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Abstract� We study the problem of the maximum number of unit distances among n points in the
plane under the additional restriction that we count only those unit distances that occur in a �xed set
of k directions� taking the maximum over all sets of n points and all sets of k directions� We prove that
for �xed k and su�ciently large n � n��k	 the extremal sets are essentially sections of lattices� bounded
by edges parallel to the k directions and of equal length�

�� Introduction

The problem of the maximum number of unit distances is perhaps the simplest�sounding

of Erd
os�s many combinatorial geometry problems� nonetheless it turned out to be a very

di
cult problem which is still far from its solution� The question �How often can the same

distance appear among n points in the plane� was �rst studied by Erd
os in his ���� paper

���	 where he constructed an upper bound of order O�n
�
� � and a lower bound of order

�
�
nec

log n
log log n

�
	 the last by taking a square section of a properly scaled integer lattice� The

upper bound was then reduced in several steps ����	 ����� to O
�
n

�
�

�
����� Since the �rst

proof was very complicated	 alternative proofs were sought ���� by �random resampling�	

���� by use of the VC�dimension� until ���� Sz�ekely found a very elegant proof using a

crossing�number argument �����

There has been no change in the lower bound� although triangular lattice sections

seem to give slightly better numbers than square lattice sections	 they have the same

asymptotics	 and lattice sections are still the best known construction� Erd
os repeatedly

o�ered ���� for an upper bound which is O�n���� for all � � � and ���� for an upper

bound O
�
nec

logn
log log n

�
� Exact values and extremal sets for up to �� points �Figure �� were

determined by Schade �����	 see also ����� Also many related problems were discussed	 e�g�

the maximum number of unit distances in other metric spaces	 higher dimensions	 convex

or general position	 of smallest or largest distances etc� �see ��� for further references��

The original problem	 however	 seems to have exhausted the available methods with

the O�n
�
� ��bound� All known proofs of this upper bound used as main geometric in�

formation the fact that any two unit circles intersect in at most two points� and this

information is used best possible in that bound	 since there are strictly convex norms

on IR� �which have the same intersection pattern� for which cn
�
� unit distances among n

points are possible ���� Attempts to enumerate the small excluded substructures of unit

distance graphs ����	 ����� did not yield any other excluded substructure that could be

used to reduce this upper bound� Also the Schade sets do not support the implicit belief

�



that lattice sections are extremal sets	 since the larger sets are not subsets of any lattice

���	 although rational dimension is still small �they are generated by four unit vectors��

In the following all points will be in the plane	 and we will distinguish pointsets only

up to isometry�

S1 S2 S3 S4 S5

S6,1 S6,2
S6,3 S6,4

S7
S8,1

S8,2
S8,3

S9 S10 S11,1 S11,2

S12 S13 S14,1 S14,2

Figure �

�� The Result

In the following we try to avoid these di
culties by proving structural results for the

extremal sets� Since a lattice subset structure in itself is rather useless �for it may be a

very thin subset�	 we aim for a lattice section structure� We call a set S � � a section

of � if there is a convex set K such that all points of � that are in the interior of K

belong to S	 and all points of � that are in the extrerior of K do not belong to S� We

make no assumption on the lattice points on the boundary of S� this allows incremental

construction of sections for all numbers of points in S�

To obtain results	 we introduce additional structure on the pointsets with many unit

distances by counting only those unit distances that occur in a few �xed directions� Let

S � IR� be a set of n points and T � IR� a set of k unit vectors with T � ��T �  � �we
count each direction only once�	 and let

f�S� T � � 
���f�x� y� � S � S j x� y � Tg

���
be the number of unit distances in S which occur in directions from T � We study now the

function f�n� k� de�ned as the maximum of f�S� T � over all such sets S of n points and T

�



of k unit vectors� Trivially f�n� ��  n� �� The unit distance graphs with unit distances
in two directions are subgraphs of the union of disjoint copies of the square lattice graph�

the maximum edge�number of a subgraph of the square�lattice graph was determined by

Harary and Harborth ����	 so we have f�n� ��  b�n� �pnc� The maximum number of
edges in the triangular�lattice graph follows from a disk�packing theorem by Harborth

