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Abstract

A parallel algorithm for the solution of dense Symmetric Positive Definite (SPD) systems of equations Ax = b has
been designed for the implementation on the CRAY T3E. One of the numerically stable methods for the solution of
this system is proposed by Delosme & Ipsen [3]. In order to implement this algorithm on the CRAY T3E, we require
to handle the procedures involved in a slightly different way. These implementation issues are discussed in detail. The
actual timings for different communication schemes, on different sets of data values and varying number of proces-
sors have been tested and reported.

Keywords: SPD, MPI, SHMEM.

Introduction: Symmetric Positive Definite (SPD) systems of equations are a special class of
problem which arises very frequently in many applications like linear programming, weather
forecasting, seismic data processing etc. One of the numerically stable approaches to solve this
system of equations is Cholesky factorization. Besides factorization, this method based on
Cholesky factorization involves forward elimination and back substitution. Delosme and Ipsen[3]
have given a method which uses hyperbolic rotations to obtain the solution of such system. They
replaced sequential steps with parallel ones. Straight forward implementation of this algorithm on

1. This work is supported by the German Academic Exchange Services (DAAD) under the “Sandwich
Model” fellowship with the author.
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a computer requires much more memory compared to the standard Cholesky method. In this tech-
nical report we discuss the issue of effective utilisation of space by modifying many intermediate
steps of the algorithm given by Delosme and Ipsen. Theoretically, speed up can be achieved by
replacing multiplications to additions, this issue is also handled. The report consists of 3 sections:
In Section 1 we present the brief description of the method proposed by Delosme and Ipsen. In
Section 2 we present sequential algorithm, followed by a parallel algorithm and discuss the issue
of reducing the floating point operations. In Section 3 implementation related issues are
addressed. We also discuss space utilisation and time complexity and give the execution timing
details of different implementations in the form of graphs (Figure 2-7).

Section 1: Algorithm based on hyperbolic Cholesky factorization.

In this section a brief discussion on the method of Delosme and Ipsen[3], based on hyperbolic
rotations, for the solution of linear systems of equations

(1.1)
with a symmetric positive definite coefficient matrix A, is given. The Cholesky factor of A is first
determined by essentially pre-multiplying A with appropriate hyperbolic rotations, whose product
is called Q. Next simple matrix vector multiplication involving Q to the right hand side of (1.1)
provides a novel way of solving the system. Avoiding forward elimination and back substitution is
a very desirable feature for a parallel implementation.

1.1 The hyperbolic Cholesky factorization.

The computation of the Cholesky decomposition,

,  upper triangular, (1.2)

of real symmetric positive definite(spd) matrix A = aij, by means of hyperbolic rotations is
called hyperbolic Cholesky factorization. Its derivation is based on a particular decomposition
of the matrix A:

, (1.3)

where A(k) has elements

 (1.4)

Since A is spd, ak,k is strictly positive and A(k) can be written as the difference of the outer prod-
uct.

Ax b=

A U
T

U= Un n×

n n×

A A
k( )

k 1=

n

∑=

ai j,
k( ) ai j, i k j i≥,= or j k i j,≥,=

0 otherwise,

=
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, (1.5)

where vk and wk are row vectors with elements

(1.6)

(1.7)

That is, vk consists of non zero rows of A(k) scaled by the square root of the diagonal elements,

while wk differs from vk only in its kth entry. Stacking the vk and wk respectively in upper triangu-
lar matrices

, , (1.8)

one has A = VTV-WTW. (1.9)

Definition 1.1: A  matrix  is called pseudoorthogonal if it satisfies

, where I is the  identity matrix.

Lemma 1.1: Let R and S be upper triangular matrices such that RTR-STS is positive definite,

and let , . Let

 = , where  and

A
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(1.10)

then is pseudoorthogonal, is upper triangular and is strictly upper triangular (upper trian-
gular with zero diagonal).

