
Identifying Impacts of Database Schema
Changes on Applications

Amela Karahasanovic
amela@ifi.uio.no

Industrial Systems Development Group,
Department of Informatics, University of Oslo
P.O. Box 1080 Blindern, N-0316 Oslo, Norway

Tel: +47 22 84 00 60 Fax: +47 22 84 00 72

April 16, 2001

Abstract

Research in schema evolution has been driven by the need for more ef-
fective software development and maintenance. Finding impacts of schema
changes on the applications and presenting them in an appropriate way are par-
ticularly challenging. We have developed a tool that finds impacts of schema
changes on applications in object-oriented systems. This tool displays com-
ponents (packages, classes, interfaces, methods and fields) of a database ap-
plication system as a graph. Components potentially affected by a change are
indicated by changing the shape of the boxes representing those components.
We have evaluated the tool by own judgement on a real-life application and
by a controlled student experiment. Our results indicate that identifying im-
pacts at the level of fields and methods can reduce the time needed to conduct
schema changes and reduce the number of errors compared with identifying
impacts at the level of classes. Moreover, the subjects of the experiment ap-
preciated the idea of visualizing the impacts of schema changes.

1 Introduction

Managing change is a fundamental aspect of information and database systems.
Changes to a database schema after a system has become operational may be quite
frequent and will typically affect other parts of the schema, the data in the database
and the applications [1]. When a schema is changed, consistency between the
database schema, the database and the applications should be preserved. Due to the
complexity of dependencies between them, supporting a gradual process of schema
change, schema evolution, is considered expensive and troublesome. Finding im-
pacts of schema changes on the applications and presenting them in an appropriate
way are particularly challenging.



Dependencies between database schemata and applications are even more com-
plex in object-oriented database application systems than in conventional systems.
Transitivity of inheritance and of aggregation structures makes it difficult to under-
stand dependencies between classes, methods, and fields of a system [2].

Research conducted in the area of schema evolution can be classified into three
main approaches. These are direct schema evolution, schema versioning and schema
evolution by views. Direct schema evolution [3-8] is supported when schema changes
are allowed without loss of existing data. The old schema and the old state of the
schema extension are inaccessible after the change took place. Schema versioning
[9-17] is supported when schema changes produce new state of the schema (new
schema version) and the extension associated with it. Accessing different schema
versions and corresponding extensions is allowed both prospectively and retrospec-
tively. Schema evolution can also be supported by views [18, 19]. When a schema
change request is received, a new schema view is computed with the desired seman-
tic. The majority of schema evolution research prototypes [3-19] provide support
for maintaining consistency between the database schema and data. Different strate-
gies for maintaining consistency between the database schema and the applications
have been developed. Models based on versioning and views maintain consistency
between the schema and applications by keeping the old schema versions. A schema
change produces a new schema version or view. Old application programs can con-
tinue to be used together with the old schema version or the old view version. These
approaches cannot handle situations when a new version of a schema is meant to be
used in the old applications. A priori change impact analysis [21] identifies impacts
of schema changes on applications.

Proposed schema evolution technologies have typically been evaluated accord-
ing to performance [5, 8, 22, 23] and provided functionality [19, 20, 24, 25]. Even
if the primary goal of the research in schema evolution has been to support schema
and application developers in software development and maintenance, little atten-
tion has been paid to the usability evaluation of the proposed schema evolution
technologies.

1.1 Research Questions

The discussion above motivates our research. The goal of this research is to pro-
vide a technology for maintaining consistency between database schemata and their
corresponding applications (application compatibility) in an object-oriented con-
text, and evaluate it from the perspective of the schema and application developers.
Does a priori impact analysis help schema and application developers in maintain-
ing these consistencies? To answer this question, several questions that are narrower
in their scope have to be addressed. These are:

� RQ1 How do the existing schema evolution tools support application compat-
ibility?

� RQ2 To what extent can former work within pure software change impact
analysis in programming languages contribute to identifying impacts of schema
changes on the applications?



� RQ3 What is a trade-off between a textual and visual presentation of the im-
pacts of schema changes?