����� this suggests that f�n� ��  
j
�n�p

��n� �
k
� We prove

Theorem � For each �xed k we have f�n� k�  kn � !
�p

n
�
	 and for k � � there is

a �nite number of nonisometric lattices �k��� � � � ��k�lk such that for each

su
ciently large n � n��k� each extremal set pair Sn�k� Tn�k is a pair of

subsets of one of the �k�i�

There is always an extremal set Sn�k that is	 with the exception of at most

O�
p
n� points	 a section of that �k�i which is bounded by edges parallel to

the vectors from Tn�k�
So for �xed number of directions and large number of points the extremal sets have a

lattice section structure	 they are �equilateral sections� �see Lemma �� like the set in

Figure �� If the numbers n��k� were small	 this would imply the Erd
os conjecture	 since

each extremal set for the unrestricted maximum number of unit distances must be an

extremal set for some number of directions k� but the Schade sets show that we cannot

do without the lower bounds n��k��

Figure �

�� The Proof

In the following we denote for any pointset X the unit distance graph of X � IR� by

G�X�	 and if additionally a set Y � IR� of vectors is given	 the graph of vertex pairs from

X with a di�erence in Y by GY �X�� The edgenumber of graph G is written as e�G��

The lower bound f�n� k� � kn � O�
p
n� is simple� Just select some r such that the

�



unit�distance graph G�rZ�� is regular of degree at least �k	 e�g� r  ��
�
�d k

�e� Then we
can select a set of k unitvectors T � rZ� �with T � ��T �  �� and a set of n points
S �  r

�
Z
�� ���pn��

�
� In this set S each point with distance at least one to the boundary

of the section �each point in �r " �� r
p
n � ���� has a neighbour in S in each direction

of T 	 so each of these points has degree �k in GT �S�� Therefore f�n� k� � e
�
GT �S�

�
�

k
�
n� �

r

p
n
�
�

The theorem is now obtained from the following two lemmas�

Lemma �� For each k � � there is a �nite number of nonisometric lattices �k��� � � � ��k�lk
such that for all n � n��k� each extremal pair �Sn�k� Tn�k� is isometric to a

pair of subsets of one of the �k�i�
Lemma �� Let � � IR� be a lattice and T � � n f�g a set of vectors such that the

generated graph GT ��� is connected	 and T � ��T � does not contain three
collinear vectors� Let k �  �

�
jT � ��T �j�

Let f�n� denote the maximum number of edges of a subgraph of GT ���

with n vertices	 and h�n� denote the maximum edge�number in an n�vertex

subgraph that is generated by a section of �� Then for n � n��T��� the

extremal sections for h�n� are sections bounded by edges parallel to the

graph�edges which are of relative �graph�� lengths that di�er by at most

one	 and the extremal subsets for f�n� di�er from the extremal sections by

at most O�
p
n� points� Also f�n�  h�n� "O���  kn� cT��

p
n "!����

The assumption of no collinear generating vectors is necessary for the �almost equilateral

structure� of the extremal sections	 as can be seen by the graph generated on Z� by the

vectors f��� ��� ��� ��� ��� ��g� We conjecture that for n � n��T��� the extremal subsets

are sections	 so f�n�  h�n��

Proof of Lemma �� Let �S� T � denote an extremal pair for f�n� k�� By translation

invariance we may assume � � S� If GT �S� were not connected	 we could move one of the

connected components against the others until a new unit vector of T occurs� but then

the set was not extremal� So for extremal S the graph GT �S� is connected� Therefore

each point of S can be reached from the point � by following T �edges� thus each point of

S is an integer linear combination of T �vectors� S � hT iZ�
Let T  ft�� � � � � tkg	 so GT �S� has maximum degree �k� For each decomposition

T  T� � 	 	 	 � Tl in disjoint subsets we have

kn� e
�
GT �S�

�
 

lX
i��

�
jTijn� e

�
GTi�S�

��
�

and each summand is positive	 e
�
GTi�S�

�

 f

�
jSj� jTij

�
� jTij jSj� Since each ti is a

unit vector	 and T � ��T �  �	 any two distinct ti � tj are rationally independent�

Therefore each graph Gfti�tjg�S� is an n  jSj�vertex subgraph of the classical square
lattice graph� G�Z��  P� � P�� By the theorem of Harary and Harborth ���� we have
e
�
Gfti�tjg�S�

�

 b�n� �pnc� Taking the sum over all ��element subsets of T we �nd

e
�
GT �S�

�

 kn� k

p
n�

�



This proves f�n� k�  kn� !
�p

n
�
�

Suppose now that T contains three rationally independent unit vectors t�� t�� t�� Then

the graph Gft��t��t�g�S� is isomorphic to a subgraph of the unit distance graph G�Z�� of

the three�dimensional integer lattice� For we can assign each point of S in each con�

nected component of Gft��t��t�g�S� integer coordinates relative to the basis t�� t�� t� and
an arbitrary starting point of that component	 with the edges corresponding to the point

pairs with only one coordinate di�ering by exactly one� But an n�vertex subgraph of the

three�dimensional lattice graph G�Z�� contains less than �n�
�
	

�
�
��

�n
�
� edges �the exact

maximum number is not known� probably cubic sections are optimal� An upper bound

on the number e of unit distances in a set X � Z
� of n points one obtains easily by

considering the Minkowski sum Y � X " ���
�
� �
�
��� If A is the surface area of Y 	 then

�n � �

�
A � e� The volume of Y is at least n	 so by the isoperimetric theorem we have

A �
�
���n�

� �
� 	 and thus e 
 �n�

�
	

�
�
� �

�n
�
� ��� So if for an extremal pair �S� T � the set T

contains three rationally independent vectors	 then f�n� k� 
 kn �
�
	

�
�
� �

�n
�
� � this is for

n � n��k� a contradiction to our lower bound f�n� k� � kn� ck
p
n� Therefore the set of

integer combinations hT iZ is for �xed k and su
ciently large n always a lattice �rational
dimension two�	 and S is a subset of this lattice�

Next we will show that for each �xed k � � there are only �nitely many nonisometric
lattices that can occur as the underlying lattice � � hT iZ of the extremal sets �S� T �
�which we again assume to be an extremal pair for f�n� k��� � is the thinnest lattice

that contains S� Let now ta� tb � T be two distinct directions from T 	 then �n� �pn �
e
�
Gfta�tbg�S�

�
� �n � ck

p
n	 since the defect in two directions is smaller than the total

defect ck
p
n� The vectors ta� tb generate a sublattice hta� tbiZ � �	 and ��hta� tbiZ consists

of a �nite number r  r�ta� tb� of cosets ��� � � � ��r	 which are translates of the sublattice

hta� tbiZ� The remaining unit vectors ti �i � a� b� of T operate on these cosets	 since they

are lattice vectors in �� so for each �j� ti the sum set �j " ti is another of those �nitely

many cosets� But at least
���S��j���� ���S���j"ti���� of the points of S��j have no neighbour

in S in the direction ti� Taking the sum over all cosets �j and all directions ti we �nd

rX
j��

kX
i��

�������S � �j
���� ���S � ��j " ti�

������� 
 kn� f�n� k� 
 ck
p
n�

Since T generates �	 the graph generated by the ti on the cosets is connected� so we get

from the previous inequality especially

r
max
i��

���S � �i
���� r

min
i��

���S � �i
��� 
 ck

p
n�

Let now ni � 
���S � �i

���� Then the graph Gfta�tbg
�
S � �i

�
contains between the ni vertices

at most
j
�ni � �pni

k
edges� Since Gfta�tbg�S� contains at least �n� ck

p
n edges	 we have

rX
i��

p
ni 
 ck

�

p
n� ���

We now look for the minimum of
Pr

i��

p
ni under the restrictions

Pr
i�� ni  n	 ni � �

for i  �� � � � � r and maxri�� ni � minri�� ni 
 ck
p
n� Since

p
x is a concave function	 for

�



the extremal choice of the ni each variable �with at most one exception� will meet a

restriction of the admissible set� So under the ni there are only two distinct values	

r
max
i��

ni  �
n

r
" 	ck

p
n and

r

min
i��

ni  �
n

r
" �	� ��ck

p
n�

where the last has to be nonnegative�

If minri�� ni � n
�r
	 then we have

rX
i��

p
ni � r

s
r

min
i��

ni � r

r
n

�r
 

r
r

�

p
n�

By ��� we �nd that in this case r is bounded by a constant for �xed k and su
ciently

large n�

If � 
 minri�� ni �
n
�r
	 that is � 
 n

r
" �	 � ��ck

p
n � n

�r
	 we obtain maxri�� ni  

minri�� ni" ck
p
n � ck

p
n	 and ���	� �

p
n

�ckr
� Since

Pr
i�� ni  n holds	 the smaller value

of the ni must occur 	r times and the larger value ��� 	�r times� Therefore we have