Remarks:

1. Since the matrix constitute disjoint rotations, they commute and can be applied in any

order. Their product has a very simple expression:

, (1.11)

, (1.12)

. (1.13)

2. The diagonal elements of have same sign as the corresponding diagonal elements of R; thus

if R has a positive diagonal,  also has a positive diagonal.

Theorem 1.1 (The Hyperbolic Cholesky Algorithm):

Let A be a spd matrix and V and W be upper triangular matrices as defined in (1.6) and

(1.7), so that A = VTV-WTW. Set

, (1.14)

and apply the sequence of operations

, (1.15)
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,

where is obtained from R(l) and S(l) in the same way as is constructed from R and S in

lemma 1.2, and where P is the circular permutation matrix with P1,n = 1 and Pi,i-1 = 1,

. Then R(n) = U, the Cholesky factor of A, and S(n) = 0.

Remarks:

The transformation performed by the hyperbolic Cholesky algorithm is denoted by

. (1.16)

The matrix Q is pseudoorthogonal, since it is the product of pseudoorthogonal matrices.

1.1 Application of hyperbolic rotations to the solution of linear systems:

The hyperbolic Cholesky algorithm determines simultaneously the Cholesky factor of an spd

matrix and a set of parameters , which defines the

hyperbolic rotations that make up the matrix Q. For the solution of the spd system , the

above algorithm could be used to find followed by forward elimination to solve system

and by back substitution to solve . Instead, the above algorithm can also be

used to find parameter followed by the application of the hyperbolic rotations to the b in a

particular way to get the solution vector x.

The algorithm for the solution of can be summed up as follows: Let be the upper part

of and its strictly upper triangular part ( = D2 + ). Using the hyperbolic Cholesky

algorithm as specified in the theorem, express the matrix Q as a product of hyperbolic rotations
such that

, (1.17)

where

, (1.18)
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and D = diag .

Apply the same operation to  to obtain

, (1.19)

and then apply these operations essentially in reverse order to get x from

, (1.20)

where  is an arbitrary real number, which can be equal to 0 or 1 for convenience.

and QT is given by

. (1.21)

Section 2: A parallel algorithm for SPD:

In this section we first present the sequential algorithm and then parallel algorithms for the SPD.
We discuss the modifications made for the implementation on the CRAY T3E and analyse time
complexity. The issue of saving memory by avoiding many intermediate calculations is also elab-
orated. By observing the parallel algorithm presented in [3], we see that the maximum time is
needed to obtain the hyperbolic Cholesky factorization. In this step besides the hyperbolic
Cholesky factor R, we obtain hyperbolic rotations which makes a pseudoorthogonal

matrix . We observe the following things.

1. The multiplication of a matrix with another matrix , where P is a

circular permutation matrix, is a sequence of row interchange operations. The row

2n of the second matrix becomes the row n+1, the row n+1 becomes row n+2 and so on.
The row 2n-1 becomes row 2n.

2. Instead of calculating a pseudoorthogonal matrix in each iteration, we can

calculate rotations and later use them in the right hand side to get the solution vector.

The above mentioned observations leads us to a simple sequential algorithm 2.1.

a11
1 2⁄ … ann

1 2⁄, ,( )

b

b
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   Algorithm 2.1

for i:= 1 to n-1 do
begin

for  j := i+1 to n
   begin
         A(j,i) := S(j,j-i)/R(j,i)

         t1 :=

         t2 := -A(j,i) * t1;
     for k := j to n

 begin
     t3 := R(k,j);
     R(k,j) := t1*t3+t2*S(k,j-i);
     S(k,j-i) := t2*t3+t1*S(k,j-i);
 end;

     end;
     end;

Algorithm 2.1 shows that the second and the third loop with indices j and k can be parallelised
since within this loop the algorithm works in every step on different rows of A, R and S. The Par-
allelisation of the algorithm 2.1 leads to the algorithm 2.2.