� RQ4 How to evaluate (including conducting experiments) schema evolution
technologies regarding their support of application compatibility?

The remainder of this paper is organised as follows. Section 2 describes re-
search methods used to address research questions. A technology we propose is
briefly presented in Section 3. An evaluation of the technology is given in Section
4. Section 5 concludes and proposes future work.

2 Research Methods

Various research methods can be used for evaluating software engineering methods
and tools [26, 27]:

� Qualitative screening – a feature analysis based on existing literature de-
scribing tools. A major weakness of this method is its subjectivity in select-
ing both features and their importance. On the other hand, because of its
flexibility and low costs, this method is used very often.

� Assertion – an experiment where a developer uses a tool. As the developer is
both experimenter and subject of study, this method is considered potentially
biased. However, if the experiment is done in the context of a large industrial
project, it can be classified as a case study. The major weakness of the case
study is that it is very context biased (each development project is unique).
This method is often used for preliminary evaluation.

� Controlled experiment – several subjects perform a task in multiple ways.
The researcher determines factors that can influence the results, e.g., duration
and staff experience. Therefore, it is possible to provide a greater level of sta-
tistical validity than in case studies. However, the high cost of the experiment
limits the possibility of replication.

2.1 A Tool for Automatic Data Collection

To conduct experiments on schema evolution technologies, we have developed a
tool that collects data about the subjects of an experiment and their usage of the
technology under study [28]. In the beginning of the experiment, the Personal In-
formation Questionnaire screen appears. It requests information about experience,
cognitive style and attitude to learning new tools. At the end of the experiment,
the User Evaluation Questionnaire screen appears, which is based on the IBM Post-
Study System Usability Satisfaction Questionnaire [29]. Behavioural data is col-
lected in the think-aloud screen. The experiment participants are asked to write
short comments on what they are thinking during the experiment in this screen. To
remind them, the screen changes colour every 10 minutes and the text ’What are you
thinking now?’ appears. These comments are saved in a text file, and the time used



Table 1: Summary of research questions and methods
Research

Presented in questions Research methods Status
Section 1 RQ1 Qualitative screening, Partly addressed,

controlled experiment an experiment to
be conducted

Section 3, RQ2, RQ3 Implementation Partly addressed,
Papers [30,31] implementation of some

algorithms remained
Section 4 RQ2, RQ3 Assertion, Partly addressed,

controlled experiments more experiments
to be conducted

Section 2.1, RQ4 Proposal of a Addressed
Section 4, framework,
Paper [28] controlled experiments

for writing them is recorded. The think-aloud screen allows us to conduct experi-
ments with groups of students working in the same room and makes data processing
easier. Usage of window operations and unix commands is logged together with ex-
ecution timestamps. All keystrokes and operations on the mouse buttons within an
adapted emacs window are also recorded.

2.2 Research Questions and Methods

Our research can be described with respect to the research methods used to address
the research questions raised in Section 1.2. The relation between research ques-
tions and research methods is summarised in Table 1.

3 Proposed Technology – SEMT

Software change impact analysis is a research area considering consequences and
implementation of a software change on software artefacts like design documents,
documentation, source code and test material. The transitive closure algorithm is
considered to be one of the fundamental impact-analysis techniques. This algorithm
takes as input a directed acyclic graph with components as nodes and relationships
between them as edges. It then finds all components reachable from a given com-
ponent.

We apply this algorithm to find the effect of schema changes on applications
in the following way. Schema and application components, i.e., packages, classes,
interfaces, fields and methods of a database application system are represented as
nodes and the relationships between them are represented as edges. The kinds of
relationship between components are inheritance, encapsulation, aggregation and
usage. When a schema change request appears, there are two possibilities:

� this change will delete/modify a component/relationship in the search space



� this change will insert a new component/relationship in the search space.

