate delays to the surrounding case expression.

3 Operational Semantics
The abstract machine used here, consists of an arbitrary but fixed number of identical
processing elements. The abstract state has seven components for each processing ele-
ment:

1. the code (C), which takes one of the forms Eval, Enter, ReturnCons, Return-
Int, ReturnDelay, StartTask or Wait;

2. the argument stack (A), which contains addresses of closures and values used
as arguments;

3. the frame stack (F) which contains continuation, update and remote update
frames;

 Continuation and update frames are similar to the STGM. A remote update
frame contains the address of a closure on another processing element, which
needs to be overwritten with a result.

4. the task queue (T), which contains executable tasks;
 A task is represented by a closure address. It is activated by entering this clo-

sure to which the address points. An executable task is appended to the front
end, while tasks sent to other processing elements are taken from the back end.
This hopefully leads to larger exported tasks.

5. the heap (H), which maps addresses to closures;
6. the global environment (G), which maps globally defined symbols to heap ad-

dresses of top level closures;
7. the message queue (M), which contains messages received by the processing

element;
 The messages QueryTask and PutTask are used to provide work for idle pro-

cessing elements. Fetch and Return are used to transfer closures needed for a
computation between processing elements.

Each transition rule of the operational semantics contains only state components which
are used or modified in this rule. Each component mentioned in a rule is indexed by its
processing element id. One rule affects at most two processing elements.

A parallel transition step is defined as a set of applications of rules which contains at
least one rule and in which no processing element is affected by more than one rule.

3.1 The initial state
The initial state of the machine described here is almost identical to the state in the
original STGM. The task and message queues are initialised as empty. With the excep-
tion of code all processing elements are initialised to the same state. Processing element
0 starts the evaluation of the main function.

C0 A0 F0 T0 H0 G0 M0

σ = { gi → ai }
hinit = { ai → (vsi \πi xsi → ei) (σ vsi) }

Eval(main{}){} {} {} {} hinit σ {}
Rule 1: Initial state for processing element 0
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All other processing elements start by looking for work.

Cp Ap Fp Tp Hp Gp Mp

p ≠ 0
σ = { gi → ai }
hinit = { ai → (vsi \πi xsi → ei) (σ vsi) }

StartTask {} {} {} hinit σ {}
 Rule 2: Initial state for other processing elements

3.2 Activate Tasks
The task queue holds addresses of closures. Tasks taken from the task queue are acti-
vated by entering the closure.

Cp Ap Fp Tp

StartTask {} {} a : t
Enter a {} {} a : t

Rule 3: Activate a task from the task queue

If the code form StartTask is executed while the task queue is empty, a QueryTask mes-
sage is sent to another processing element.

Cp Ap Fp Tp Tq

StartTask {} {} {} m
q is computed by a load balancing algorithm

Wait {} {} {} m ++ (QueryTask p)
Rule 4: Query for work

3.3 Application
The rule for function application is unchanged. A function application is implemented
by pushing the arguments onto the argument stack and entering the function closure.

Cp Ap Gp

Eval (f xs) ρ as σ
val2 ρ σ f  = a

Enter a (val ρ σ xs) ++ as σ
Rule 5: Application

If a non-updateable lambda form is entered and enough arguments are supplied on the
stack, the body of this lambda form can be evaluated. Free variables found in the clo-
sure and arguments found on the stack are copied into the local environment and the
evaluation continues with the body. To ensure that all messages from other processing
elements are processed first, the message queue has to be empty before entering a clo-
sure.

Cp Ap Hp Mp

Enter a wsa++as h {}
h(a) = (vs \n xs → e) wsf

length(wsa) = length(xs)
ρ = [vs → wsf , xs → wsa]

Eval e ρ as h {}
Rule 6: Enter saturated non-updateable closure

The case of partial application is detected if the number of arguments on the argument
stack is less than the number needed by the closure. In this case the topmost frame is

                                                
2 Defined in [4] on page 34
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always an update or remote update frame. The local or remote closure to which this
frame points is updated by a newly created closure representing the partial application.

Cp Ap Fp Hp Mp

Enter a wsa (au,as):fs h {}
h(a) = (vs \n xs → e) wsf

length(wsa) < length(xs)
length(xs1) = length(wsa)
hu= h[au → (f:xs1 \n {} → f xs1) a:wsa]

Enter a wsa ++ as fs hu {}
Rule 7: Enter partially applied closure and process update frame

Since a remote update frame is always the first element on the stack, in this case the
processing element has to look for work next.