Algorithm 2.2

for i:= 1 to n-1 do
begin

for all  j := i+1 to n in parallel do
   begin
         A(j,i) := S(j,j-i)/R(j,i)

         t1 :=

         t2 := -A(j,i) * t1;
     for all k := j to n in parallel do

 begin
     t3 := R(k,j);
     R(k,j) := t1*t3+t2*S(k,j-i);
     S(k,j-i) := t2*t3+t1*S(k,j-i);
 end;

     end;
     end;

From algorithm 2.2 we further observe that:

1 1 A
2

j i,( )–( )⁄

1 1 A
2

j i,( )–( )⁄
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1. The first row of R is never used and the row k of R is used only if and .

Therefore we do not need to re-compute row of R for every value i of the outermost
loop.

2. Each element Sp,q of S is used if and and later set to zero. Therefore it is

not needed to re-compute Sj-i,j for , for all i, j.

These considerations lead us to the following modified algorithm 2.3.

   Algorithm 2.3

for i := 1 to n-1 do
begin

for all  j := i+1 to n in parallel do
     A(j,i) := S(j,j-i)/R(j,j)

begin
     A(j,i) := S(j,j-i)/R(j,i);

     t1 := ;

     t2 := -A(j,i) * t1;
if (j=i+1) then

        for all k := j+1 to n in parallel do
            S(k,j-i) := t2*R(k,j) + t1*S(k,j-i)

 else
     begin
           R(j,j) := t1 *R(j,j) + t2*S(j,j-i);

 for all k := j+1 to n in parallel do
           begin

             t3 := R(k,j);
             R(k,j) := t1*t3+t2*S(k,j-i);
             S(k,j-i) := t2*t3+t1*S(k,j-i);

 end;
     end;

    end;
     end;

2.1 Operation Counts: The innermost loop with index k of the parallel algorithm 2.3 is one
which can be used to calculate the sequential computing time of the algorithm 2.3. If T(n) repre-
sents the time needed for execution then we express:

j k= i k 1–=

i 1+

i q p–= j q=

k j=

1 1 A
2

j i,( )–( )⁄

T n( ) n n 1–( ) n 2–( ) 6⁄ n 2>
0 Otherwise

=
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Since the innermost loop with index k consists of 4 multiplications and if the cost of each multi-

plication is constant then the total execution time of the two steps inside the loop is float-
ing point operations. Theoretically, the actual cost of the algorithm is generally determined by
multiplication and not by addition/subtraction. Closely observing the algorithm, we see that the
innermost loop consists of four multiplications and two additions. By applying the following
observations we can replace multiplications to additions and get a new parallel algorithm 2.4 with

reduced sequential time .

Algorithm 2.4

for i := 1 to n-1 do
begin

for all  j := i+1 to n in parallel do
     A(j,i) := S(j, j-i)/R(j, j)

begin
     A(j,i) := S(j, j-i)/R(j, i);

     t1 := ;

     t2 := -A(j, i) * t1;
          t3:= (t1-t2)/2;
          t4 := (t1+t2)/2;

if (j=i+1) then
for all k := j+1 to n in parallel do

            S(k, j-i) := t2*R(k, j) + t1*S(k, j-i)
 else

     begin
           R(j, j) := t1 *R(j, j) + t2*S(j, j-i);

for all k := j+1 to n in parallel do
           begin

             t5 := t3 * (R(k, j) + S(k, j-1));
             t6 := t4 * (R(k, j) - S(k, j-1));
             R(k, j) := t5 + t6;
             S(k, j-i) := t5 - t6;

end;
     end;

    end;
     end;

It can be seen that the reduction in multiplications causes increase in additions/subtractions. Sim-
ilar tactics can be applied to find the solution of linear systems as well.

2n
3

3⁄

n
3

3⁄

1 1 A
2

j i,( )–( )⁄
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Section 3: Implementation on CRAY:

There are many strategies which can be adopted for the implementation of the SPD systems of
equations on a parallel machine. In this work we have investigated the effect of different imple-
mentation strategies. During the design of any algorithm on parallel computer, one has to cor-
rectly make use of certain basic communication routines in order to exchange data between
different processors. The communication patterns may be:

1. Point to point communication.
2. Common broadcast by a processor to all other processors.
3. Collective sending operation to one processor
4. Collective sending from all to all processors.

