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� Introduction

A standard problem in Computer Algebra as well as in other areas of Computer Science is
to decide whether some complicated expression� which may be given as a result of symbolic
computations� is zero or� more general� contained in some �eld� for example the �eld of
rational numbers	 In this paper results theorems from algebraic number theory we show
how to solve this problem for a large class of expressions in polynomial time	

Consider for example a sum S of the form S 

Pk

i�
 ci
di
p
qi with ci� qi � Q� di � N

such that di
p
qi � R	 We prove that the question whether this sum is zero or� more general�

rational can be decided in time polynomial in the number of bits necessary to represent
S	 Observe that sums of the form described above play an important role in various
geometric problems �e	g	 Euclidean shortest paths� Euclidean traveling salesman tours�	
It is not known how to decide e
ciently whether such a sum is positive	 Although our
result concerning these sums obviously relates to this question it has only little e�ect on
the complexity of determining the sign of a sum of radicals	 In fact� it only shows that if
the latter problem is in NP then it is already in NP�co�NP	

In the main part of the paper we describe an algorithm that applies to sums of a much
more general form than the one mentioned above	 In fact� the algorithm can be applied to
sums S 


Pk
i�
 �i

di
p
�i� where �i� di

p
�i are elements of some algebraic number �eld Q���

and the extension Q��� d�
p
�
� d�

p
��� � � � � dk

p
�k� is a so�called admissible radical extension of

Q����
These extensions are basically de�ned by the following property� Any p�th root of

unity� p a prime� that can be written as

�

kY
i�


di
p
�i
ei � � � Q���� ei � Z�

is already an element of Q����
In particular� if Q��� d�

p
�
� d�

p
��� � � � � dk

p
�k� � R then the extension is admissible	

The algorithm for sums of radicals over algebraic number �elds is based on the following
corollary to a theorem due to M	 Kneser �����
Let Q��� d�

p
�
� � � � � dk

p
�k� be an admissible radical extension of Q��� such that

di
p
�i

dj
p
�j

�� Q��� for all i �
 j�

then the elements of the set f d�
p
�
� � � � � dk

p
�kg are linearly independent over Q����

Special cases of Kneser�s theorem have �rst been shown by Besicovitch ���� Mordell �����
and Siegel ����	 If Q��� contains a primitive di�th root of unity for all i then the theorem
follows immediately from Kummer theory �see ����	

Using Kneser�s theorem the question whether a sum of radicals over Q��� is zero
basically reduces to the question whether certain ratios of radicals are contained in the
algebraic number �eld Q����

We describe an algorithm solving this problem that runs in polynomial time	 Given a
ratio of radicals d�

p
�
� d�

p
�� using Newton iteration we �rst compute an approximation to

the ratio	 Using this approximation the lattice basis reduction is applied to determine an
element in Q��� such that if the ratio is in Q��� then it must be this element	 Finally� we
use a recent algorithm of Ge ��� to decide whether the ratio and the element computed in
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the previous step are equal	 We also present a simple probabilistic algorithm �of Monte�
Carlo�type� that can replace Ge�s result	

� Linear dependence between radicals

In this section we study linear relations between radicals	 Based on a result due to Kneser
���� we prove that under certain conditions the elements in a �nite set of radicals are
linearly independent if any two of them are linearly independent	

Throughout this section we assume that F is a sub�eld of the complex numbers C� An
element � � C is called algebraic over F if it is a root of some polynomial p�X� � F �X ��
The smallest degree polynomial with leading coe
cient � and root � is called the minimal
polynomial of ��

A �eld E � F is called an algebraic extension of F if each element in E is algebraic
over F� An element � � C is called a radical over F i�

�d � F�

for some positive integer d�
Hence radicals are solutions of equations of the form Xd � � 
 �� � � F� d � N� and

are therefore algebraic over F�
Although d and � alone do not uniquely specify a number� throughout this paper we

will denote a radical by the familiar symbol d
p
�� Sometimes this symbol may in fact refer

to any of the d di�erent solutions to Xd�� 
 �� On other occasions� however� statements
may be correct only for a speci�c solution of this equation	 Therefore it is always assumed
that d

p
� denotes a unique complex number �This will be made more precise in Section �	�	

De�nition ��� An algebraic extension E of F is called a radical extension i� it has
the form E 
 F � d�

p
�
� � � � � dk

p
�k� for a �nite number of radicals di

p
�i over F �

As it turns out it is convenient to characterize radical extensions via group theory	 Let E
be an algebraic extension of F� By F � and E� denote the multiplicative groups Fnf�g and
Enf�g� respectively	 Assume E 
 F �G� is generated by the elements of a subgroup G of
E�� i	e	 E is the smallest �eld containing F and G� Throughout this section for a group
G denote by ��G� the group F �G �
 f	�j	 � F �� � � Gg�

With these notations E is a radical extension i� the factor group ��G��F � is �nite	
In fact� if E is a radical extension as de�ned in De�nition �	� then it is also generated by

the group G 

n
	
Qk

i�

di
p
�i
ei j ei � Z� 	 � F �

o
� In this case G 
 ��G��

On the other hand� if E is generated by a group G such that ��G��F � is �nite then

i� For any element � in G an integer d 
 d��� exists such that �d � F �

ii� A �nite subset H of G exists such that any element of G can be written as a product
of an element in H and an element in F ��

i	e	 E is generated by a subset H satisfying �ii�� a �nite set of radicals over F�
As Kneser ���� has shown for a large class of radical extensions E 
 F �G� the degree

of the extension can be determined by looking only at the group ��G��

De�nition ��� A radical extension E 
 F �G� is called admissible if it satis�es the
following two conditions�



�

�i	 If ��G� contains a p�th root of unity 
p� p an odd prime� then 
p � F �

�ii	 If � �
p�� � ��G� then

p�� � F ��

Theorem ��� �Kneser� If E 
 F �G� is an admissible radical extension then the degree
of E over F is the same as the index of F � in ��G�� i�e� the number of elements of the
factor group ��G��F ��

Observe that the degree of the radical extension E 
 F �G� is always at most the index of
��G� in F ��

Before we derive some corollaries from Kneser�s theorem let us describe important
classes of admissible radical extensions	

Example ��	 The �rst class consists of those radical extensions E that are contained in
the real numbers R� These extensions are admissible since the only real roots of unity are
�� and ���

For this class of extensions Theorem �	� was originally proven by Siegel ����	

Example ��
 A radical extension F � d�
p
�
� d�

p
��� � � � � dk

p
�k� such that F contains

p��
and for all prime divisors p of d 


Qk
i�
 di a primitive p�th root of unity is an admissible

extension�

To proof that these extensions are indeed admissible it su
ces to prove property �ii� from
De�nition �	�	

Assume that for p prime the group G 
 ��G� 

n
	
Qk

i�

di
p
�i
ei j ei � Z� 	 � F �

o
contains a p�th root of unity 
� Since 
p 
 � � F for some k between � and p the k�th
power of 
 must be in F� If the smallest k for which this is true is strictly less than p then
F contains all p�th roots of unity	 Hence� for these p the condition of De�nition �	� is
ful�lled	

So suppose that p is the smallest integer k such that 
k is in F� Now for any element �
in G its d�th power lies in F� Moreover� we claim that for each � in G the smallest integer
k such that �k is in F divides d� The fact that F �G� is admissible follows from this claim	