rX
i��

p
ni  ��� 	�r

r
r
max
i��

ni " 	r

s
r

min
i��

ni

� ��� 	�r
q
ck
p
n �

p
n

�ckr
r
q
ck
p
n

� �

�
p
ck
n

�
� �

By ��� we �nd that this case cannot occur for large n�
So for �xed k and su
ciently large n there are only �nitely many possible values for

r��� T �  max r�ta� tb�� To show now that for bounded r��� T � and k � � there are only
�nitely many nonisometric lattices � possible	 we look at the sublattices of � generated

by three vectors ti� � ti� � ti� � If all these sublattices are known �up to isometry�	 then � is

determined �up to isometry�	 since � is generated by T � Since ti� � ti�� ti� are vectors of

a lattice	 they are rationally dependent	 so there are relatively prime integers a�� a�� a�
such that a�ti� " a�ti� " a�ti�  �� These integers ai are nonzero	 since T � ��T �  �	
ti � 
tj for i � j� By the coe
cients a�� a�� a� and the fact that all ti are unit vectors	

the lattice hti� � ti� � ti�iZ is determined up to isometry	 since kti�k  �	 kti�k  � and

cos��ti� � ti��  
�
ti� � ti�

�
 

a���a���a��
�a�a�

� We now take the sublattice generated by two vectors

ti� and ti� of the lattice generated by all three vectors hti� � ti� � ti�iZ 	 which itself is a
sublattice of �� The number of cosets of hti�� ti�iZ in � is at least as large as the number
of cosets of hti� � ti�iZ in hti� � ti� � ti�iZ � but that is ja�j� Therefore the coe
cients a�� a�� a�
are bounded in absolute value by r� So for each sublattice of � generated by three unit

vectors there are at most ��r�� nonisometric possibilities� So for �xed k and su
ciently

large n there are only �nitely many nonisometric lattices � possible� This proves Lemma

��

�



Proof of Lemma �� Let Sn and Xn denote the extremal subset and section of n points	

respectively� Each point of an extremal set �Xn�� or Sn��� that is a vertex of the convex

hull of that set has degree at most k in the graph	 since all its T � ��T ��neighbours
are on one side of a supporting line through that point� Removing that point gives

f�n" �� 
 f�n� " k and h�n" �� 
 h�n� " k for all n� We are therefore most interested

in the numbers n for which f or h grow by at most k � ��
In the �rst step we show that in the extremal sets �Xn or Sn� most points have a big

neighbourhood in which no point of � is missing in the extremal set�

A square section of � gives a lower bound f�n� � h�n� � kn � O�
p
n�� Therefore

in Sn as well as in Xn all points with O�
p
n� exceptions have full degree �k	 i�e� if p

belongs to the extremal set	 then also fp
 ti j i  �� � � � � kg� For each �xed distance dG
in the graph	 the O�

p
n� points that do not have full degree have only O�

p
n� neighbours

with graph�distance �in GT ���� at most dG� so for each �xed rG all but O�
p
n� points in

the extremal sets are centers of balls of radius rG �in the graph�metric of GT ���� that

completely belong to the extremal sets� For each euclidean ball with euclidean radius re
around a point of � there is a number rG such that the ball of radius rG in the graph

metric contains the euclidean ball of radius re� Therefore the same statement also holds

for the euclidean metric� for each �xed euclidean distance de all but O�
p
n� points of the

extremal set have distance at least de to the next lattice point outside the extremal set�

In the next step we show that in each extremal set most points are contained in

sections that are bounded by edges parallel to the vectors of T �

Let P denote the open ��symmetric convex �k�gon	 whose edgevectors are the vectors

of T � ��T � and let Z be the union of all those translates of P that do not contain a

lattice point from outside the extremal set �� n Xn or � n Sn	 respectively�� Since P

has �nite euclidean diameter	 all but O
�p

n
�
points of the extremal set are centers of a

translate of P which is completely inside the extremal set	 so Z contains all but O
�p

n
�

points of the extremal set� Z consists of �nitely many connected components	 each of

which is an open polygon	 bounded by edges parallel to the directions of T � We denote

these connected components by Z�� � � � � Zl� In the following we denote as the relative

length of a segment with direction t � T the ratio of its length to that of t�

We claim that for those n for which the function associated with the extremal set �h

or f� grows by less than k	 these connected components must indeed be convex polygons�

For by the construction of P we have the property that if q is a point outside P and

t � T � ��T � is a vector such that the ray with direction t starting in q intersects the

interior of P 	 then at least one of the points q" t� q"�t� q"�t� � � � is in the interior of P �

This property carries over to any union of translates of P 	 so especially to each connected

component of Z " P �

Suppose now that one of the connected components Zi is not convex	 and increase

the extremal set by all those points inside the smallest open convex polygon that contains

Zi and is bounded by edges parallel to the directions of T � Let 
 be the number of added

vertices and � the number of added edges� we claim � � k
	 so f�n " 
� � f�n� " k


which contradicts the assumption on n� To count the number of additional edges we

note that each edge fq� q " tig belongs to exactly one in�nite sequence �q " ati�
�
a��� �a

�



one�dimensional sublattice�	 and each such sequence that intersects the enlarged polygon

already intersects the original polygon Zi� So if such a sequence contains new points	 it

already contained at least one old point of the extremal set	 but the points of the enlarged

set form an interval in that sequence� Then in that sequence there are at least as many

new edges as new points� But each new point belongs to exactly k such sequences	 and

each new edge to exactly one	 so � � k
	 which proves the claim�

Now we investigate the structure of the boundary of such a section component�

Since each Zi is convex and the union of translates of P 	 each edge of Zi �which is

direction of some vector t � T � contains at least one edge of the translate of P touching

that edge of Zi	 so it is at least as long as that vector t� We call this edge of Zi trivial

if it is exactly as long as t	 and nontrivial if it is longer� A nontrivial edge a�a " �t�

must contain lattice points p from the complement of the extremal set in each part of

relative length greater than one	 since there are points that block movement of P across

that edge in each part of the edge� Since p is a lattice point and t a lattice vector	

there is at least one one�dimensional sublattice � � � p � t� p� p " t� � � � of which a segment

# � fp " zt j z � Zg � a�a " �t� of b�c or b�c " � points is contained in the edge �if t
is not a primitive lattice�vector	 there will be several such sublattices�� # de�nes a path

in GT ���	 and each of the points of # �with the possible exception of the end point a

and a" �t of the segment� has already k � � neighbours in the extremal set� So if there
is a point of # already belonging to the extremal set	 and it has a neighbour in # �that

is not one of the endpoints of the segment�	 then this neighbour could be added to the

extremal set giving k new edges� So for those n in which the associated function �f or

h� grows only by k � �	 each such # must either completely belong to the extremal set	
or completely belong to its complement� and each nontrivial edge of a Zi will contain at

least one such # that completely belongs to the complement of the extremal set �since

there are missing points on the edge that stop movement across it��

We also note that the existence of nontrivial edges implies the possibility to add

a point of degree at least k � �� and in an extremal set there have to be nontrivial
edges� For a connected component with only trivial edges contains only O��� points	

among them several that are not of full degree �k in the graph of the extremal set� But

there are at most O�
p
n� such points	 so not all n points of the extremal set can be

contained in connected components with only trivial edges� So for all n � n��T��� we

have k � f�n" ��� f�n� � k � � and k � h�n" ��� h�n� � k � ��
With this information we can now determine the structure of the extremal sections

Xn and thus prove the �rst statement of the lemma� Since the extremal sections are

generated by convex sets	 they can contain only one connected component Z� If there

are points of Xn in the exterior of this component	 then any edge of the component that

separates these points from Z must have relative length at most two	 for otherwise the

convexity of the generating set would force a segment of relative length one of the edge to

contain only points of Xn	 contradicting the existence of points of � nXn in every edge�

segment of relative length one� But there are only O��� points beyond such a short edge

possible	 since they must lie in the triangle bounded by the lines through the previous

and following edge� So we can remove these l� points beyond the short edge �losing at

most k edges per points	 since we can remove them in the order in which they become