Combinations of some or all of them are normally applied for the effective communication in a
parallel algorithm. Speed of the parallel algorithm depends on the routines we use. We imple-
mented the algorithm using different communication possibilities and different sets of routines. In
the first implementation we used CRAY specific shared memory communication routines
(SHMEM library) [13], which are very fast but have the problem of portability. In this approach
we used the cyclic row distribution on processors and the program is written in FORTRAN. In the
second implementation we used Message Passing Interface (MPI) communication routines [7,12].
These are portable and the same algorithm can be executed on heterogeneous environments and it
is faster than the first approach as well. In this approach the program is written in C. In C the multi
dimensional arrays are stored in a row major order in the memory. We used the column distribu-
tion approach on processors since the operations are performed on elements whose column indi-
ces increase rapidly. We have implemented the same algorithm in C using row distribution
approach. We have shown how features of languages can affect execution time of the algorithm
using graphs. The programs are executed on the CRAY T3E having 256 processors. We tested the
performance of the algorithm on two different types of PEs (small 450MHz/128MB and big
600MHz/512MB). In this section we describe only the column version of the algorithm.

For the sake of simplicity we assume that the problem size , thus every
processor is having k, nblock of the SPD matrix A. Since the matrix is symmetric and positive def-
inite, we only need to store lower(upper) part along with the diagonal entries. In our approach we
store the entries of A in upper triangular part and the lower part of the matrix is used to store the
hyperbolic rotations, thus saving locations. In this implementation we used a glo-
bal array processor which is used to store the identity of the processor which holds the specific
columns. The localindex is used to store the local index of a column obtained from the global
index. We used arrays, row and rowlower, locally at each processor. Array row is used to find the
counter for the column on a processor and array rowlower is used for knowing the number of col-
umns managed by the particular processor in the right hand side of the actual column. Figure 1
shows the distribution of columns of the matrix A on different processors, entries are converted in
to local indices. Here we have taken n = 8, blocksize = 2 and number of processors = 2. The vari-
able nloc = 4.

n k nblock× nproc×=

n n 1–( )× 2⁄
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The most time consuming step of the algorithm is obviously the factorization step. Referring to

the subsection 1.1, it is clear that the entries of R(l), S(l) are determined by the entries of R(l-1), S(l-

1), , in a manner described in Theorem 1.1. Since we have distributed columns of A, S on

n processors, we calculate at every processor according to the definition given in Lemma 1.1
and store them to a portion of a one dimensional array buffer. The array buffer is then broadcasted
by all the processors in each iteration of the factorization step, since, the entries to calculate the
rotations must be available at other processors. After this broadcast step is over, the rotations are
calculated according to the equation 1.8 and stored in the lower triangular part of the matrix A, but
only at the respective processors. Entries of A are over written by the new entries of R. The loop is

a11 a12 a13 a14 a15 a16 a17 a18

a22 a23 a24 a25 a26 a27 a28

a33 a34 a35 a36 a37 a38

a44 a45 a46 a47 a48

a55 a56 a57 a58

a66 a67 a68

a77 a78

a48

a11 a12 a13 a14

a22 a23 a24

a33 a34

a43 a44

a53 a54

a64

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a43 a44

a53 a54

a63 a64

a73 a74

a84

a42

Matrix A on Processor 0 Matrix A on Processor 1

Figure 1.
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1 l n≤ ≤
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repeated n times. Here we do not calculate a pseudoorthogonal matrix in each iteration
of the factorization step, instead we perform shift operation on the rotations stored in the lower tri-
angular part of a matrix A, while calculating the solution. We have used the highly optimized col-
lective communication routine MPI_Bcast to accomplish the task in this step.