To prove the claim let k be the smallest integer such that �k � F for � � G� Assume
k does not divide d� Then d can be written as d 
 kl � r� with � � r � k� Since �d � F

and �kl � F it follows �r � F� contradicting the minimality of k� This proves the claim	
However� not all radical extensions are admissible	 The simplest counterexamples are

the extensions F �
�� where 
 is a root of unity not contained in F� On the other hand� by
enlarging F any radical extension E 
 F �G� can be made admissible� One simply has to
adjoin to F the appropriate roots of unity	

The main algorithm of this paper is based on the following corollary to Kneser�s the�
orem	

Corollary ��� Let F � d�
p
�
� � � � � dk

p
�k� be an admissible extension of F� If a sum S 
Pk

i�
 �i
di
p
�i is zero for �i � F not all zero then di�erent radicals di

p
�i� dj

p
�j exist such

that

di
p
�i 
 � dj

p
�j

for some � � F �
In other words� the radicals d�

p
�
� � � � � dk

p
�k are linearly independent over F if any two

of them are linearly independent�
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Proof� By G 
 ��G� denote the group
n
	
Qk

i�

di
p
�i
ei j ei � Z� 	 � F �

o
�

We claim that if for every pair of di�erent radicals di
p
�i� dj

p
�j

di
p
�i� dj

p
�j �� F�

then the set f d�
p
�
� � � � � dk

p
�kg can be extended to a basis of F � d�

p
�
� d�

p
��� � � � � dk

p
�k� over

F� It follows from Kneser�s theorem that a complete system of representatives for the
factor group ��G��F � is a basis for the extension E� Hence we only need to show that
f d�
p
�
� � � � � dk

p
�kg can be extended to a complete system of representatives of the factor

group ��G��F ��
To prove this let S be a complete system of representatives	 Not all radicals di

p
�i need

to be an element of S� However� the condition di
p
�i� dj

p
�j �� F implies that any radical di

p
�i

is a multiple of a di�erent element si in S� Replacing each si by di
p
�i still yields a complete

system of representatives for ��G��F �� The claim and hence the corollary follows	

For the analysis of our main algorithm one more corollary to Kneser�s theorem is needed	

Corollary ��
 Let d�
p
�
� d�

p
�� be radicals over F such that F � d�

p
�
� and F � d�

p
��� are

admissible radical extensions� Denote the greatest common divisor of d
� d� by d� If
d�
p
�
� d�

p
�� � F then d�

p
�


d� d�
p
��

d � F�

Proof� d�
p
�
� d�

p
�� � F implies � d�

p
�
� d�

p
���d � F� Hence

d�
p
�


d 
 � d�
p
��

d

for some � � F�
We claim that the degree of d�

p
�


d over F is a divisor of d�
 
 d
�d and that likewise
the degree of d�

p
��

d over F is d���d� We proof this only for d�
p
�


d�
d�
p
�


d 
 d�
�

p
�
 for a d�
�th root of �
� Since F � d�

p
�
� is an admissible radical extension

so is F � d�
�

p
�
� � F � d�

p
�
�� By Theorem �	� the degree of d�

�

p
�
 over F is the smallest

integer k such that d�
�

p
�


k is in F �� As in the discussion of the second class of admissible
extensions one shows that k divides d�
�

Returning to our original problem observe that the equality d�
p
�


d 
 � d�
p
��

d implies
that d�

p
�


d and d�
p
��

d have the same degree over F� Since this degree is a divisor of d�
� d
�
�

and since gcd�d�
� d
�
�� 
 � the degree must be �� hence d�

p
�


d� d�
p
��

d � F�

For the sake of completeness let us mention one more corollary to Kneser�s theorem al�
though this will not be used in the sequel	

As mentioned already in the proof above� Kneser�s theorem implies that the minimal
polynomial of a radical d

p
� over F that generates an admissible extension of F has the

form Xk � �k� where �k � F� More general� if F �G� is an admissible extension then the
minimal polynomial of any element in ��G� has the form Xk � � for d � N� � � F�

Now consider an admissible extension F �G� and a subgroup H of G� F �H� is an
admissible extension of F and F �G� is an admissible extension of F �H�� We want to
determine the form of the minimal polynomials of elements in G �or equivalently ��G��
over F �H�� From Kneser�s theorem follows that these polynomials have the form Xk � ��

where k is a positive integer and � is a linear combination of elements in ��H� with
coe
cients in F� However� it can be shown that � is an element of ��H� itself	 It su
ces
to prove the following result	



�

Corollary ��� Let F �G� be an admissible radical extension of F� Assume that H is a
subgroup of G containing F �� Then the degree of E over F �H� is the index of ��H� in
��G�� i�e� the number of elements of the factor group ��G����H��

Proof� The degree �F �G� � F �H�� of the extension F �G� over F �H� is the same as the
degree �F �G� � F � of F �G� over F divided by the degree �F �H� � F � of F �H� over F�

From Kneser�s theorem we know that �F �G� � F � and �F �H� � F � are the indices of F �

in ��G� and ��H�� respectively	 Let us denote these indices by ���G� � F �� and ���H� � F ���
The factor group ��H��F � is a subgroup of the factor group ��G��F �� Moreover by

one of the isomorphism theorems for groups �see ����� the factor group ��G����H� is
isomorphic to the factor group of ��H��F � in ��G��F �� Hence

�F �G� � F �H�� 

�F �G� � F ��
�F �H� � F ��



���G� � F ��
���H� � F ��

is the index of ��H� in ��G��

As a consequence from this corollary we get for example that the only real radicals that
are contained in a real radical extension F �G� are the obvious ones� they are exactly the
elements of ��G��

� The rational case

To demonstrate the basic features of our algorithm in this section we restrict ourselves to
real radicals over the rational numbers	

So suppose that we are given a set of real radicals f d�
p
q
� d�

p
q�� � � � � dk

p
qkg over the

rational numbers	 We want to check whether these radicals are linearly independent	
Likewise� we want to determine whether a given linear combination of these radicals with
coe
cients in Q is zero	

Due to Corollary �	� we only have to check for any pair of radicals di
p
qi� dj

p
qj whether

their ratio is a rational number	 As will be seen later� using Corollary �	� this property
in turn can be tested by determining for three radicals over Q whether they are rational	
So let us consider this problem �rst	 From unique factorization follows

Lemma ��� Let q � Q� q 
 a
b � gcd�a� b� 
 � and d � N� Then d

p
q � Q if and only if

d
p
a � Z and d

p
b � Z�

We now show how to check in polynomial time whether an integer is a d�th power	

Lemma ��� It can be decided in polynomial time whether d
p
z � Z and� if so� it can also

be computed in polynomial time�

Proof� We may assume d � log z	 Otherwise Xd � z 
 � has a solution in Z if and only
if z 
 � or z 
 ��� Furthermore we can restrict ourselves to positive integers	

The integer z� � Z such that if d
p
z � Z then d

p
z 
 z� can be determined by a binary

search on the integers in the interval I 
 ��� �d
l
d
e�� where l 
 dlog ze � �� In each step of

the binary search we have to determine whether an element �z from I if raised to the d�th
power is smaller or larger than z or equal to z� The d�th power is computed by successive
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squaring	 Also observe that we may stop when a power of �z has been computed that is
larger than z� Hence the binary search can be done in polynomial time	

Theorem ��� Let d�
p
q
� d�

p
q� be l�bit radicals over Q� It can be decided in polynomial time

whether the ratio of these radicals is in Q� Furthermore if the ratio is rational it can be
computed in polynomial time�

Proof� First the greatest common divisor d of d
 and d� is computed	
By Corollary �	� if d�

p
q
�d�

p
q� � Q then di

p
qi
d 
 d�

i

p
qi 
 q�i � Q� i 
 �� �� By Lemma �	�

we can check whether this is the case by applying the algorithm leading to the previous
lemma to d�i and the numerator and denominator of qi� i 
 �� ��

Then we compute q�
�q�� and determine �using again Lemma �	� and Lemma �	��
whether

d

s
q�

q��
� Q�

All steps can be done in polynomial time	

Combining this result with Corollary �	� leads to

Corollary ��	 Let fd�pq
� d�pq�� � � � � dkpqkg be a set of real radicals over Q� It can be decided
in polynomial time whether this set is linearly independent over Q�

Moreover� for any sum S 

Pk

i�
 vi
di
p
qi it can be decided in polynomial time whether

it is zero�

Proof� To check whether the set of radicals is linearly independent it su
ces to apply the
algorithm of the previous theorem to the k�k�
�

� di�erent ratios of radicals	

To check whether a sum S 

Pk

i�
 vi
di
p
qi is zero �rst use the algorithm of Theorem

�	� to partition R 
 f d�
p
q
� d�

p
q�� � � � � dk

p
qkg into subsets R
� � � � � Rh such that two radicals

are in the same subset if and only if their ratio is rational	 To simplify the notation
assume di

p
qi � Ri� i 
 �� � � � � h� Also the rational numbers rij are computed such that if

dj
p
qj� di

p
qi � Q then dj

p
qj� di

p
qi 
 rij � Hence

S 

kX
i�


vi di
p
qi 


hX
i�


�
� X

dj
p
qj�Ri

vjrij

�
A di
p
qi�

Since for any pair of di�erent radicals in R� 
 f d�
p
q
� d�

p
q�� � � � � dh

p
qhg their ratio is not

a rational number� by Corollary �	� S 
 � if and only ifX
dj
p
qj�Ri

vjrij 
 �� for i 
 �� � � � � h�

These sums can be computed in polynomial time	 By Theorem �	� the previous steps can
also be done in polynomial time	



�

� Background and an outline of the general algorithm

In the remainder of this paper we generalize the results of the previous section to radi�
cals over algebraic number �elds	 This section surveys the fundamental de�nitions from
algebraic number theory and explains the problems that have to be solved to achieve the
general result on sums of radicals over algebraic number �elds	

An algebraic number �eld E is a �nite extension of Q� As is well�known any algebraic
number �eld can be generated by a single algebraic number �� i	e	 E 
 Q��� is the smallest
�eld containing Q and �� If � is a root of a polynomial p�X� 


Pn
i�� piX

i� pi � Z such that
p has relatively prime coe
cients� pn 
 �� and p is the smallest degree polynomial with
root � then p called the minimal polynomial of �� The di�erent roots �� 
 �� �
� � � � � �n�

of the minimal polynomial of � are called the conjugates of ��

The mappings �j � j 
 �� � � � � n� �� which are de�ned as follows

�j � Q��� 	 Q��j�
n�
X
i��

qi�
i 	

n�
X
i��

qi�
i
j �

are called the �n distinct� embeddings of Q��� into the complex numbers� The �j �s are
�eld isomorphisms �see ����� and the �elds Q��� are called the conjugate �elds of Q����

The number

� 
 ���� 


�
� Y

��i�j�n�

��i � �j�

�
A

�

is called the discriminant of �	
The ring of algebraic integers �or simply integers� in Q���� denoted by R�� is the set of

all 	 � Q��� such that there exists an integer polynomial f�X� 

Pn

i�� fiX
i with fn 
 �

and f�	� 
 �� This set endowed with the usual addition and multiplication in C forms a
ring �cf	 �����	

We may assume that � itself is an algebraic integer	 If � is not and p�X� 

Pn

i�� piX
i

is the minimal polynomial of � then pn� is an integer and generates the same �eld	 If �
is an algebraic integer then Z��� is a subring of R�� Since we cannot a�ord to compute a
basis for R� itself we will need a superset of R� as well	

A proof for the following lemma can be found in ����	

Lemma 	�� Let � an algebraic integer� Then ���� � Z and the ring of integers R� of
Q��� is contained in the Z�module G 
 �Z���
 �Z��� �
 � � �
 �Z��� �n�
� i�e�� any
number in R� can be uniquely written as 


�

Pn�

i�� ci�

i� ci � Z�

Note that the inclusion is always strict	
Next a few words on the number of bits needed to encode number �elds� elements in

these �elds� and radicals over number �elds	 The representation for an algebraic number
�eld we use is the one that has been used for example by Loos ����	 In order to distinguish
Q��� from its conjugate �elds we assume thatQ��� is speci�ed by the minimal polynomial
p of � and an isolating rectangle R� that is� a rectangle that contains no root of p except ��
It follows from the root separation bound �cf	 ����� that if jpij � �l for all i then R can be
speci�ed using O�n logn�nl� bits	 That is� Q��� can be encoded using O�n log n�nl� bits	
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However� for the sake of simplicity our theorems and algorithms we will never explicitly
mention the rectangle R�

In number theory usually an element 	 of an algebraic number �eld Q��� is described
by an n�tuple �q�� q
� � � � � qn��� qn�
� � Qn such that � 


Pn�

i�� qi�

i� In this paper we
assume instead that 	 is encoded by an �n����tuple �b� b�� b
� � � � � bn��� bn�
� � Zn�
 such
that 	 
 


b

Pn�

i�� bi�

i� Moreover� we assume gcd�b� b�� b
� � � � � bn�
� 
 � and b 
 �� The
integer b will be called the denominator of �� By computing the least common multiple of
the denominators of the qi we can easily go from one representation to the other	 In any
case� the total input size of � is a linear in n and the maximum bit size of the integers
pi� b� bi�

The question whether a sum of radicals S 

Pk

i�
 �i
di
p
�i� �i� �i � Q���� is zero clearly

depends on the values of the radicals di
p
�i� Hence in the algorithms to be described below

it is assumed that a radical d
p
� is given by d� �� and a positive integer k between � and

d� � such that

d
p
� 
 
kd j�j

�

d

�
cos

�

d
�� i sin

�

d
�

�
�

where � � ���� �� denotes the angle of � when written in polar coordinates� j�j �d is the
positive d�th root� and 
d 
 cos ��

d � i sin ��
d � For the sake of brevity� the integer k will not

be mentioned explicitly	
In summary� the input size of a set of radicals f d�

p
�
� d�

p
��� � � � � dk

p
�kg over an algebraic

number �eld is polynomial in the degree of the �eld� in the bit size of the coe
cients
of the minimal polynomial of �� in the bit size of the coe
cients of the �i�s� and in
log di� i 
 �� �� � � � � k�

Before we can outline the basic algorithm we have to address one more question	 The
main algorithm that decides whether a sum of radicals S 


Pk
i�
 �i

di
p
�i� �i� �i � Q����

is zero� is correct only if Q��� d�
p
�
� d�

p
��� � � � � dk

p
�k� is an admissible radical extension of

Q���� How do we guarantee this property� As mentioned in Section �� if Q��� and the
radicals di

p
�i are real then the extension Q��� d�

p
�
� d�

p
��� � � � � dk

p
�k� is admissible	 This is

the situation that is most appropriate to our algorithms	 The algorithm will be polynomial
in the input parameters mentioned above and these parameters are mutually independent	