Cp Ap Fp Mp Mq

Enter a wsa (q,au):{} {} m
h(a) = (vs \n xs → e) wsf

length(wsa) < length(xs)
length(xs1) = length(wsa)
a’= (f:xs1 \n {} → f xs1) a:wsa

StartTask {} {} {} m ++ (Return au p a’)
Rule 8: Enter partially applied closure and process remote update frame

If an updateable lambda form is entered, prior to the evaluation an update frame has to
be pushed onto the stack. This update frame contains the address of the closure to be
updated and the current argument stack. Since updateable lambda forms must not have
any arguments, they are always saturated.

Cp Ap Fp Mp

Enter a as fs {}
h(a) = (vs \u {} → e) wsf

ρ = [vs → wsf]
Eval e ρ {} (a,as):fs {}

 Rule 9: Enter updateable closure

3.4 Let Expressions
A let expression builds closures in the heap and evaluates the body expression using
the newly created closures.

Cp Hp

Eval (let xi=... in e) ρ h
ρ’ = ρ [xi→ ai ]
h’ = h [ai→ (vsi \πi xsi → ei) (ρrhs vsi)]
ρrhs= ρ

Eval e ρ’ h’
Rule 10: Evaluate let(rec)
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The rule for letrec is almost identical, except that ρrhs is defined to be ρ’ instead of ρ.
letrem builds closures in a similar way, but created closures are appended to the top of
the task queue.

Cp Ap Tp Hp

Eval (letrem xi=... in e) ρ as t h
ρ’ = p[xi→ ai]
h’= h[ai→ (vsi \u {} → (start ei {} {} )) (ρrhs vsi)]

ρrhs= ρ
Eval e ρ’ as ai : t h’

Rule 11: Evaluate letrem

Since shared closures can be activated by Enter or StartTask, it is necessary to wrap the
expression into the built-in function start which removes the closure from the task
queue when it is activated.

Cp Ap Fp Tp Hp Mp

Enter a as fs t1 ++ [a] ++ t2 h {}
h(a) = (vs \u {} → (start e s f)) vsf
ρ = [vs → wsf , xs → wsa]

Eval e ρ s f:(a,as):fs t1 ++ t2 h {}
Rule 12: Enter closure registered in the task queue

3.5 Evaluating case
Similar to the original STGM the evaluation of a case expression pushes a continuation
frame onto the stack. It stores the current local environment ρ, the alternatives which
continue the evaluation and the argument stack. Continuation frames for case expres-
sions, which are outermost in their binding, contain a list of currently delayed unboxed
variables together with addresses of delay closures which caused the delay. This list is
initialised to empty.

Cp Ap Fp Hp

Eval (case e of alts) ρ as fs h
frame  = (alts,as,ρ,{}), if this case is the outermost case expression of a binding

 = (alts,as,ρ), otherwise
Eval e ρ {} frame:fs h

Rule 13: Evaluate case

3.6 Delayed evaluation
If a closure which refers to another processing element is entered, a long latency  action
is triggered. In this case a Fetch message is sent to this processing element and the local
element tries to execute another part of the program. In order to prevent the current
processing element from sending a second evaluation message, the fetch closure is
changed into a delayR closure. Finally a Delay is returned.

Cp Hp Mq

Enter a h m
h(a) = 〈fetch q ra〉
h’ = h[ a → 〈delayR {}〉 ]

ReturnDelay a h’ m ++ (Fetch p a ra)
Rule 14: Enter remote closure
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If a delayed value is entered, the topmost continuation frame which contains a Delay
alternative is entered. The current evaluation environment containing

• the values on the argument and frame stacks
• the alternatives and
• the address of the closure which caused the delay

is stored in a new delay closure. The environment of the case expression is restored and
the expression of the delay alternative is evaluated. The newly created delay closure is
registered as a dependent closure in the closure which caused the delay. Prior to the
evaluation of the body all unboxed variables immediately necessary for this evaluation
have to be checked as to whether they are delayed. Two cases for Delay alternatives are
distinguished.

In the first case the delayed value is used as a whole.