In order to get the solution of the system, we need to calculate the pseudoorthogonal matrix Q
described in the equation 1.18. As we already stated in the algorithm, multiplication of a

matrix with another matrix , where P is a circular permutation matrix, is a

sequence of row interchange operations. The row 2n of the second matrix becomes the row n+1,

the row n+1 becomes row n+2 and so on. The row 2n-1 becomes the row 2n. We see in the last
steps of the algorithm that the rotations are stored in the lower triangular part. The interchange
operation or a shift operation can be done efficiently by every processor within its local memory.
This reduces the processor communication if we use cyclic column distribution.

3.1 Analysis of space:

In the algorithm implemented for CRAY, we need arrays processor, localindex of dimension
, rowlower of the dimension at every processor. The dimension of b, bl, bu, diag is

, where nloc is the number of columns managed by a particular processor. Arrays a and s are

of size . Arrays row, qe1 are one dimensional of size “size” where “size” is the number
of processors used for the execution of the algorithm. The array buffer is of size n. Some variables
for intermediate processing and index handling are also used.

3.2 Analysis of time:

We have tested the algorithm for different values of n with varying number of processors using
three different strategies. The first one is row distribution approach with FORTRAN, the second is
row distribution with C and the third one is column distribution with C. The algorithm is tested for
different block sizes. The common choices are 16 and 8. It has been observed that the hyperbolic
Cholesky factorization takes less time with block size 16 but the overall time for the solution with
block size 8 is better. The program is tested for n = 4096, 2048, 1024, 512 and the number of
processors used are 2,4,8 and 16. The algorithm is compared with the fastest parallel version of
the classical Cholesky algorithm on the T3E machines[14].

The amount of time needed by the algorithm on different sets of data with varying processors and
with the column distribution approach is described by the table presented below.

2n 2n×

2n 2n×

2n 2n× I 0

0 P
n n×

n 2+ n 1+

nloc

n n× loc
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We have presented the number of processors used and the execution time of the algorithm as
graphs. Figure 2 shows the graph between the number of processors and the time required for the
hyperbolic Cholesky factorization for the problem size n = 2048. From figure 4 it is observed that
the communication overhead increases the execution time for n = 512 when the number of proces-
sors are more than 12. Figure 5 shows the execution time between the two approaches namely row
and column. The difference between the execution time increases when the number of processors
are reduced. In figure 6 we compare the execution time of the classical parallel Cholesky and
Hyperbolic Cholesky algorithm and can see that the classical method is still faster than the
approach used in this paper. Figure 7 gives the comparison of these two methods while obtaining
the solution. It can be seen that the hyperbolic Cholesky algorithm is faster in obtaining solution
when the number of processors are more than 8.

Table 1: Overall time required by the algorithm with column   distribution approach

Problem
Size

P = 2 P = 4 P = 8 P = 16

512 1.03 Sec. 0.72 Sec. 0.56 Sec. 0.58 Sec.

1024 6.09 Sec. 3.96 Sec. 2.94 Sec. 2.46 Sec.

2048 39.53 Sec. 23.69 Sec. 15.69 Sec. 12.09 Sec.

4096 168.82 Sec. 94.15 Sec. 62.95 Sec.

Problem size n = 2048
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Problem size n = 1024
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Problem size n = 1024
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Conclusion:

A parallel algorithm for the solution of special linear system of equations has been presented.
Space and time complexities with the different implementation routines, different set of data and
different processors have been calculated and reported. The implementation of the algorithm on
Message Passing Interface MPI is both fast and portable. Comparing results of this algorithm with
the standard Cholesky factorization we infer that both versions of the algorithm, presented in the
report, are slower. This is because the standard Cholesky factorization uses highly optimized
mathematical and other routines. However, the hyperbolic Cholesky algorithm is faster compared
to the Cholesky classical algorithm in obtaining the solution. We have seen the effect of the algo-
rithm on sparse matrices too. The work can further be extended to investigate, in detail, the behav-
iour of the algorithm on special patterns of sparse matrices. The work is in progress to speed-up
the algorithm by adopting different implementation possibilities.
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