However� if the radicals di
p
�i are complex numbers� in general there is no satisfying

way to guarantee admissibility	 To check whether Q��� d�
p
�
� d�

p
��� � � � � dk

p
�k� is admissible

we know no better way than determining all roots of unity in ��G� �using the notation
from Section ��	 The methods of this paper lead to an algorithm for this problem	 Its
run time� however� will be exponential in k� But given that much time we can determine
whether a sum of radicals is zero by a brute force bit comparison test	

By Example �	� in Section � we can avoid this problem by replacing Q��� by the �eld
containing Q��� and for all primes p dividing

Q
di a primitive p�th root of unity	 Using

standard methods in algorithmic algebraic number �eld �see ����� a generating element
for this �eld can be found	 However� the degree of this �eld and the complexity of the
following algorithms will again be exponential in k� leaving us with the same problem as
before	

We nevertheless describe our algorithms in the general setting of admissible extension
for two reasons	 First� considering arbitrary admissible extensions instead of real radical
extension does not add anything to the problem	 The same algorithms can be used	
And second� there are cases in which a complex radical extension is admissible without



��

assuming a ground �eld Q��� of exponential degree	 In fact� the degree may even be of
the order maxflog dig� Consider for example the case in which the di�s are huge powers of
a single small prime or of constantly many small primes	 In these cases our algorithm will
also run in time polynomial in the input size	

Finally let us brie�y outline the main algorithm	 Due to Corollary �	� deciding whether
S 


Pk
i�
 �i

di
p
�i 
 � can basically be reduced to k� tests whether a ratio of radicals

d�
p
�
� d�

p
�� is in Q���� Our main task is to describe an algorithm for this problem	 Since

the ring of integers in Q��� is in general not a unique factorization domain we really
have to work with ratios and cannot� as in the rational case� restrict ourselves to roots of
algebraic integers	

The algorithm that decides whether a ratio of radicals is in Q��� has three phases	
In the �rst one the ratio is approximated	 In the second one� this approximation is used
to determine an element in Q��� such that if the ratio is in Q��� then it must be this
element	 In the third step� it is checked whether the ratio of radicals really equals the
number determined in the second phase	

The �rst step is done using Newton iteration	 In the second phase we use a variant of
the Kannan� Lenstra� Lov asz algorithm �cf	 ����� to reconstruct exact representations of
algebraic numbers from approximations	

For the third phase we present two di�erent solution	 The �rst one is deterministic and
based on a recent result of Ge ���	 The second one is a very simple probabilistic algorithm	

We describe the second phase �rst in order to determine the quality of the approxima�
tion that has to be computed in the �rst phase	 But before we can do so� several bounds
on polynomials and representations of algebraic numbers have to be shown	

� Some basic bounds

Let p 

Pn

i�� piX
i � C�X � be a polynomial with complex coe
cients	 The length jpj� of

p denotes the euclidean length
�Pn

i�� jpij�
� �
� of the vector �p�� � � � � pn�	

The measure M�p� of p is de�ned as

M�p� 
 jpnj
n�
Y
j��

maxf�� j�jjg�

M�p� satis�es

M�p� � jpj�
�see ���� and �����	 Combining the bound for the measure of a polynomial with Hadamard�s
bound for the determinant of a matrix yields an upper bound for the discriminant of a
polynomial p �see for example ����� �����	

Lemma 
�� Let � be an algebraic integer with minimal polynomial p� The discriminant
� of � satis�es

j�j �� � nnjpjn� �
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Next we deduce some bounds on the representation size of algebraic numbers	 For an
algebraic number 	 
 	� of degree m its in�nity norm �	�� is de�ned as the maximum
of the absolute values of its conjugates	 If 	 is an element of the algebraic number �eld
Q��� given by the representation 	 
 


b

Pn�

i�� bi�

i� b� bi � Z� gcd�b� b�� b
� � � � � bn�
� 
 ��
and if the distinct �eld embeddings of Q��� over Q are �j � j 
 �� � � � � n� �� then �	�� 

maxfj���	�j� j�
�	�j� � � � � j�n�
�	�jg�

The in�nity norm is subadditive and submultiplicative� i	e	

�i� ��� 	�� � ���� � �	���

�ii� ��	�� � �����	���

For 	 � Q��� as above �	� is de�ned as maxfjbj� jb�j� jb
j� � � � � jbn�
jg� We will call �	�
the coe
cient size or representation size of 	 with respect to Q���� �	� depends on the
�eld Q��� and the generator �� But it will always be clear which �eld Q��� and which
generator we are referring to� therefore we do not mention them explicitly in the symbol
�	��

The following lemma bounds the coe
cient size of 	 with respect to its in�nity norm	
Formulated di�erently the lemma has already been shown by Weinberger� Rothschild ����
and others �see ����� ����� �����	 So we omit its proof	

Lemma 
�� Let Q��� be an algebraic number �eld� where � is an algebraic integer with
minimal polynomial p� Then any element 	 of the ring of integers R� of Q��� satis�es

�	� � n�njpj�n� �	���

We also need to bound the in�nity norm of 	 and of 	�
 by the coe
cient size	 First
let us recall from Loos� paper on resultants ���� how to construct for an element 	 



b

Pn�

i�� bi�

i� bi � Z� an integer polynomial whose roots are the conjugates of 	�
Let f�X� 


Pn
i�� fiX

i and g�X� 

Pm

i�� giX
i be polynomials over an arbitrary

commutative ring R	 The determinant of the following �n�m�� �n�m��matrix M that
consists of m rows of shifted coe
cients of f and n rows of shifted coe
cients of g

M 


	












�

fn fn�
 fn�� � � � f
 f�
fn fn�
 � � � � � � f
 f�
	 	 	

fn fn�
 � � � f
 f�
gm gm�
 � � � g
 g�

gm gm�
 � � � g
 g�
	 	 	

gm gm�
 � � � g
 g�

�












�

is called the resultant res�f� g� of f and g�

Lemma 
�� �Loos� Let 	 
 

b

Pn�

i�� bi�

i� b� bi � Z be an element of Q���� Denote by

B�Y � the polynomial B�Y � 

Pn�


i�� biY
i� Then the resultant r�X� � Z�X � of bX �B�Y �

and p�Y � taken with respect to the ring Z�X � has roots �j�	�� j 
 �� � � � � n� �� Here p is
the minimal polynomial of � and the �j�s are the distinct �eld embeddings of Q����



��

To bound the length of the resultant polynomial of the previous lemma the following
generalization of Hadamard�s bound is used �see ���� �����	