Cp Ap Fp Hp

ReturnDelay a as f ++ cf:f1...fk:(_,_,du):fs h
cf = (....,Delay d → e,.....,as’, ρ)

           h’= h[d’ → 〈delay n a as (f ++ {cf}) {}〉 ]
   [a  → register_dep_delay3 d’ h(a)]

if IN(e) ∩ (map fst du) = ∅
n= 1 ; code = Eval e ρ[d → d’] ; h’’ = h’

else
n = 1 + #(IN(e) ∩ (map fst du)) ; code = ReturnDelay d’
h’’=  h’ [di  → register_dep_delay3 d’ h(di)] for all (vi,di) ∈ du

where vi ∈ (IN(e) ∩ (map fst du))
code as’ f1...fk:(_,_,du):fs h’’

Rule 15: Return delay to continuation frame (general case)

In the second case the delayed value is split into its components. New delay closures for
delayed components are created. In order to select the correct component a continuation
frame is added to the saved frame stack portion. Delayed unboxed variables are re-
corded in the continuation frame of the outermost case expression of the current clo-
sure. The program transformation described in 2.3 ensures that there is no vi ∈ IN(e),
but other immediately necessary variables can be delayed at this point. They have to be
checked in a similar way as in Rule 15.

Cp Ap Fp Hi

ReturnDelay a as f ++ cf:f1...fk:(_,_,du):fs h
cf = (...,Delay d v1...vn → e,as’,ρ)
u= { (vi,a) | vi unboxed }
if vi ∈ u
    wi = 0,
    hi = hi-1

else
    wi = di

    hi= hi-1 [di  → 〈delay n a as ((_ v1...vk → vi),{}):f ++ {cf}) {}〉 ]
    [a   → register_dep_delay4 di h(a)]

if IN(e) ∩ (map fst du) = ∅
n= 1
code = Eval e ρ[vi  → wi]
du’ = du ++ u

                                                
3 defined on page 11
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h’ = hn

else
n = 1 + #(IN(e) ∩ (map fst du))
du’ = du

code = ReturnDelay d’
where

h’= hn [d’ → 〈delay n a as (f ++ {cf}) {}〉 ]
              [a  → register_dep_delay4 d’ h(a)]

                [dk  → register_dep_delay4 d’ h(dk)] for all (vk,dk) ∈ du

where vk ∈ (IN(e) ∩ (map fst du))
code as’ f1...fk:(_,_,du’):fs hn

Rule 16: Return delay to continuation frame (with selection of components)

If no continuation frame which contains a Delay alternative is on the stack, the whole
task has to be suspended until delayed values arrive. Since the frame stack contains at
least one update or remote update frame both stacks are stored in a delay closure and
the processing element next looks for work.

Cp Ap F Hp

ReturnDelay a as fs h
h’= h [d  → 〈delay 1 a as fs {}〉 ]

[a  → register_dep_delay d h(a)]
StartTask {} {} h’

Rule 17: Return delay to remote update frame

A new dependent closure is registered by adding its address to the closure on which it
depends:

register_dep_delay d 〈delay n a s f w〉 = 〈delay n a s f d:w〉
register_dep_delay d 〈delayR w〉 = 〈delayR d:w〉

If a delay or delayR closure is entered, a Delay is returned to the topmost continuation
frame.

Ci Hi

Enter d h
h(d)= 〈delay n a s w〉

or h(d)= 〈delayR w〉
ReturnDelay d h

Rule 18: Enter delay closure

Delay closures are overwritten with reactivate or start as soon as all delayed values on
which they depend have arrived (see Rule 36 and Rule 37). In order to complete the
delayed computation the environment saved while creating the delay closure is restored
and the closure which caused the delay is entered.

Cp Ap Fp

Enter a as fs
h(a) = 〈reactivate d s f〉

Enter d s ++ as f ++ fs
Rule 19: Enter reactivate closure

                                                
4 defined on page 11



- 12 -

3.7 Evaluation of Constructors and Basic Values
The evaluation of constructors and basic values is similar to the original STGM.

Cp

Eval k ρ
ReturnInt k

Rule 20: Evaluate integer constant

Cp Gp

Eval (c xs) ρ σ
ws= val ρ σ xs

ReturnCon c ws σ
Rule 21: Evaluate constructor expression

Cp

Eval v {} ρ
ρ(v) = k

ReturnInt k
Rule 22: Evaluate variable bound to an integer

3.8 Returning Constructors
If the evaluation has ended up with a constructor, the result is used to select an alterna-
tive in a surrounding case expression or to return an answer to another processing ele-
ment. Possibly some closures have to be updated with the computed weak head normal
form before entering an alternative or sending a result. If any update has to be carried
out, an update frame is on top of the frame stack. The closure to which the update
frame points, is replaced by a closure containing the computed result. After removing
the update frame from the frame stack, the constructor is returned to the next frame on
the stack.