In the first case, the transitive closure algorithm starts with a given component,
while in the second case it starts with a component semantically enclosing a given
component. For example, if a field is to be added to a class, then this class encloses
the new field. Real-life database application systems typically consist of numerous
components. The original algorithm [32] with execution time �����, where n is
the number of components will thus often give unsatisfactory performance. Hence,
several improved variants have been developed [33, 34]. Their execution times
are evaluated in [33]. We have chosen the Delta-wavefront algorithm because it
is more efficient than the original algorithm and independent of low-level memory
management. For several schema changes we have adapted the algorithm to achieve
greater precision of identified impacts.

Based on the above explained ideas, we have developed a tool called SEMT
(Schema Evolution Management Tool) in the context of object oriented systems.
Applications access persistent classes definitions through the ODMG bindings. SEMT
takes as input Java source files of a schema and applications. Components are
extracted from the source files and the relationships between them are identified.
Components are presented as nodes, and relationships between them as edges in a
graph. Impacts of a schema change on the rest of the schema and the applications
are identified and presented. SEMT offers the following functionality:

� visualising a schema and applications

� creating, modifying or deleting a schema

� visualizing potential effects of a proposed schema change

� canceling a change

� confirming a schema change – rollback is possible

� committing a schema change – rollback is not possible

The following schema changes are currently supported by SEMT:

� Changes to the properties of a class

– add/delete/rename a field

– add/delete/rename a method

� Changes to the inheritance graph

– add a class to the superclass list of a class

– delete a class from the superclass list of a class

� Changes to classes



– add/delete a class

We try to make the visual syntax of SEMT as simple and intuitive as possible. To
achieve efficient information assimilation [35], we propose usage of graphs with
limited number of schematic figure types (rectangles, ellipses, lines, and arrows)
and colours. To achieve consistency of data display [35], we propose use of the
same colours and shapes for the same type of components and relationships.

SEMT displays a search space as a graph. All component types are displayed
as rectangles with the name of the component written inside. The size of the rect-
angles carries no additional information. Colours are used for denoting different
component types and coloured directed arrows for denoting different relationships
between the components.

The techniques explained above will produce very large and incomprehensible
graphs when applied to real-life database application systems. Therefore, we de-
cided to present only components and dependencies at the coarse granularity (pack-
ages, classes and interfaces). If the user wants to explore the graph more closely,
he may expand classes and interfaces. The user may choose between presenta-
tion of fields or/and methods. Corresponding components and dependencies at the
granularity of fields and methods are then presented. Our solution is a variation of
hierarchical graphs limited by the implementation technology we have used [36].

4 Evaluation of the Proposed Technology

Schema evolution technologies can be compared and evaluated from different view-
points. Managers may be interested in costs and utility of a schema evolution tech-
nology while schema and application developers may be interested in usability of
the same technology. We focus on the usability of schema evolution technologies.
ISO 924-11 defines usability as ’the extent to which a product can be used by spec-
ified users to achieve specified goals with effectiveness, efficiency and satisfaction
in a specified context of use’.

4.1 A Real-Life Application

A version of SEMT developed in the context of C++ and the object-oriented Pse/Pro
was evaluated regarding performances and usability. A Norwegian company devel-
oping a CASE tool provided us with the source code of the tool. The tool is imple-
mented using C++ and ObjectStore Pse/Pro. SEMT was tested on about 300 header
and source files stored in 6 directories (about 135000 lines of source code). It took
about 30 minutes to parse the files and store the components in the repository. As
parsing of all the files represents a seldom-performed operation, this should not be
considered as a problem. However, even if tested by the authors themselves, this
version of user interface was not experienced as user friendly. With a large num-
ber of the components presented in the same graph, several screens were needed to
present the components potentially affected by the proposed schema change.



4.2 A Controlled Experiment

We have conducted a controlled student experiment to evaluate usability of SEMT.
The subjects of this experiment were 13 students from the Computer Science De-
partment, University of Oslo, who conducted schema changes on a library appli-
cation. All of them were unfamiliar with the functionality of SEMT. They were
provided short training (15 minutes). They had access to the SEMT documentation
during the experiment.

The independent variables of the experiment were the granularity level, com-
plexity of the database application system, complexity of the schema change task,
and level of user expertise. The dependent variables were time needed to conduct
impact analysis, correctness of the answers, and subjective user satisfaction.