�



available as vertices of the convex hull� as well as the l� points on the short edge �losing

at most kl��� edges	 since they form a union of paths	 each point with k� neighbours on
the other side of the short edge�	 with l�" l�  O���� But since Z contains all but O�

p
n�

points of Xn	 there must be a side of length ��
p
n�	 along we can select a missing one�

dimensional sublattice # as described above� This # determines a path of length ��
p
n�

in GT �� nXn�	 of which we can add a subpath of length l� " l� to the set Xn �replacing

the points on and beyond the short edge we removed�� This gives again k�l� " l�� � �
new edges	 it does therefore not decrease the edge�number	 but the new graph allows

extension by further pointS	 each giving k new edges �extending the subpath of #�� So

for those n � n��T��� with h�n " ��  h�n� " �k � �� this cannot happen� For those n
the extremal sections are generated by a polygon with T �parallel edges	 and for the other

n in between we can obtain extremal sections by removing points along an edge�

For those n with h�n" ��  h�n� " �k� �� the edges of the extremal sets must have
almost equal relative lengths� it cannot happen that we remove a path of l vertices along

one edge of Z �losing kl � � graph�edges� and �nd another edge of Z on which there

is a missing path # of length l� � l " � �in which case we could add l " � points with

k�l " ��� � new edges	 contradicting the assumption on h�n " ����

So the extremal sectionsXn are generated by polygons with T �parallel edges of almost

equal relative length �as multiple of the corresponding vector of T �� So each edge has a

length of 	t

p
n " !���� To count the number of edges in Xn	 we note that outside the

neighbourhoods of the �k vertices of the generating polygon	 we lose edges only along

the edges	 at a rate proportional to the length of the edge �the constant of course also

depending on the direction�� This gives the asymptotics claimed in the lemma

h�n�  kn� cT��
p
n"!����

We also note that if we have a set consisting of a section of n � n��T��� vertices and

any number of arbitrary further vertices	 we can extend this set by any given number

m of vertices in such a way that we gain at least h�n "m�� h�n�� � additional edges�
To prove this	 we extend at the same time the section in the given set and the optimal

section and compare the numbers of edges� The points are added in several stages using

m�"m�" 	 	 	"mr  m points	 each going until either there are no further points left or

we have reached a number of points n "m� " 	 	 	"mi for which h grows only by k � �
�so a path along the boundary of the extremal section has been completed�� We �rst

disregard the further points outside the given section	 and count only those edges going

from the added points to the section� Let m�  minfj � � j h�n" j"�� � h�n" j�" kg
and mi��i  minfj � � j h�n"m� " 	 	 	"mi " j " �� � h�n"m� " 	 	 	"mi " j� " kg�
The extremal section of a given number of points minimizes the maximum relative length

of its boundary edges	 so the section of the given set always has an edge of at least the

length of the edge of the extremal set� This edge may already contain some points of the

section	 after �lling it up we can start a new edge	 so we can always add the mi points in

such a way that we gain at least kmi � � new edges� For all i � � we have by de�nition
h�n"m�" 	 	 	"mi��h�n"m�" 	 	 	"mi���  kmi� �� Only h�n"m���h�n�  km��

This proves the claim	 if there are no further points� For each further point we have met

in our construction	 we have to add a point to the �nal section with as many edges going


�



to the section as we counted for the point when we met him� We met these points as

parts of edge�paths being �lled up	 and since the edges of the �nal section are at least

as long as the edge�length when we met them	 we can just add such paths again	 which

proves the claim�

Now we have to determine the structure of the extremal subsets� of these we already

know that they consist of some T �parallel convex sections Z�� � � � � Zl and at most O�
p
n�

further scattered points�

Let ni �  j��Zij be the number of points of Sn in Zi� By the isoperimetric inequality

we �nd that the boundary of Zi has length �
�p

ni

�
	 so there are at least �

�p
ni

�
points

in Zi � Sn which do not have the full degree in GT �Sn�� Since the total number of these

points in Sn is O
�p

n
�
	 we have

Pl
i��

p
ni 
 	

p
n� Using

P
i ni  n we �nd maxi ni � 
n�

so there is a big connected component� Also we note that there are only O�
p
n� connected

components	 since each summand is at least one�

All those points of S that do not lie in any of the Zi will nonetheless be near one

of the Zi	 the distance will remain bounded by a constant �� For each point of Sn that

does not belong to any of the Zi has a graph�distance at most d to a point of Sn that

does not have full degree in GT �Sn�� So if in the graph�metric of GT �Sn� there is a ball

with a big radius � around a point of Sn that contains only points which do not belong

to any Zi �$n � � such points�	 then the average degree in the interior of that ball is at

most �k � ��d�	 and the number of edges leaving the ball is at most O
�p
$n
�
� It follows

f�n� $n� � f�n�� ��k� ��$n�O
�p
$n
�
� for su
ciently large $n	 i�e� su
ciently large radius