Cp Ap Fp Hp

ReturnCon c ws {} (au,as):fs h
length(vs) = length(ws)
hu= h[au → (vs \n {} → c vs) ws]

ReturnCon c ws as fs hu

Rule 23: Return constructor to update frame

When all update frames are removed from the frame stack, the ReturnCon finds either a
continuation or remote update frame on top of the frame stack.

Continuation frames contain all alternatives and the environment which were pushed
while evaluating the corresponding case expression. ReturnCon has to choose the right
alternative, remove the continuation frame from the frame stack and start evaluating the
alternative. Prior to the evaluation of any alternative, a check for delayed unboxed val-
ues which are immediately necessary for the evaluation of this alternative is performed.
Unboxed values delayed at this moment are found in the continuation frame of the out-
ermost case expression in the current closure. If any unboxed value is delayed at this
moment, a delay closure has to be built.
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Cp Ap Fp

ReturnCon c ws {} cf:f1...fk:(_,_,du)
cf= (...c vs → e...,as,ρ)
code = Eval e ρ[vs → ws], if IN(e) ∩ (map fst du) = ∅
        = ReturnDelay d, otherwise

where
n = #(IN(e) ∩ (map fst du))
h’ =  h [a  →  (vs \n {} → c vs) ws]

[d → 〈delay n a {} {cf} {}〉 ]
[vi  → register_dep_delay5 di h(vi)] for all (vi,di) ∈ du

where vi ∈ (IN(e) ∩ (map fst du))
code as f1...fk:(_,_,du)

Rule 24: Return constructor to continuation frame (constructor alternative)

If no alternative matches, the default alternative is chosen. In this case it is not neces-
sary to bind variables in the local environment.

Cp Ap Fp

ReturnCon c ws {} cf:f1...fk:(_,_, du)
cf= (...default → e,as,ρ)
code = Eval e ρ, if IN(e) ∩ (map fst du) = ∅
        = ReturnDelay d, otherwise

where
     similar to Rule 24

code as f1...fk:(_,_, du)
Rule 25: Return constructor to continuation frame (default alternative)

If the default alternative is a variable alternative, a new closure has to be built in the
heap. The variable is bound to this new closure.

Cp Ap Fp Hp

ReturnCon c ws {} cf:f1...fk:(_,_,du) h
cf= (...v → e,as,ρ)
code = Eval e ρ[v → a’], if IN(e) ∩ (map fst du) = ∅

where
h’= h[a’ →  (vs \n {} → c vs) ws]

        = ReturnDelay d, otherwise
where
     similar to the Rule 24

code as f1...fk:(_,_, du) h’
Rule 26: Return constructor to continuation frame (variable alternative)

A remote update frame contains the remote address (processing element id and address)
of the closure which has to be overwritten with the weak head normal form just com-
puted. A Return Message is sent to this processing element. Since a remote update
frame is always the first element on the stack, the processing element has to look for
work next.

Cp Fp Mq

ReturnCon c ws (q,ra):{} m
StartTask {} m ++ (Return ra p (vs \n {} → c vs) ws)

 Rule 27: Return constructor to remote update frame

                                                
5 defined on page 11
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3.9 Termination
The machine terminates when either an Enter or ReturnCon finds an empty stack after
processing an update frame.

3.10 Returning Basic Values
Basic values are returned in a similar way. The only difference is that neither update
nor remote update frames occur. If delayed immediately necessary values occur, a clo-
sure containing a boxed integer and a delay closure are built in the heap.