Lemma 
�	 �Goldstein�Graham� Let M�X� 
 �Mij�X�� be an n � n�matrix whose
entries are polynomials with complex coe
cients� Denote by mij the L
�norm of Mij�X��
that is� the sum of the absolute values of the coe
cients of Mij � Furthermore de�ne M �

as M � 
 �mij�� Then the polynomial detM�X� � C�X � satis�es

j detM�X�j� � H�M ���

Combining these results yields

Lemma 
�
 Let Q��� and 	 be as above� Then

�i	 	 and 	�
 are roots of polynomials r and r�� respectively� whose length is bounded by

jrj� 
 jr�j� � n�njpjn� �	�n

�ii	

�	�� � ��	�jpjn�
and

�	�
�� � n�njpjn� �	�n�

Proof� We may choose r to be the polynomial from Lemma �	�	 Moreover� if

r�X� 

nX
i��

riX
i� ri � Z�

then 	�
 is a root of

r��X� 

nX
i��

rn�iX i�

Hence jrj� 
 jr�j�� To get the bound on jrj� apply the Graham�Goldstein bound to the
matrix de�ning r which shows

jrj� 
 jr�j� � jpjn�
�
n�
X
i�


jbij� � �jb�j� jbj��
�n

�

� jpjn��n� ��
n
� �	�n � n�njpjn� �	�n�

Since �	�
�� �M�r�� � jr�j� this proves the bound for �	�
���
To prove the better bound on �	�� observe that p is non�linear and irreducible hence

its length is at least
p
�� �	�� � �	� maxfPn�


i�� j�j���jig� where the maximum is over all
�eld embeddings �j of Q���� Since ���� � jpj� we get

n�
X
i��

j�j���ji �
n�
X
i�


jpji� �
jpjn� � �

jpj� � �

and the bound for �	�� follows from jpj� � � 
 p
�� � 
 


� �

We apply the previous results to derive a bound on the representation size of a ratio of
radicals over Q����
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Lemma 
�� Let Q��� be as before� Assume d�
p
�
� d�

p
�� are radicals over Q��� such that

Q��� �
� ��� is an admissible radical extension of Q���� If d�
p
�
� d�

p
�� � Q��� then�

d�
p
�


d�
p
��

�
� �n�njpj�n� ��
�

�����
�n�

Proof� First we prove a bound on the denominator of d�
p
�
� d�

p
���

By Lemma �	� d�
p
�
� d�

p
�� � Q��� implies d�

p
�


d � Q���� d�
p
��

d � Q���� where d 

gcd�d
� d��� Furthermore let d�
 
 d
�d� d

�
� 
 d��d�

Hence d�
p
�


d is a root of

Xd�
� � �


and d�
p
��

�d is a root of

Xd�
� � �

��
�

d�
p
�
 is a solution to the equation Xd� ��
 
 �� Let b be the denominator of �
� b d�

p
�


is a solution to Xd� � bd��
 
 �� Since bd�
 is an algebraic integer b d�
p
�
 is an algebraic

integer� too	
We need a similar result for 


d�
p
��d

� Again we only need to bound the size of a rational

integer b� such that b� 
�� is an algebraic integer	

It is well�known that if 

��

is a root of the polynomial r � Z�X � whose leading coe
cient

is rm then rm


��

is an algebraic integer	 By Lemma �	� 

��

is root of a polynomial r whose

length jrj� is bounded by n�njpjn� ����n� This gives the bound on b�� Moreover� combined
with the bound on b it shows that an integer c� jcj � jpjn�n�n��
�����n exists such that

c
�
d�
p
�
� d�

p
��
�d

is an algebraic integer	 Next observe that
d�
p
��

d�
p
��

is a root of

Xd �
�

d�
p
�


d�
p
��

�d

�

which is by assumption a polynomial overQ���� As before we conclude that c
�
d�
p
�
� d�

p
��
�

is an algebraic integer	
By Lemma �	� and the submultiplicativity of the in�nity norm�

c
d�
p
�


d�
p
��

�
� �n�njpj�n� jcj��
�����
� ���

Since c
d�
p
��

d�
p
��

is an algebraic integer its denominator is bounded by j�j� where � is the

discriminant of � �see Lemma �	��	 Hence the denominator of
d�
p
��

d�
p
��

is bounded by jcjj�j�
Using the bound on c from above� the bound for � �Lemma �	��� and the bounds for
��
��� ���
� �� from Lemma �	�� the lemma follows	

The important thing to notice here is that the bounds are independent of d� This may
seem quite surprising but it only re�ects the fact that the size of the coe
cients of a factor
of a polynomial depends only on the degree of the factor and on the size of the coe
cients
of the polynomial but not on its degree �see for example ����� �����	



��

� Lattice basis reduction and reconstructing algebraic num�

bers

In this section we answer the following questions�
Given an approximation � to an element � � Q��� and a guarantee that the integer coef�
�cients c� ci in � 
 


c

Pn�

i�� ci�

i are bounded in absolute value by �B� Can the coe
cients
c� ci be computed exactly� How good do we have to choose the approximation ��

We will show that a variant of the Kannan� Lenstra� Lov asz algorithm to reconstruct
minimal polynomials �see ����� can be used to solve this problem	

Given a set V of vectors V 
 fv
� � � � � vmg � Rn� the lattice !�V � generated by these
vectors is the set

!�V � 


�
mX
i�


zivi j zi � Z

�

of vectors that can be written as linear integer combinations of the vectors in V� The
vectors vi will be described as the columns of an �n�m��matrix� which is also called V�

If we assume that the columns in V are linearly independent any vector v � !�V � can
be identi�ed with a unique vector �z
� � � � � zm� � Zm such that v 


Pm
i�
 zivi� Using the

matrix V this reads as v 
 V �z
� � � � � zm�T �
Observe that a lattice is a discrete object	 So the length of a shortest vector taken

with respect to the euclidean length k�k� is uniquely de�ned although there may be many
di�erent vectors of this length	 It is not known whether a shortest vector can be computed
in polynomial time	 However� in their break�through work on polynomial factorization
Lenstra et al	 ���� used the concept of a reduced basis of a lattice to show that in polynomial
time a vector can be computed that is not too large compared with a shortest vector	

We will not de�ne exactly what a reduced basis is� instead we just state its basic
properties in the following lemma	

Lemma ��� Given a lattice !�V �� V 
 fv
� � � � � vmg � Zn� a reduced basis of !�V � can
be computed in polynomial time�

The length of the shortest vector in a reduced basis of !�V � di�ers from the length of

a shortest non�zero vector in the lattice by at most a factor of �
m��

� �

As mentioned� both properties were originally proven in ����	 The lattice reduction algo�
rithm of ���� has been improved by various authors	 The best run times so far are due to
Schnorr ���� and Sch"onhage ����	

The next theorem establishes the relationship between shortest vectors in a reduced
basis and representations of algebraic numbers	

Theorem ��� Let Q��� be an algebraic number �eld� where � is an algebraic integer with
minimal polynomial p�X� 


Pn
i�� piX

i� pn 
 �� pi � Z� Let � be an element in Q��� such
that ��� � �B� B 
 �� Assume s and � are real numbers satisfying

s 
 ��n
�

��nnnjpjn���Bn� � 
 �s�
�

Moreover� suppose �� � are approximations to � and �� respectively� such that the following
estimates hold for the real and imaginary parts ��� of �� �

j���������j � �

�
�� j���������j� �

�
��
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j���i�� ���i�j � �

�
�� j���i�� ���i�j � �

�
�� �i � f�� �� � � � � n� �g�

If !�V � is generated by the columns of the following �n� ��� �n� �� matrix

V 


	









�

s���� s s���� s����� � � � s���n�
�
s���� � s���� s����� � � � s���n�
�
� � � � � �
� � � � � � �

� � �

� � �
� � � � � � �

�









�
�

then the shortest vector g 
 V �c� c�� c
� � � � � cn�
�T of a reduced basis of !�V � satis�es