� this gives a contradiction to f�n� � f�n � $n� " f�$n� � f�n � $n� " k$n � O
�p

n
�
� So

the maximum distance � of a point not belonging to any Zi to the nearest point in a Zi

stays bounded� �  O����

Let Yi � IR� denote the set of points with distance at most � to Zi� The unionSl
i�� Yi contains all points of Sn� Two set Yi	 Yj can overlap	 but for any set Yi the total

area overlapped by over Yj is bounded by a constant� For if Yi is overlapped along an

edge with direction ta by over sets Yj with a total length �	 then we can increase Sn by

all those points on parallels to that edge that lie between Zi and Zj� These points can

be partitioned as above in arithmetic progressions with di�erence ta �one�dimensional

sublattices�	 where the number of distinct such progressions that �ts between Zi and Zj

is bounded by the distance O���  O���� In each such sequence p	 p" ta	 p" �ta� � � � the

�rst point generates at least k � � new edges	 and all further points �till the end of Zi�

generate at least k new edges� But as soon as these parallels reach Zj	 each point gives

at least one further edge across to Zj	 which gives ���� further edges� So if we added a

total of � new points	 we got at least k�� O��� " ���� additional edges	 which gives a

contradiction to f�n" �� 
 f�n� " k� unless � stays bounded by a constant�

If there is only one connected component	 the claim of the Lemma follows directly�

So we assume there are several components Z�� Z�� � � �	 which are ordered with decreasing

size ni� Let also mi � j�Yi n Zi� � Snj� For each constant � the claim of the proof

follows for su
ciently big n � n����	 if n� � � holds	 since there are only at most O�
p
n�

components� So we can assume that n� gets arbitrarily big�







Suppose now that m� 
 �

�
n� holds� Each set Yi contains at most h�ni� " kmi "O���

edges� at most h�ni� within Zi	 at most kmi edges by shelling those point of Yi nZi which

are not overlapped by another Yj	 and at most O��� edges from those O��� points	 in

which Yi is overlapped by other Yj�

If we remove now the n�"m� points of Sn�Y�	 and extend Z� by this number of points

we lose at most h�n��"km�"O��� edges in Y� and gain at least h�n�"m�"n���h�n����
edges around Z� But using m� 
 �

�
n� we �nd�

h�n� "m� " n��� h�n����
�
�
�
h�n�� " km� "O���

�
 
�
kn� " km� � ck

�p
n� "m� " n� �p

n�
�
"O���

�

�
�
kn� " km� � ck

p
n� "O���

�

 �ck n� "m�p
n� " n� "m� "

p
n�
" ck

p
n� � O���

� �ckn� "m�

�
p
n�

" ck
p
n� �O���

�
ck
�

p
n� � O����

so for su
ciently big n� this increased the number of edges	 a contradiction to the max�

imality of Sn�

And �nally	 if m� � �

�
n� holds and n� is su
ciently big	 then the set Z� is not

�round�	 but in one direction of length ��n��	 and orthogonal to that of width bounded

by a constant� In that case a positive fraction of the points of Z� do not have full degree

�k� by removing the points of Y� we therefore loose at most km� " �k � ��n� edges	 and

by increasing Z� we gain again at least

kn� " km� � ck
�p

n� " n� "m� �p
n�
�
� kn� " km� �O

�p
n�
�

edges �m�  O�n���	 which generates for su
ciently big n� again a contradiction�

So all but O�
p
n� points of Sn are in the �rst connected component	 which was

shown to be a convex polygonal section of � bounded by edges parallel to T � Since we

can remove the m  O�
p
n� outside points as they become available as vertices of the

convex hull of the set	 we have at most h�n�m�"km edges� since
p
n�p

n�m  O���	

we have f�n�  h�n� " O���� But this implies that the edge�lengths of that component

can di�er by at most O��� from the edge�lengths of the optimal section	 so the optimal

subset di�ers from the optimal section by at most O�
p
n� points�

This completes the proof of Lemma � and the Theorem�
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