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Abstract

For two given point sets� we present a very simple �almost trivial� algorithm to
translate one set so that the Hausdor� distance between the two sets is not larger
than a constant factor times the minimum Hausdor� distance which can be achieved
in this way� The algorithm just matches the so	called Steiner points of the two sets�
The focus of our paper is the general study of reference points �like the Steiner point�
and their properties with respect to shape matching�
For more general transformations than just translations� our method eliminates sev	
eral degrees of freedom from the problem and thus yields good matchings with im	
proved time bounds�
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� Introduction

This paper is motivated by a problem that is typical in application areas such as computer
vision or pattern recognition� namely� given two 	gures A�B� to determine how much they

resemble each other��

Here� a 
	gure� will be a union of 	nitely many points and line segments in R
� or

triangles in R�� Note that sets of curves in R� and R� or surfaces in R� can be approximated
arbitrarily closely by these objects� As a measure for 
resemblance� we will use the
Hausdor��metric �H � which is a somehow natural distance measure and gives reasonable
results in practice 
see �HKR��� It can be de	ned in arbitrary dimension d for the set Cd
of all compact subsets of Rd as follows�

De�nition � For A�B � Cd let

f�H
A�B� �� max
a�A

min
b�B

ka� bk�

where k�k is the Euclidean norm� Then the Hausdor��distance between A and B is de�ned
as

�H
A�B� �� max
�f�H
A�B��f�H
B�A�

�
�

If A and B consist of n and m line segments� respectively� in the plane their Hausdor��
distance �H
A�B� can be computed in time O

�

n�m� log
n�m�

�

cf� �ABB��� However�

it is more natural to assume that A and B are not 	xed but can be moved by a translation�
by a rigid motion 
translation and rotation� or even transformed by a similarity 
scaling
and rigid motion� in order to match them as well as possible and then determine the
minimal Hausdor��distance� So� in general� we have a set T of allowed transformations
and want to determine for given 	gures A and B�

min
T�T

�H
�
A� T 
B�

�
�

Note that� for similarities� it makes a di�erence if we exchange the sets A and B in this
problem�

This problem of 	nding an optimal matching has been considered for the two�
dimensional case in several previous articles� In Alt� Behrends� and Bl�omer �ABB� an
algorithm of running time O

�

nm� log
nm� log�
nm�

�
is found for the case that T is the

set of translations along one 	xed direction� Agarwal� Sharir� and Toledo �AST� describe
an O

�

nm�� log�
nm�

�
algorithm for arbitrary translations 
which can be improved to

O
�

nm���
nm�

�
if A and B are 	nite sets of points� see Huttenlocher and Kedem �HK��

and in Chew et al� �CGHKKK� an O
�

nm�� log�
nm�

�
algorithm for arbitrary rigid mo�

tions� The two latter algorithms use sophisticated and powerful tools like parametric
search and therefore do not seem to be applicable in practice�

Here� we follow a di�erent approach which was already used in �ABB�� We do not try to
	nd an optimal solution but an approximation to the optimal one by simpler algorithms�
More precisely� if the optimal matching transformation yields Hausdor��distance � our
algorithms will 	nd a transformation

T such that
�H
�
A� T 
B�

� � a�
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for some constant a � ��
We call such a solution an approximate matching with loss factor a�

The aim of this paper is to work out the general idea of using 
reference points� for
approximation algorithms� We will then present a reference point that gives better bounds
than the one in �ABB� and can be applied to similarities and problems in three dimensions
as well�

A preliminary version of this paper appeared in �AAR��

� Reference Point Methods

Like in �ABB� approximation algorithms use suitable reference points � which we de	ne for
arbitrary dimension d as follows�

De�nition � Let T be a set of transformations on R
d� A mapping r� Cd � R

d is called a
reference point with respect to T i�

�a� r is equivariant with respect to T � i�e�� for all A�B � Cdand T � T we have

r
�
T 
A�

�
� T

�
r
A�

�
and

�b� there exists some constant c � � such that if for all A�B � Cd�
kr
A�� r
B�k � c � �H
A�B��

In other words� r is a Lipschitz�continuous mapping between the metric spaces

Cd� �H� and 
Rd� k�k� with Lipschitz constant c� We call c the quality of the reference
point r�

Based on the existence of a reference point for T we obtain the following algorithms for
approximately optimal matchings where T is the set of translations� rigid motions� and
similarity transformations� respectively�

Algorithm T

�� Compute r
A� and r
B� and translate B by r
A� � r
B� 
so that r
B� is
mapped onto r
A��� Let B� be the image of B�

�� Output B� as the approximately optimal solution 
together with the Hausdor��
distance �H
A�B����

Algorithm R

�� as in Algorithm T�
�� Find an optimal matching of A and B� under rotations of B� around r
A��
�� Output the solution B�� and the Hausdor��distance �H
A�B����

Algorithm S

�� as in Algorithm T�
�� determine the diameters d
A� and d
B� and scale B� by � �� d
A��d
B�

around the center r
A��
�� as Step � in algorithm R with the scaled image of B��
�� as Step � in algorithm R�



�

As the algorithms R and S are formulated� they look only for proper rigid motions and
similarities� respectively� Re�ections can be included by simply running the algorithm a
second time with a re�ected copy of A�

These algorithms are simpler than the ones for 	nding the optimal solutions� since
after Step � the matchings are restricted to ones leaving the reference point invariant� In
d dimensions this eliminates d degrees of freedom� The qualities and running times of
these algorithms are as follows�

Theorem � Suppose that a reference point of quality c for the sets of transformations T
in the Algorithms T� R� and S can be determined in linear time� In the case of similarity
transformations also assume that r
A� always lies within the convex hull conv
A��


a� Algorithm T �nds an approximately optimal matching for translations with loss fac�
tor a � c � ��


b� Algorithm R �nds an approximately optimal matching for rigid motions with loss
factor a � c � ��


c� Algorithm S �nds an approximately optimal matching for similarity transformations
with loss factor a � c � ��

In the plane� the running times for two sets of n and m points and line segments are
O
�

n � m� log
n � m�

�
for Algorithm T and O

�
nm log
nm� log�
nm�

�
for Algorithms R

and S� In space� where A and B are sets of triangles� the running times become O
mn� for
Algorithm T and O

�

nm��H
n�m�

�
for Algorithms R and S� Here H
n�m� is the time to

compute the Hausdor� distance�

Notice that an upper bound of O

n�m � nm��log�
nm�� for H
n�m� is known� see
Alt and Godau �AG��

For the proof of the theorem we need the following lemmas� which can be shown by
elementary geometrical considerations�

Lemma � Let B � R
d be a compact set with diameter d
B�� and let p be a point in its

convex hull conv
B�� Let �
� �� be homotheties 
scalings� with center p and ratios 
scaling
factors� �
 and ��� respectively� Then

�H
�
�

B�� ��
B�

� � j
�
 � ���d
B�j �

Lemma � If A�B � R
d are compact sets with diameters d
A� and d
B�� respectively�

then
jd
A�� d
B�j � ��H
A�B��

Proof� This follows from the fact that B is contained in the ��neighborhood of A and
vice versa�

Proof of Theorem �� We prove only 
c� which implicitly contains the proofs for

a� and 
b�� Consider an optimal similarity transformation Sopt� It can be written as
Sopt � �opt 	Topt� where Topt is a rigid motion and �opt is a homothety with ratio �opt�

Let � be the optimal Hausdor��distance � � �H
�
A� Sopt
B�

�
� Then

kr
A�� r
�
Sopt
B�

�k � c�� 
��
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Let t be the translation by r
A�� r
�
Sopt
B�

�
� then eS � t 	 Sopt is a similarity transfor�

mation mapping r
B� onto r
A� and

�H
�
A� eS
B�

� � 
c � ���� 
��

Write eS as eS � e� 	 eT � where eT is a rigid motion mapping r
B� onto r
A� and e� is a
homothety with center r
A� and ratio is �opt� Let � � d
A��d
B� as in Algorithm S� �

the homothety with center r
A� and ratio �� and S � � 	 eT � Then

�H
�
A� S
B�

� � �H
�
A� eS
B�

�
� �H

�eS
B�� S
B�
�
� 
��

Now

�H
�eS
B�� S
B�

�
� �H

�e�� eT 
B�
�
� �

� eT 
B�
��

� ��
�opt � ��d
� eT
B�

���� by Lemma �

�
��
�opt � ��d
B�

�� �
���optd
B�� d
A�

��
�

��d�Sopt
B�
�� d
A�

��� since �opt was the ratio of Sopt

� � � �H
�
Sopt
B�� A

�
� ��� by Lemma �� 
��

From 
��� 
��� and 
�� we have

�H
�
A� S
B�

� � 
c � ��� 
��

for some similarity transformation S composed of a rigid motion that maps r
B� onto
r
A� and a homothety with center r
A� and ratio �� Since Algorithm S 	nds the optimum
among these similarity transformations the bound 
�� holds for it� as well�

For the time bound we observe that Step � can be done in linear time� In order to
determine the diameters of A and B� we observe that they are equal to the diameters of
their convex hulls� So we 	rst compute the convex hulls in time O
n logn � m logm�� In
two dimensions then the diameters can be computed in linear time by rotating calipers�
in three dimensions in time O
n� � m�� by considering the distances between all pairs of
vertices� edges� or faces�

Step �� 	nding the optimal matching under rotations� can be done in time
O
�
nm log
nm� log�
nm�

�
in the plane� as has been shown by Alt� Behrends� and Bl�omer

�ABB� using Davenport�Schinzel sequences� It explicitly computes the Hausdor��distance�
so Step � is for free� In ��space� we have rotations in R

� around a 	xed center� which
is an optimal matching problem with � degrees of freedom� It can be solved in time
O
�

nm��H
n�m�

�
by methods of �ABB��

� The Steiner Point

The previous section would be useless if it were not possible to 	nd suitable reference
points� In �ABB� it was observed that in the two�dimensional case the point r
A� �

xmax� ymax�� where xmax and ymax are the maximal x� and y�coordinates of points in A�
is a reference point of quality

p
� for translations�
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For rigid motions the situation is not as easy� We will 	rst list a few points that come
to mind but turn out not to be reference points� In fact� for arbitrary small � � �� we can
construct 	gures A�� B� for which �H
A�� B�� � �� but kr
A��� r
B��k is not in O
�� or
does not even converge to � for � � ��

point r
A� kr
A��� r
B��k
a� centroid of the vertices of the convex hull �
��
b� centroid of the convex hull �
��

c� center of the smallest enclosing circle �

p
��

d� center of the smallest enclosing ellipse �
��
e� center of the smallest enclosing rectangle �
��

Counterexamples a�� b�� and c� are from Behrends �B�� Figure � shows possible sets
A�� B� for cases b� and d�� The center of the smallest enclosing rectangle 
case e�� is not
even well de	ned for rectangular triangles 
see Figure ��� There are two possible smallest
enclosing rectangles whose centers are r
 � 
a��� b��� and r� � 
a��� b���� 
ab�� a�b�

	
�
a� � b��� respectively�

 δ  δ

1    1

 δ
 δ

A
B

Figure �� r
A�� � 
���� ��� r
B�� � 
���� ��� where r is either the center of the smallest
enclosing ellipse or the centroid of the 	gure� This can be seen by applying an a�ne
transformation which maps A� to an equilateral triangle or B� to a square�

2

1

(0,0)

(0,b)

(a,0)

(0,b)