� 

��
c

n�
X
i��

ci�
i�

Moreover� gcd�c� c�� c
� � � � � cn�
� 
 ��

Proof� The columns in V are linearly independent	 Each vector v � !�V � can be identi�ed
with a unique vector �z� z�� z
� � � � � zn�
� � Zn�
 such that v 
 V�z� z�� z
� � � � � zn�
�T �
Every vector �z� z�� z
� � � � � zn�
� � Zn�
 in turn can be identi�ed with a unique polynomial
v�X� Y � 
 zX �

Pn�

i�� ziY

i in the two variables X and Y� Hence there is a one�to�one
correspondence between vectors v � !�V � and certain polynomials v�X� Y � � Z�X� Y ��

The euclidean norm kvk� of a vector v � !�V � satis�es

kvk�� 
 s�jv��� ��j� � jzj� �
n�
X
i��

jzij��

Consider the vector g 
 V�c� c�� � � � � cn�
�T and the polynomial g�X� Y � 
 cX�
Pn�


i�� ciY
i�

corresponding to the representation � 
 �

c

Pn�

i�� ci�

i� c� ci � Z�
g��� �� 
 � hence

jg��� ��j 
 jg��� ��� g��� ��j �

� jcjj� � �j�
n�
X
i�


jcijj�i � �ij � n�B��

since by assumption jcj � �B� jcij � �B for all i 
 �� � � � � n��� So the length � of a shortest
vector in a reduced basis for !�V � satis�es �see Lemma �	��

� � �
n
� kgk� 
 �

n
�

�
s�jg��� ��j� � jcj� �

n�
X
i��

jcij�
� �

�

�

� �
n
� ���sn�B�� � �n�B���

�

� � �
n
� ��s� ��n�B�

By choice of � and s
� � ��n�B�



��

Next we claim that for any vector v � !�V � whose euclidean norm kvk� is smaller than
��n�B the corresponding polynomial v�X� Y � satis�es v��� �� 
 ��

To prove the claim �rst note that

kvk� 

�
s�jv��� ��j� � jzj� �

n�
X
i��

jzij�
� �

�

� ��n�B

implies

jv��� ��j � ��n�Bs�
 and

jzj � ��n�B� jzij � ��n�B � i 
 �� � � � � n� ��

From jv��� ��j � ��n�BBs�
 we deduce

jv��� ��j � jv��� ��� v��� ��j� jv��� ��j �
� ��n�Bn� � ��n�Bs�
 
 ��n�Bs�
��n� �� � ��n�Bs�
�

where the bound on jv��� ���v��� ��j follows in exactly the same way as the corresponding
bound for g shown above	

By assumption on the representation size of � a non�zero integer c� jcj � �B� exists
such that c� � Z���� Consider the norm

no�cv��� ��� 

n�
Y
j��

cv��j���� �j����

of cv��� ��� Since cv��� �� is an algebraic integer this is a rational integer �see for example
�����	 Hence ������cn

n�
Y
j��

v��j���� �j����

������ � N � f�g�

We show that the product is smaller than � and hence must be zero	������cn
n�
Y
j��

v��j���� �j����

������ 
 jcnjjv��� ��j
n�
Y
j�


jv��j���� �j����j �

s�
��n�B�n�
�
n�
Y
j�


jv��j���� �j����j � s�
��n�B�n�
�
n�
Y
j�


�
jz�j���j�

n�
X
i��

jzi�j��i�j
�
�

Using the above estimates for jzj and jzij this shows������cn
n�
Y
j��

v��j���� �j����

������ � s�
��n
�

��n��Bn
n�
Y
j�


�
j�j���j�

n�
X
i��

j�j��i�j
�
�

Writing �j��� as


c

Pn�

i�� ci�j���

i� combining corresponding powers of �j���� and expand�

ing the product yields n�n�
� terms each of which is smaller than ��B � ��n�
M�p�n�
�
where M�p� is the measure of p�
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Hence by applying M�p� � jpj� we get������cn
n�
Y
j��

v��j���� �j����

������ � s�
��n
�

��nnn�
��Bnjpjn�
� �

By choice of s the claim follows	

Since c �
 �
���cnQn�


j�� v��j���� �j����
��� 
 � implies that one factor in

Qn�

j�� v��j���� �j����

is zero	 But these factors are conjugates of each other	 Hence if one of them is zero all
are� which proves our claim that kvk � ��n�B implies v��� �� 
 ��

Applying this result to the shortest vector g in a reduced basis of the lattice !�V � shows

that g corresponds to a polynomial g�X� Y � 
 cX�
Pn�


i�� ciY
i such that g��� �� 
 �� This

proves the �rst part of the theorem	
To prove the second claim observe that if gcd�c� c�� � � � � cn�
� �
 � we would �nd a vec�

tor g� 
 V�c�� c��� � � � � c�n�
�T � !�V � such that gcd�c�� c��� � � � � c�n�
� 
 � and g���� �� 
 ��
The unique representation of elements of Q��� as rational linear combinations of powers
of � shows g� 
 c�

c g� Since gcd�c�� c��� � � � � c
�
n�
� 
 � the integer c cannot properly divide

c�� On the other hand� g� can be written as an integer linear combination of the vectors
in the reduced basis	 Since the elements of the basis are linearly independent even over
Q� this representation must be g� 
 c�

c g� But then c�

c 
 �� or c�

c 
 �� which proves the
second claim of the theorem	

The proof above is based on ideas of Lov asz ���� but replaces a brute force estimate by
M�p� � jpj�� Applying this modi�cation to Lov asz� analysis of the corresponding bounds
for minimal polynomials leads to an improvement of his bounds by a factor of n� Thus
this analysis can be used to deduce the same bounds as in ����	

By choice of s and � we can assume that the entries of the matrix V in Theorem �	�
are integers� hence combining this theorem with Lemma �	� gives

Theorem ��� Let Q��� be an algebraic number �eld� where � is an algebraic integer with
minimal polynomial p�X� 


Pn
i�� piX

i� pn 
 �� pi � Z� jpj� � �l� Let � be an element in
Q��� such that ��� � �B� Assume � 
 � satis�es

log
�

�

 �n� � �n � n logn � nl � �nB�

Moreover� suppose that approximations �� � to � and �� respectively� are given such that
the following estimates hold for the real and imaginary parts ��� of �� �

j���������j � �

�
�� j���������j� �

�
��

j���i�� ���i�j � �

�
�� j���i�� ���i�j � �

�
�� �i � f�� �� � � � � n� �g�

Then the representation of � as � 
 

c

Pn�

i�� ci�

i� c� ci � Z� jcj� jcij � �B� can be computed
in time polynomial in n� l� B�

Combining Lemma �	� with Theorem �	� shows



��

Corollary ��	 Suppose d�
p
�
� d�

p
�� are radicals over an algebraic number �eld Q��� such

that Q��� �
� ��� is an admissible radical extension of Q���� Here � is an algebraic integer
with minimal polynomial p�X� 


Pn
i�� piX

i� pn 
 �� pi � Z� jpj� � �l� Let ��
�� ���� � �L

and assume that � 
 � satis�es

log
�

�

 ��n��logn� l� L��

Moreover� suppose that approximations �� � to � 
 d�
p
�
� d�

p
�� and �� respectively� are

given such that the following estimates hold

j���������j � �

�
�� j���������j� �

�
��

j���i�� ���i�j � �

�
�� j���i�� ���i�j � �

�
�� �i � f�� �� � � � � n� �g�

Then integers c� c�� � � � � cn�
 such that if d�
p
�
� d�

p
�� � Q��� then d�

p
�
� d�

p
�� 




c

Pn�

i�� ci�

i

can be computed in time polynomial in n� l� and L�

� Approximating radicals and ratios of radicals

In this section we show how to compute e
ciently the approximations required by Corol�
lary �	�	 First the approximations to �i� i 
 �� � � � � n� �� are considered	