In the main experiment, the 13 students were divided into two groups with re-
spectively 7 students and 6 students. The assignments to the respective groups were
done at random. Both groups were asked to conduct two database schema changes
(one subtractive and one additive) on the library database application system bor-
rowed from [37]. This application consists of 25 files stored in 5 directories (about
3600 lines of source code). The first group used the SEMT version operating at
the fine granularity, while the second group used the SEMT version that identifies
affected parts at the coarse granularity.

Data about the subjects of the experiment and their usage of the technology un-
der study were collected by our logging tool [28]. The main focus of our analysis
was to identify trends and significant results on time, correctness and user satisfac-
tion. The data comparisons were conducted using the non-parametric ’distribution
free’ Mann-Whitney rank test (our data is not normally distributed).

4.2.1 Time

The students were asked to conduct two change tasks in 90 minutes. Since they
did not finish the second task on time, we compare time only for the first task, but
correctness for both tasks. The median time used for solving the task was 6 minutes
shorter (13% of the total mean time) for the fine granularity version of SEMT the
for the coarse granularity version (p = 0.11).

4.2.2 Correctness

The first change task was to delete a field and identify all impacts of this change.
This change had impacts on 27 places in 4 different files. We counted all errors that
could lead to compilation or execution problems. The students using the fine gran-
ularity version of SEMT made fewer errors than those using the coarse granularity
version (p = 0.04).

The second change task was to add a functionality to the library system. This
change had impacts on 20 places in 4 different files. We counted all errors that
could lead to compilation or execution problems. The students using the fine gran-
ularity version of SEMT made fewer errors than those using the coarse granularity
version did (p = 0.02). However, these results should be treated cautiously since
most students did not finish this task on time.



4.2.3 User Satisfaction

The students were asked to express their agreement with statements addressing ade-
quacy of the SEMT technology by selecting a number on a seven-point scale. Score
1 was used when the students fully agreed with the positive statements on the us-
ability of SEMT; score 7 when they fully disagreed. The general user satisfaction
was relatively high (median 2 for the fine granularity; 3 for the coarse granularity).
This is similar with the results of the study [38] where visual representation was pre-
ferred for solving information retrieval tasks. There was no statistically significant
difference in user satisfaction for the two versions of SEMT (p = 0.5).

4.2.4 Threats to Validity

The following possible threats to validity have been identified:

� The time for learning SEMT and the time for conducting the change tasks
were relatively short for the practical reasons.

� A learning effect is caused by the students learning SEMT during the experi-
ment. The threat to this study was that the students were more familiar with
the functionality of SEMT during the second change task than during the first
change task.

� The database application system and schema changes may not be representa-
tive in their size and complexity.

� The students who participated in this experiment were not professionals.

To help reduce the first two threats we provided the students with the SEMT doc-
umentation and the assistance with use of SEMT. The last two threats are more
difficult to handle. Although there may be difference between computer science
students and professionals, it has been argued that they are close enough to provide
useful results in software engineering experiments [39]. Nevertheless, the hypothe-
ses supported in this experiment should be further tested in more realistic industrial
settings

5 Conclusions and Future Work

Ensuring consistency between a database schema and applications during schema
evolution is a non-trivial task. Applying knowledge from the software change im-
pact analysis and software visualisation in the area of database schema evolution
might be useful. We have developed a model and presented a tool called SEMT
for identifying impacts of schema changes on applications in an object-oriented
context. SEMT applies the modified Delta-viewfront algorithm on the components
of the schema and of the applications, and visualises impacts of database schema
changes. Usability of SEMT was evaluated by own judgement on a large real-life
application and by a controlled student experiment. The general user satisfaction



was relatively high. The students made fewer errors and spent somewhat shorter
time to solve the task with the fine granularity version of SEMT compared with the
coarse granularity version.