Cp Ap Fp

ReturnInt z {} cf:a1...ak:(_,_,du)
cf= (...z → e...,as,ρ)
code = Eval e ρ, if IN(e) ∩ (map fst du) = ∅
        = ReturnDelay d, otherwise

where
n = #(IN(e) ∩ (map fst du))
h’ =  h [a  →  〈I# z〉 ]

[d → 〈delay 1 a {} {(I# z → e,ρ)} {}〉 ]
[vi  → register_dep_delay5 di h(vi)] for all (vi,di) ∈ du

where vi ∈ (IN(e) ∩ (map fst du))
code as a1...ak:(_,_,du)

Rule 28: Return integer to continuation frame (constant alternative)

Cp Ap Fp

ReturnInt z {} cf:f1...fk:(_,_,du):fs
cf = (...default → e,as,ρ)
code = Eval e ρ, if IN(e) ∩ (map fst du) = ∅
        = ReturnDelay d, otherwise

where
    similar to Rule 28

code as f1...fk:(_,_,du):fs
Rule 29: Return integer to continuation frame (default alternative)

Cp Ap Fp Hp

ReturnInt z {} cf:f1...fk:(_,_,du):fs h
cf= (...v → e,ρ)
code = Eval e ρ[v →  z], if IN(e) ∩ (map fst du) = ∅
        = ReturnDelay d, otherwise

where
    similar to Rule 28

code as f1...fk:(_,_,du):fs h’
 Rule 30: Return integer to continuation frame (variable alternative)
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3.11 Evaluation of Basic Operations
Operations on unboxed values can be performed without pushing a continuation frame,
since all arguments are already evaluated.

Cp

Eval (case (x1 ⊕ x2) of ...k → e... ρ
k = x1 ⊕ x2

code = Eval e ρ, if IN(e) ∩ (map fst du) = ∅
        = ReturnDelay d, otherwise

where
n = #(IN(e) ∩ (map fst du))
h’ =  h [a  →  〈I# x1 ⊕ x2〉 ]

[d → 〈delay 1 a {} {(I# k → e,ρ)} {}〉 ]
[vi  → register_dep_delay5 di h(vi)] for all (vi,di) ∈ du

where vi ∈ (IN(e) ∩ (map fst du))
code

Rule 31: Return result of basic operation to continuation frame (constant alternative)

Cp

Eval (case (x1 ⊕ x2) of ...default → e... ρ
code = Eval e ρ, if IN(e) ∩ (map fst du) = ∅
        = ReturnDelay d, otherwise

where
    similar to the rule above

code
Rule 32: Return result of basic operation to continuation frame (default alternative)

Cp

Eval (case (x1 ⊕ x2) of ...x → e... ρ
code = Eval e ρ[x  →  (x1 ⊕ x2)], if IN(e) ∩ (map fst du) = ∅
        = ReturnDelay d, otherwise

where
    similar to the rule above

code
Rule 33: Return result of basic operation to continuation frame (variable alternative)

3.12 Processing Messages
A processing element has to process messages periodically. For simplicity the message
queue is always examined before an Enter is performed or if the code form Wait is exe-
cuted.

If a Fetch message arrives, the closure which has been demanded is appended to the
front end of the task queue, so it will be evaluated the next time the task queue is
looked up6.

Cp Tp Hp Mp

Enter a t h (Fetch q ra a’) ++ m
h(a’) = ( vs \u {} → e ) ws
h’= h [ a’ → ( s:f:vs \u {} → start e s f) {}:(q,ra):ws ]

Enter a a’ ++  t h’ m
Rule 34: Process Fetch message before entering a closure

                                                
6 Demand messages for closures already in weak head normal form could be optimised by returning the
value immediately.
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If the code form Wait has been executed, the demand which has arrived can be exe-
cuted immediately.

Cp Ap Tp Hp Mp

Wait {} {} h (Fetch q ra a’) ++ m
h(a’) = ( vs \u {} → e ) ws
h’= h [ a’ → ( s:f:vs \u {} → start e s f) {}:(q,ra):ws ]

StartTask {} { a’} h’ m
Rule 35: Process Fetch message while waiting

A processing element which receives a result overwrites the corresponding fetch closure
with the weak head normal form received.

Cp Tp Hp Mp

Enter a’ t h (Return d j (c ws)) ++ m
c = (ws \n as → e)
h(d) = 〈delayR w〉
ws’ = map ins_fetch ws

                      where
               ins_fetch v = 〈fetch j v〉, if v boxed
               ins_fetch v= v, otherwise
h’ = h[d → c ws’]
(t’,h’’) = trans_reactivate h’ w

Enter a’ t’ ++ t h’’ m
Rule 36: Process Return Message before entering a closure

Boxed constructor arguments which point into another processing element are replaced
by fetch closures. In order to avoid multiple references to another processing element,
this should be optimised in future developments.