Lemma 
�� Let � be root of the polynomial p�X� 

Pn

i�� pix
i� pn 
 �� pi � Z� jpj� � �l�

An approximation � to � satisfying j�i � �ij � � for all i � n� can be computed in time
polynomial in n� l� and log 


� �

Proof� Using standard estimates one can show that if x � C satis�es jxj � �m and � is
less than ���m�
� then an approximation x to x with absolute error less than � satis�es

jxi � xij � ����m�
�i�

Hence if �� �
 �����l�
�n then an approximation � with j� � �j � �� will lead to ap�
proximations as required	 Applying Sch"onhages approximation algorithm ���� the lemma
follows	

The main di
culty in approximating a ratio of radicals d�
p
�
� d�

p
�� is to keep the run time

polynomial in log di� i 
 �� �� To achieve such a run time Newton iteration is used	 We
�rst show how to approximate a single real radical	

Lemma 
�� Suppose d
p
� is real radical over a real algebraic number �eld Q���� where � is

an algebraic integer with minimal polynomial p�X� 

Pn

i�� piX
i� pn 
 �� pi � Z� jpj� � �l�

Assume ��� � �L� For any � 
 an approximation to d
p
� with absolute error less than � can

be computed in time polynomial in n� l� L� logd� and log 

� �

Proof� From the Mean�Value�Theorem follows that if x is a complex numbers satisfying
��m � jxj � �m� � � � � ���m�
�� and x is such that jx� xj � � then���x �

d � x
�

d

��� � �m�
��
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Since j�j � �nl�L�� �Lemma �	�� it su
ces to approximate � and to approximate the
d�th root of the approximation to �� Using the same argument as in Lemma �	� a good
approximation to � yields a good approximation to �� Due to the bounds in Lemma �	�
we can also determine the sign of � in polynomial time	 Therefore in the remainder of
the proof we show how to approximate d

p
� assuming � is positive and is given exactly	

Moreover� the bound for j�j in Lemma �	� implies that it is enough to show how to
approximate a d

p
� with relative error ��

Considering d as constant this has already been done	 �see for example ����	 In our
case� however� d is part of the input	 So we will describe and analyze the approximation
algorithm in more detail	 As mentioned we use Newton iteration	

d
p
� is a root of xd � �� hence the iteration is given by

xi�
 


�
�� �

d

�
xi �

�

d

�

xd�
i

�

First let us pretend that we could compute xi�
 exactly from xi� As is well known given a
good initial approximation x� then Newton iteration has a quadratic convergence� which
means that log log 


� iterations su
ce to get an approximation with relative error ��
We need to determine how good the initial approximation has to be	 To do so assume

xi is an approximation to d
p
� with relative error �i� i	e	� d

p
� 
 ��� �i�xi� Then

j dp�� xi�
j �
����� dp��

�
�� �

d

�
��� �i� d

p
��

�

d
d
p
�

�
�

�� �i

�d�
����� �
Since

�




��i
�d�




P�

j��

�d���j
d��

�
�ji we get

j dp�� xi�
j � d
p
�

�
��� ��i

�

d

�X
j��

�
d� j

d� �

�
�j

�
A �

Hence the relative error �i�
 is

��i
�

d

�X
j��

�
d� j

d� �

�
�ji 
 ��i �d� ��

�X
j��

�

�j � ���j � ��

�
d� j

d

�
�ji �

� ��i �d� ��
�X
j��

�
d� j

d

�
�ji 
 ��i �d� ��

�
�

�� �i

�d�


�

Assume �i �



��d�
� � Then

�i�
 � ��i �d� ��

�
�

�� 

��d�
�

�d�


� ��i �d� ��
p
e�

using � � x � ex for all x�
It follows that an initial approximation with relative error 


��d�
� su
ces to guarantee
quadratic convergence	



��

Now xi�
 can not be computed exactly from xi� However� computing it with relative
error ��i still yields quadratic convergence	 These approximations can be computed in time
log d� L� and log �i� Hence except for the computation of the initial approximation x� the
Newton iteration can be done in time polynomial in log d� L� and log ��

To get the initial approximation x� that guarantees quadratic convergence� as in
Lemma �	� we can use a binary search technique on the interval ��� ��� if � 
 �� or on
the interval ��� ��� if � � �� Again this can be done in polynomial time due to the upper
bound on j�j given in Lemma �	�	 This �nally proves the lemma	

Now we consider the general case	 Recall that we assume that a radical d
p
� is given by

� and an integer k such that d
p
� 
 
kd j�j

�

d

�
cos 
d�� i sin 


d�
�
� where � � ���� �� denotes

the angle of � when written in polar coordinates� j�j �d is the positive d�th root� and

d 
 cos ��d � i sin ��

d �

Lemma 
�� Suppose Q��� is a number �eld generated by the algebraic integer �� whose
minimal polynomial is p�X� 


Pn
i�� piX

i � Z�X �� jpj� � �l� If d
� d� � N and �
� �� �
Q��� satisfy ��
�� ���� � �L then for any � 
 � the ratio d�

p
�
� d�

p
�� can be approximated

with absolute error � in time polynomial in n� l� L� logd
� log d�� and log 

� �

Proof� To prove the lemma note that by Lemma �	�� not only j d�p�
j � maxf�� j�
jg �
�nl�L�� but also j d�p���
j � maxf�� j��
� jg � ���n lognj�nl�nL� � Computing d�

p
�
 with ab�

solute error �����n logn�nl�nL�
� and d�
p
��

�
 with absolute error �� 
 ����nl�L��� therefore
su
ces to prove the lemma	

Using standard estimates it can be shown that �rst approximating d�
p
�� with absolute

error less than ������n logn�nl�nL�
� and then computing the inverse of this approximation
with absolute error less than 


��
� su
ces to compute the required approximation to d�

p
��

�
�
Computing the inverse can be done in polynomial time using Newton iteration �see for
example ����	

Hence we only need to show how to approximate a single radical d
p
� in polynomial time	

By the upper bound on j�j given in Lemma �	� it su
ces to show how to approximate

j�j �d �interpreted as the positive real root�� cos 

d��� i sin 


d��� and 
kd 
 cos �k�d � i sin �k�
d

e
ciently	
Since an approximation to � with absolute error less than � automatically yields an

approximation to j�j with absolute error less than �� approximating j�j �d can be analyzed
by the previous lemma	

Next recall that the derivative of sin and cos is bounded by �� Hence if x is an approx�
imation to x with error less that � sin x or cosx is an approximation to sin x and cosx
with �absolute or relative� error �� too	 Now Brent�s results ��� on approximating �� sin�
and cos can be used to approximate 
kd 
 cos �k�

d � i sin �k�
d �

Accordingly� in order to show how to approximate cos 

d�� � i sin 


d�� we only need to
show how to approximate ���

Observe that �� 
 arctan
�
��
��
�
� The derivative of arctan is bounded in absolute value

by � and Brent ��� also showed how to approximate arctan e
ciently	 Therefore it remains
to show how to approximate ��

�� � Since we can approximate � we can also approximate

the real and imaginary part of �� Finally we can e
ciently approximate the ratio ��
�� by
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approximating �� and 