We intend to continue the development of SEMT. Our plans are to provide sup-
port for a wider spectrum of schema changes. We also plan to explore patterns of
use of SEMT commands. Further, we plan a controlled student experiment (and
hopefully with some professionals) to compare SEMT with a commercial tool that
present impacts of schema changes as a text. Achieving generality in usability stud-
ies is difficult. Evaluations based on experiments and case studies have their limi-
tations. However, we believe that empirical results presented here may increase our
understanding of the use of schema evolution technology and may be useful for its
further development.

References

[1] D. I. K. Sjøberg, Quantifying Schema Evolution, Information and Software
Technology, Vol. 35, No.1, pp. 35-44, 1993.

[2] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen, Change im-
pact identification in object oriented software maintenance, In International
Conference on Software Maintenance., Los Alamitos, CA, USA, 1994.

[3] J. Banerjee, W. Kim, H. J. Kim, and H. F. Korth, Semantics and Implemen-
tation of Schema Evolution in Object-Oriented Databases, In ACM SIGMOD
Conference on the Management of Data, San Francisco, CA, 1987.

[4] G. Barbedette, Schema modifications in the LISPO2 persistent object-oriented
language, In ECOOP ’91. European Conference on Object Oriented Program-
ming. Proceedings. Springer Verlag, Berlin, Germany, 1991.

[5] R. Zicari and F. Ferrandina, Schema and Database Evolution in Object
Database Systems, In Advanced Database Systems, J. Pabst, Ed. San Fran-
cisco, Morgan Kaufmann Publishers, inc., 1997.

[6] R. Zikari, A Framework for Schema Updates in an Object-Oriented Database
System, In 7th IEEE International Conference on Data Engineering, Kobe,
Japan, 1991.

[7] M. Dmitriev and M. Atkinson, Evolutionary Data Conversion in the PJama
Persistent Language, In 1st ECOOP Workshop on Object-Oriented Databases,
Lisbon, Portugal, 1999.

[8] M. P. Atkinson, M. Dmitriev, C. Hamilton, and T. Printezis, Scalable and
Recoverable Implementation of Object Evolution for the PJama Platform, In
POS9, 2000.

[9] S. E. Lautemann, An introduction to schema versioning in OODBMS, In Sev-
enth International Workshop on Database and Expert Systems Applications.
IEEE Comput. Soc. Press, Los Alamitos, CA, USA, 1996.



[10] S. E. Lautemann, P. Eigner, and C. Wohrle, The COAST project: design and
implementation, In Deductive and Object Oriented Databases. 5th Interna-
tional Conference, DOOD ’97., 1997.

[11] S. E. Lautemann, A propagation mechanism for populated schema versions, In
13th International Conference on Data Engineering IEEE Comput. Soc. Press,
Los Alamitos, CA, 1997.

[12] S. Monk, R. Sommerville, A Model for Versioning of Classes in Object-
Oriented Database, In 10th British National Conference on Databases, Ab-
erdeen, Scotland, 1992.

[13] S. Monk, A Model for Schema Evolution in Object-Oriented Database Sys-
tems, Ph.D. Thesis,University of Lancaster, 1993.

[14] A. H. Skarra and S. B. Zdonik, Type Evolution in an Object-Oriented
Database, In Research Directions in Object-Oriented Programming, MITP,
Cambridge, MA, Computer Systems, 1987, pp. 393-415.

[15] R. P. Brazile and S. Dongil, A unifying version model for object-oriented en-
gineering database, Computers in Engineering, 1995.

[16] J. Andany, Leonard, M and Palisser, C, Management of schema evolution in
databases, In 17th Int. Conf. on Very Large Databases, Barcelona, Spain, 1991.

[17] M. R. Fornari, L. G. Golendziner, and F. R. Wagner, Schema evolution in the
STAR framework, Electronic Design Automation Frameworks, Vol. 4, No.
10,1995.

[18] Z. Bellahsene, View Mechanism for Schema Evolution in Object-Oriented
DBMS, In 14th British National Conference on Databases, BNCOD 14, Edin-
burg, United Kingdom, 1996.

[19] R. Young-Gook and E. A. Rundensteiner, A transparent schema evolution sys-
tem based on object-oriented view technology, IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 9, No. 4, pp. 600-624, 1997.