(0,0) (a,0)

r

r

Figure �� Two smallest enclosing rectangles�

Alt� Behrends� and Bl�omer �ABB� also gave a positive example of a reference point for
rigid motions in two dimensions� the centroid of the boundary of the convex hull� It was
shown that this reference point is of quality at most �	 � � 
 ������ Here� we will give a
reference point which works even for similarity transformations� is easy to compute� can
be generalized to higher dimensions� and whose quality is ��	 
 �����
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First we observe that we can without loss of generality restrict our attention to convex
	gures� In fact� in �ABB� it was shown that for any two compact sets A�B�

�H
�
conv
A�� conv
B�

� � �H
A�B��

From that it follows easily that a reference point for the convex hull of a compact set A is
a reference point for A� as well�

Our candidate for a reference point is the so�called Steiner point � which has been
investigated intensively in the 	eld of convex geometry �G�Sh�Sch��

De�nition 	 We denote by Bd the d�dimensional unit ball and by Sd�
 its boundary� the

d� ���dimensional unit sphere in R

d�
Let A be a convex body 
convex and compact subset� in R

d� The support function
hA�Rd � R of A is given by

hA
u� � max
a�A

ha�ui


see Figure 	��
The Steiner point s
A� of A is de�ned as

s
A� �
d

Vol
Sd�
�

Z
Sd��

hA
u�ud

u�

where d

u� is the surface element of Sd�
�
For a non�convex compact set A � R

d� we de�ne the support function and hence the
Steiner point in the same way� They coincide with the support function and the Steiner
point of the convex hull conv
A��

u

A
B

u uA
h ( )

u uh ( )B

Figure �� The support functions hA
u�� of two convex bodies A�B�



�

Also in the 	eld of functional analysis there is a series of articles concerned with
mappings that assign points to convex bodies 
for a survey of the results see Przes lawski
and Yost �PY��� Let X be a Banach space and C
X� the set of closed� bounded� convex�
non�empty subsets of X � Then using the Hausdor� distance as a metric on C
X�� a
continuous mapping r� C
X� � X is called a selector if r
A� � A for all A � C
X��
Michael
s selection Theorem �M� states the existence of a selector for any Banach space�
Several authors raised the question whether there exist Lipschitz�continuous selectors and
showed that they do if X is 	nite�dimensional� In this context Przes lawski rediscovered
the Steiner point �P��

The value of the Lipschitz constant of the Steiner point is well�known� see for example
Daugavet �D�� To keep our paper self�contained we include the elementary calculation
here�

Let

�d �
�dVol
Bd�
�

Vol
Sd�
�
�

Then by the formulas for surface and volume of d�dimensional spheres

�d �
�!
d�� � ��p
	!
d�� � ����

�
r

d

�	

��

Altogether� we have� combining results from Gr�unbaum �G�� Schneider �Sch�� and Dau�
gavet �D��

Theorem 
 The Steiner point is a reference point for similarity transformations in ar�
bitrary dimension d � �� Its quality is �d� which for d � � is ��	� for d � � it is ���� for
arbitrary d it lies between

p
��	

p
d and

p
��	

p
d� ��

Proof� The equivariance of the Steiner point under similarity transformations is well
known �G� Sch�� For the bound on the quality� we observe that for two convex bodies A
and B� khA
u�� hB
u�k � �H
A�B� �� � for any u � Sd�
 
see Figure ���

Now let p � s
A�� s
B�� and consider the inner product of p with an arbitrary unit
vector e� Without loss of generality we assume that e � 
�� � � � � �� �� is the unit vector in
the d�th coordinate direction�

hp� ei � hs
A�� s
B�� ei
�

d

Vol
Sd�
�

Z
Sd��

�
hA
u�� hB
u�

�hu� ei d

u�

� d

Vol
Sd�
�
�

 Z
Sd��

un�	


���hu� ei d

u� �

Z
Sd��

un�	


���hu� ei d

u�

�

� �d �



�

Vol
Sd�
���
�
Z

Sd��

un�	

hu� ei d

u�

�

The expression in brackets in the last line is nothing but the d�th coordinate of the cen�
ter of gravity of the upper unit half�sphere� If we compute the integral by projecting away
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the d�th coordinate and integrate over 
x
� x�� � � � � xd�
� � Bd�
 � R
d�
� a straightforward