Cp Tp Hp Mp

Wait {} h (Return d j ((ws \u as → e) ws) ++ m
c = (ws \n as → e)
h(d) = 〈delayR w〉
ws’ = map ins_fetch ws

                      where
               ins_fetch v = 〈fetch j v〉, if v boxed
               ins_fetch v= v, otherwise
h’ = h[d → c ws’]
(t,h’’) = trans_reactivate h’ w

StartTask t h’’ m
Rule 37: Process Return Message while waiting

When a delayed value has arrived, all dependent delay closures are transformed into re-
activate or start closures. This operation is propagated over the whole directed acyclic
graph of dependent closures. A delay closure which does not have dependent closures7

is appended to the top of the task queue and replaced by start. All other delay closures
are replaced by reactivate.

                                                
7 Delay closures with no dependent closures always have an update or remote update frame at the bottom
of their saved stack portion.
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The function trans_reactivate describes this operation:

trans_reactivate h {} = ({},h)
trans_reactivate h d:ds = (t’,h’’)

where
                            h(d) = 〈delay n a s f w〉

(t,h’) = trans_reactivate h w++ds
 if n = 1

   if w = {}
        t’ = a:t
        h’’ = h’[d → 〈start a s f〉 ]

                                else
        t’= t
        h’’ = h’[d → 〈reactivate a s f〉 ]
else
   h’’ = h’[d → 〈delay n-1 a s f w〉 ]

If a QueryTask is received by a processing element which has executable tasks avail-
able, a task taken from the backend of the task queue is sent to the other processing
element.

Cp Tp Mp Mq

Enter a t ++ ({},{},cq) {(QueryTask q)} ++ mp mq

Enter a t mp mq ++ (PutTask p h(cq))
Rule 38: Process QueryTask message before entering a closure

If the processing element itself is waiting for work, the QueryTask message is propa-
gated to another element.

Cp Tp Mp Mq

Wait {} (QueryTask j) ++ mp mq

q is computed by a load balancing algorithm
Wait {} mp mq ++ (QueryTask j)

Rule 39: Process QueryTask message while waiting

Tasks received by PutTask are registered in the task queue.

Cp Tp Hp Mp

Enter a t h (PutTask j (s,(ws \u {} → e))) ++ m
ws’ = map ins_fetch ws

                      where
               ins_fetch v = 〈fetch j v〉, if v boxed
               ins_fetch v= v, otherwise
h’ = h[a’ →(ws \n {} → e) ws’]

Enter a (s,a’):t h’ m
Rule 40: Process PutTask message before entering a closure

If the processing element is waiting when the PutTask message arrives, it starts the task
which has arrived.

Cp Tp Hp Mp

Wait {} h (PutTask j (s,(ws \u {} → e))) ++ m
ws’ = map ins_fetch ws

                      where
               ins_fetch v = 〈fetch j v〉, if v boxed
               ins_fetch v= v, otherwise
h’ = h[a’ →(ws \n {} → e) ws’]

StartTask { (s,a’) } h’ m
Rule 41: Process PutTask message while waiting
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4 Conclusion and Further Work
In the Spineless Tagless G-machine, evaluation of an expression is started only if the
value of this expression is used in a case expression. A long latency operation can be
handled in an additional (Delay) alternative of the case expression, which caused the
evaluation of the delayed expression. If such a Delay alternative is entered, an alterna-
tive evaluation (another thread), which does not need the delayed value, can be carried
out first. Since sequentially computed expressions never use the Delay alternatives,
evaluations without long latency operations can be almost as fast as in the original
STGM. This report introduces an abstract machine which uses Delay alternatives for
the integration of multithreading into the STGM.

The abstract semantics presented here can be implemented efficiently. Only two addi-
tional pointers into the frame stack have to be maintained. One pointer refers to the
topmost continuation frame which contains a Delay alternative. The other refers to the
topmost extended continuation frame which contains information about delayed un-
boxed values. Extended continuation frames have to be maintained only if a long la-
tency operation has occurred, but they have to be examined on each entry of an alterna-
tive. This seems to be expensive, but the information which unboxed values are delayed
can be represented by a word which contains a bit for each possibly delayed value.
Using this representation, the check for delayed unboxed values is only a bitwise AND
and a comparison with zero. Furthermore, if no long latency operation has occurred,
this effort can be avoided by the code duplication trick used in the original STGM to
optimise updates.

In the future the ideas developed in this report will be combined with efficient runtime
representation of evaluators proposed in [2]. Evaluators and evaluation transformers
will be used to identify larger tasks for parallel evaluation.
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