[20] J. F. Roddick, A Survey of Schema Versioning Issues for Database-systems,
Information and Software Technology, Vol. 37, No.7,pp. 383-393, 1995.

[21] L. Deruelle, M. Bouneffa, G. Goncalves, and J. C. Nicolas, Local and Fed-
erated Database Schemas Evolution An Impact Propagation Model, In 10th
International Conference DEXA’99 (LNCS Vol.1677), 1999.

[22] F. Ferrandina, T. Meyer, and R. Zicari, Schema Evolution in Object Databases:
Measuring the Performance of Immediate and Deferred Updates, In 20th Int.
Conf. on Very Large Data Bases, Santiago, Chilie, 1994.

[23] L. Al-Jadir and M. Leonard, Transposed Storage of an Object Database to
Reduce the Cost of Schema Changes, In Advances in conceptual model-
ing/ER’99 (LNCS 1727), Paris, France, 1999.



[24] A. Rashid and P. Sawyer, Evaluation for Evolution: How Well Commercial
Systems Do, In 1st ECOOP Workshop on Object-Oriented Databases, Lisbon,
Portugal, 1999.

[25] X. Li, A survey of schema evolution in object-oriented databases, In Tech-
nology of Object-Oriented Languages and Systems, IEEE Comput., Soc, Los
Alamitos, CA, USA, 1999.

[26] M. V. Zelkowitz and D. R. Wallace, Experimental models for validating tech-
nology, IEEE Computer, Vol. 31, No. 5, pp. 22-31, May 1998.

[27] B. Kitchenham, S. Linkman, and D. Law, DESMET: a methodology for eval-
uating software engineering methods and tools, Computing & Control Engi-
neering Journal., Vol. 8, No. 3, pp. 120-126, 1997.

[28] A. Karahasanovic, D. Sjøberg, and M. Jørgensen, Data Collection in Software
Engineering Experiments, In Information Resources Management Association
International Conference, Toronto, 2001 (to appear).

[29] J. R. Lewis, IBM Computer Usability Satisfaction Questionnaires: Psycho-
metric Evaluation and Instructions for Use, International Journal of Human-
Computer Interaction, Vol. 7, No. 1, pp. 57- 78, 1995.

[30] A. Karahasanovic and D. Sjøberg, Supporting Database Schema Evolution
by Impact Analysis, In Norwegian Conference in Informatics, Trondheim, pp
303-314, 1999.

[31] A. Karahasanovic, SEMT - A Tool for Finding Impacts of Schema Changes,
In NWPER’2000 Nordic Workshop on Programming Environment Research.
Lillehammer, 2000, pp. 60-75.

[32] S. Warchall, A Theorem on Boolean Matrices, Journal of ACM, Vol. 9, No. 1,
pp. 11-12, 1962.

[33] G. Z. Qadah, L. J. Henschen, and J. J. Kim, Efficient algorithms for the instan-
tiated transitive closure queries, IEEE Transactions on Software Engineering.,
vol. 17, pp. 296-309, 1991.

[34] P. J. Purdom, A Transitive Closure Algorithm, BIT, Vol. 10, pp. 76-94, 1970.

[35] S. L. Smith and J. L. Mosier, Guidelines for Designing User Interface Soft-
ware, Electronic Systems Division, MITRE Corporation, Bedford, MA Report
ESD-TR-86-278, 1986.

[36] M. Werner, daVinci V2.1.x Online Documentation, Universitat Bremen, 1998.

[37] H. Eriksonn, E. and M. Penker, Case Study, In UML Toolkit., John Wiley &
Sons, Inc., 1998.

[38] E. Morse and M. Lewis, Evaluating visualisations: using a taxonomy guide,
Int. J. Human- Computer Studies, Vol. 53, pp. 637-662, 2000.



[39] W. F. Tichi, Hints for Reviewing Empirical Work in Software Engineering,
Empirical Software Engineering, Vol. 5, No. 4, pp. 309-312, 2000.