calculation gives that the surface element is transformed by

d

u
x
� x�� � � � � xd�
�� �
�

hu� eidx
dx� � � �dxd�
�

Thus the integral turns out to be just the volume of Bd�
� and we get the following bound
on hp� ei�

hp� ei � �d � Vol
Bd�
�

Vol
Sd�
���
� ��d

This last expression is a bound on the length of p since e was in fact an arbitrary unit
vector and therefore can be substituted by p�kpk� Considering the de	nition of �d the
values !
���� �

p
	��� !
�� � �� and !
���� � �

p
	�� give the claimed quality bounds

for d � � and d � �� The quotient of the two !�functions in 
�� is between
p
d�� andp


d� ����� and this gives the general bound�

From the proof of the upper bound one can see how to construct an example showing
that it cannot be improved� Sn�
 must be divided into two half�spheres� and hA
u��hB
u�
will ideally always be equal to �� or ��� depending on the half�sphere in which u lies�
Figure � shows two two�dimensional point sets A� and B� � A� is just a circle of radius r�

A r

δ δ  δ
δ Bδ

Figure �� ks
A��� s
B��k is close to ��	 � ��

and B� consists of a 
distorted� circle and an additional point� If we allow to apply any
similarity to B� in order to minimize the Hausdor� distance from A�� the optimal position
is as shown in Figure �� and the Hausdor� distance is �� The distance of the Steiner
point s
B�� from the center s
A�� of the circle can be calculated as ��	 � pr� arccos r��

r�� �
which approaches ��	 � � as r goes to 
� If one lets the two Steiner points coincide� the
Hausdor� distance rises by this amount� showing that � � ��	 is indeed the loss factor of
Algorithm T� Since A� is rotation�symmetric� this holds also for Algorithm R� The above
construction generalizes easily to higher dimensions�

The following theorem is well�known �G�Sh��

Theorem � The Steiner point of a convex polytope is the weighted sum of its vertices�
where the weight of vertex v is that fraction of the surface of the unit sphere that lies
between the unit vectors normal to the hyperplanes meeting at v 
the normalized exterior
angle at v�� 
For a two�dimensional example see Figure ���
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For smooth convex bodies� the Steiner point can also be de	ned as the centroid of a non�
uniform mass distribution on the boundary� where the density is the 
Gaussian� curvature�

v

φ

φ

Figure �� The weight of vertex v of the polygon is �

�� �

Combining Theorems �� �� and � we get�

Theorem � Let A and B be sets of n and m line segments in d � � dimensions or n and
m triangles in d � � dimensions� Then approximately optimal matchings can be found for
A and B applying the corresponding algorithms of Section � as indicated in the following
table�

T running time loss factor

translations
d � � O

�

n � m� log
n � m�

�
��	 � �

d � � O
H
n�m�� ���

rigid motions
d � � O

�
nm log
nm� log�
nm�

�
��	 � �

d � � O
�

nm��H
n�m�

�
���

similarities
d � � O

�
nm log
nm� log�
nm�

�
��	 � �

d � � O
�

nm��H
n�m�

�
���

Proof� For the proof note that the Steiner point for a convex polygon or polytope can be
computed in linear time because of Theorem �� after the convex hulls have been constructed
in O
n logn � m logm� time� The bound of O
H
n�m�� 
cf� Theorem �� for translations
in three dimensions comes from the 	nal computation of the Hausdor� distance� Just
	nding the approximately optimal translation takes only O
n logn � m logm� time�

� Lower Bounds

In this section we will prove lower bounds for the quality of reference points with respect
to the set of all translations� Of course� these bounds carry over to every set of trans�
formations T which includes all translations� i� e�� to every interesting set for which we
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proposed an algorithm in Section �� We 	rst show an easy lower bound for one dimension�
whose proof already gives the �avor of the proof of our two�dimensional lower bound�

Theorem �
 Reference point based matching for translations 
Algorithm T � cannot yield
a loss factor better than � in the worst case� This holds for arbitrary dimension d � ��

Proof� To see this� consider the ��dimensional sets of � or � points A
� A�� A�� A�� A�

shown in Figure �� Clearly �H
�
Ai�
� Ai

�
� � for i � �� �� �� �� Suppose we have a reference

δA1

A2

A3

A4

A 5

Figure �� Sets A
� A�� A�� A�� A��

point based matching algorithm and match A� onto A
� A� onto the new position A�
� of

A�� A� onto the new one A�
� of A�� and A� onto A�

�� Since all reference points are matched
onto each other and A
 and A� are congruent A�

� must coincide with A�

 �� A
� So for

some i� � � i � �� the left endpoint of A�
i must lie not to the right of the left endpoint of

A�
i�
� By the construction� then it is easy to check that this implies �H

�
A�
i� A

�
i�


� � ���

We may augment each set Ai in the above proof by a point which is at a large distance
M from its rightmost point� This prevents re�ections and scalings from possibly improving
the Hausdor� distance between Ai and Ai�
� and so the above lower bound remains true
even if re�ections and scalings are allowed�

Note that in one dimension� reference points with loss factor at most � exist� For
example� the left�most point� or the right�most point� or any 	xed convex combination of
these two points will do� The Steiner point is just the midpoint between the two extremes�

Researchers in functional analysis also investigated lower bounds for Lipschitz con�
stants of selectors� For this purpose they considered the embeddings

R
d f
�� Kd g

�� C
Sd�
��

where Kd is the set of convex and compact subsets of Rd� C
Sd�
� the set of continuous
functions Sd�
 � R� f
x� � fxg for all x � R

d� and g
A� � hA for all A � Kd�
These embeddings are compatible with the vector addition on R

d� the Minkowski sum
on Kd and the standard addition of functions in C
Sd�
�� They are also compatible with
the Euclidean distance in R

d� the Hausdor� distance in Kd and the supremum norm in
C
Sd�
�� Observe that Rd and C
Sd�
� are Banach spaces with these operations� whereas
Kd is not� since it is not a group with respect to Minkowski addition� Let r� Cd � R

d be
a reference point with respect to translations� We may assume without loss of generality
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that r
fxg� � x for all x � R
d� If this does not hold� we may select some arbitrary point o

and subtract the constant vector r
fog��o from r� This clearly does not change the qual�
ity of r� and it does not violate the equivariance with respect to translations� By the same
equivariance property� r
fog� � o implies then that r
fxg� � x for all x � R

d� In other
words� we may regard r as a retract� i� e�� a function� which� restricted to its range� equals
the identity� Linear retracts between Banach spaces are called projections � Rutovitz �R�
and Daugavet �D� investigated lower bounds on the Lipschitz constant 
i� e� the norm
kPk � supx��	 kP 
x�k�kxk� of projections between Banach spaces� They 
implicitly� es�

tablished a lower bound of �d for the Lipschitz constant of any projection C
Sd�
� � R
d�

d � �� Przes lawski and Yost �PY� could extend this lower bound from 
linear� projec�
tions to arbitrary retracts from Kd to R

d� Consequently� the lower bound holds also for
retracts r� Cd � R

d� and therefore for reference points� So we can state 
cf� Proposition ���
in �PY���

Theorem �� The quality of any reference point with respect to translations from Cd into
R
d� d � � cannot be better �i�e� smaller� than �d�

In this sense Theorem � shows that the Steiner point is an optimal reference point�
Rutovitz" proof implicitly shows that for any given projection P �C
Sd�
� � R

d bad
examples can be constructed where the Lipschitz constant exceeds or gets arbitrarily close
to �d� However� the extension to retracts by Przes lawski and Yost �PY� uses the existence
of invariant means on abelian semigroups� This is based on the Hahn�Banach Theorem�
which� in turn� is based on 
a weaker version of� the Axiom of Choice� Consequently� the
proof by Przes lawski and Yost is nonconstructive� i� e�� it does not yield bad examples for
given retracts�

In contrast� we will present for the two�dimensional case a 
universally bad� example
in the following theorem� However� the lower bound does not quite match the upper one�

q

q q

1

2 3
C

o

K

p

S T

Δ

Figure �� C�K� and #� The origin is marked by a cross�

In fact� we consider three point sets 
see Figure ��� A circle C with center o and
radius �� a keyhole�shaped 	gure K with two circular arcs centered at p of radii � and �
and opening angles of �	�� and 	��� respectively� and with three line segments forming an
upside�down Y inside� and 	nally an equilateral triangle # � q
q�q� with side length ���

The dimensions given in the middle part of Figure � exhibit the position of the Y in
the keyhole K� The origin is at the points o� p� and q
� respectively�

For these three sets we have



Matching Shapes with a Reference Point ��

3

3
22

22

2

q q

1

2 3

q

2

Figure �� Optimal matchings of K with C and #�

Theorem �� For any reference point r� C� � R
� with respect to translations

either kr
K�� r
C�k �
p

��� �H
K�C�

or kr
K�� r
#�k �
p

��� �H
K�#��

To see this we 	rst show�

Lemma �� The optimal matchings between C and K and K and # are achieved by
superposing the origins� as shown in Figure 
� and we have �H
K�C� � � and �H
K�#� �
��

Proof� Consider any placement of K such that the Hausdor� distance to C is not greater
than �� Then K must lie within the ��neighborhood of C� i�e� the set of all points having
distance � � to C� which is an annulus A with inner radius � and outer radius � 
see
Figure ���

Especially K must not intersect the inner hole H of A� So if K is not placed as in
Figure �� the Y prevents H from lying inside the outer boundary of K� In particular� the
equilateral triangle pST cannot contain H � Since the triangle and H are convex there is
a straight line l separating them� So triangle pST must lie in the intersection of A with
a halfplane not containing H � consequently in a strip U of width �� This is not possible
since the minimum width of triangle pST is its height which is slightly greater than �����
Similarly� by considering the possible positions of K with respect to the ��neighborhood
of #� it can be shown that the position between # and K given in Figure � is optimal�

Proof of Theorem ��� Let r� C� � R
� be any reference point� LC � kr
C��r
K�k 	

�H
C�K�� L� � kr
#�� r
K�k 	 �H
#� K�� and c � maxfLC � L�g�
Let us 	rst assume that the reference point r
C� of the circle is its center o� Since

�H
C�K� � �� the reference point r
K� of K must lie in a circle of radius �c around p�
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Figure �� ��neighborhood of C�

Similarly� r
#� must lie in a circle of radius �c around r
K�� i�e�� in a circle of radius �c
around q
� If we turn K by ���� in both ways� we can conclude in a similar way that r
#�
must lie in circles of radius �c around q� and around q�� By equivariance with respect to
translations� the triangle # has only a single reference point regardless where it is placed�
and therefore the three circles must intersect� as shown in the right part of Figure �� This
means that c must be at least

p
��� 
 ������

If the reference point r
C� is not the center o� the only di�erence is that the centers
of the 	nal three circles will be translated by the respective amount�

� Open Problems

Our example in Theorem �� proves a lower bound for the Lipschitz constant of a refer�
ence point in a completely elementary way� in contrast to the proof of Theorem �� by
Przes lawski and Yost �PY�� which uses rather deep analytical tools� On the other hand�
our bound of

p
��� 
 ����� is not as strong as the true lower bound of ��	 
 ������

Furthermore� we use non�convex point sets� whereas the lower bound holds even when
restricted to convex sets� It is thus challenging to 	nd better constructions that either
give a better bound or that use convex sets only�

In an abstract graph�theoretic model of the problem� we could recently obtain a slightly
larger bound than

p
���� but as yet we have not been able to translate this into concrete

geometric examples�
We believe that our example of Figure � generalizes to three and higher dimensions�

using a ball� a simplex� and some kind of higher�dimensional keyhole interpolating between
them� but the proof should certainly be more complicated�
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