�� separately� provided we can derive good upper and lower bounds

on �� and ��� respectively	 A good upper bound on the imaginary part follows from the
upper bound on ���� given in Lemma �	�	 It remains to derive a lower bound on ���

By the root separation bound the di�erence between two di�erent roots of a poly�
nomial f 


Pm
i�� fiX

i � C�X �� is at least n��n�����jf j
�n� j��f�j
��� where ��f� is the
discriminant of f �see �����	

By Lemma �	� and Lemma �	� we know that � is a root of a polynomial whose degree
is bounded by n and whose length is at most n�jpjn� ���n� Next consider i�� i 


p���
Its minimal polynomial is f�
iX�� Moreover j��j 
 


� ji� � i�j� where i� is the complex
conjugate of i�� But �i� is also a root of f�
iX�� To deduce a lower bound on j��j we
may therefore apply the root separation bound	 Observing that the discriminant of a
polynomial in Z�i��X � is an element of Z�i� �see for example ����� and therefore satis�es
j��f�j 
 �� this yields

j��j 
 ���n
��logn�l�L��n logn�
�

Since the logarithm of this bound in polynomial in the input size of � this su
ces for our
purposes and the lemma follows	

Recall that the absolute error � required for the approximations in Corollary �	� needs to
be only of the order O�n��logn�l�L� hence the results of this section can be summarized
in

Corollary 
�	 Approximations to �� d�
p
�
� and d�

p
�� as required by Corollary ��
 can be

determined in polynomial time�

	 Testing for equality


In the previous sections it has been shown how to compute the coe
cients of a number � �
Q��� such that if a ratio of radicals d�

p
�
�d�

p
�� is contained in Q��� then � 
 d�

p
�
�d�

p
���

But it still remains to verify this equality	
In this section we �rst describe a deterministic algorithm that solves this problem	

This result is based on a recent algorithm of Ge ���	 Ge�s algorithm is complicated and
as an alternative we describe a simple probabilistic probabilistic algorithm to determine
whether � equals the ratio d�

p
�
�d�

p
��� Let us �rst state Ge�s result	

Theorem ��� �Ge� Let Q��� be an algebraic number �eld� where � is an algebraic in�
teger with minimal polynomial p�X� 


Pn
i�� piX

i� pn 
 �� pi � Z� jpj� � �l� Assume
that �i� i 
 �� � � � � k� are elements of Q��� with ��i� � �L and assume furthermore that
mi � Z� i 
 �� � � � � k� It can be decided in time polynomial in n� l� L� and maxflogmig
whether

Qk
i�
 �

mi

i 
 ��

Applying this result to our problem yields

Corollary ��� Given the element � from Corollary ��
 it can be decided in polynomial
time whether � 
 d�

p
�
�d�

p
���

Proof�Using Ge�s algorithm we �rst determine in polynomial time whether �d�d��d�� 
 �d�
 �
If equality does not hold then � �
 d�

p
�
�d�

p
��� too	



��

However� even if �d�d��d�� 
 �d�
 this does not necessarily imply that � 
 d�
p
�
�d�

p
���

All that can be deduced from this equality is that � d�
p
�� is a d
�th root of �
� It does not

show that it is the root denoted by d�
p
�
� To check whether it is d�

p
�
 a bit comparison

test is applied	
If � d�

p
�� is a d
�th root of �
 it can be written as 
 d�

p
�
� where 
 is a d
�th root of

unity	 Hence j� d�
p
�� � d�

p
�
j 
 j
 � �jj d�p�
j� By Lemma �	� j d�p�
j 
 ����n logn�nl�nL� �

Moreover� two d
�th roots of unity have distance at least �� log d��
� To verify this bound
recall that the d
�th roots of unity correspond to the vertices of a regular d
�gon inscribed
in the unit circle in the plane	

Together� this shows that if � d�
p
�� �
 d�

p
�
 although �d�d��d�� 
 �d�
 then � d�

p
�� and

d�
p
�
 di�er by at least � 
 ����n logn�nl�nL�
� � Hence in the �nal step of the algorithm

we compute d�
p
�
 and � d�

p
�� with precision at least �� Using the results of the previous

section this can be done in polynomial time	

Remark that if Q���� d�
p
�
� and d�

p
�� are real then the bit comparison test is not necessary	

In fact� in this case �d�d��d�� 
 �d�
 implies � d�
p
�� 
 d�

p
�
 or �� d�

p
�� 
 d�

p
�
� In both cases

the ratio d�
p
�
�d�

p
�� is in Q����

In the remainder of this section we show how to replace Ge�s algorithm by a simple
probabilistic algorithm	 The algorithms will decide whether �d�d��d�� 
 �d�
 correctly
with probability at least 


� � Applying the algorithm repeatedly yields any desired error
probability	

Assume b
� b�� c � Z such that bi�i � Z���� c� � Z���� De�ne #�i �
 bi�i and #� �
 c��
Then �d�d��d�� 
 �d�
 is equivalent to

bd�
 #��
d�#�d�d� � bd�� c

d�d� #�

d� 
 ��

which is an equation in Z���� Denote the algebraic number on the left�hand side of the
equation by � � Z���� The probabilistic algorithm works as follows�

Algorithm Probablistic Checking�

��� Set C �
 ��d
d��n logn � nl � nL�	

��� Randomly choose �� logC integers from the interval I 
 ��� ��logC ��

��� For each integer z chosen in Step ��� compute the coe
cients of � taken modulo z by
reducing after each arithmetic operation in Z��� the coe
cients of the result modulo z	

��� If for each z the coe
cients of � taken modulo z are zero then output � 
 �� otherwise
output � �
 ��

Three things remain to be done	 It has to be shown that in Step ��� the algorithm really
determines the coe
cients of � taken modulo z� Then the run time has to be analyzed	
And �nally it has to be shown that the error probability is less than 


� � The correctness
of Step ��� follows from the next lemma	

Lemma ��� Let �
� �� � Z���� z � Z� and denote by ��i�z the number that is obtained by
reducing the coe
cients of �i modulo z� Then

���
�z � ����z�z 
 ��
 � ���z



Computing Sums of Radicals in Polynomial Time ��

and
���
�z����z�z 
 ��
���z

using arithmetic in Z����

Proof� For the addition nothing has to be done	
For the multiplication it su
ces to show that for two integer polynomials g
� g����

�g
�p

�
z

�
�g��p

�
z

�
p

�
z



�
�g
g��p

�
z
�

where �f�p denotes the polynomial f modulo the polynomial p�
Let ri 
 �gi�p� Furthermore let

ri 
 r�i � zri�

with r�i 
 �ri�z �
Then ���

�g
�p

�
z

�
�g��p

�
z

�
p

�
z



��
r�
r

�
�

�
p

�
z
�

By de�nition �
�g
g��p

�
z


�
�r
r��p

�
z
�

Now
�r
r��p 


�
r�
r

�
�

�
p
� z

�
r�
r� � r��r
 � r
r�

�
p
�

since for a non�constant polynomial p the homomorphism Z�X � 	 �Z�X ��p induces an
isomorphism of Z onto itself	

From the previous equality we �nally get

�r
r��p 

�
r�
r

�
�

�
p
�

which proves the lemma	

Remark that ���
�g
�p

�
z

�
�g��p

�
z

�
p

�
z



�
�g
g��p

�
z

is not correct if z is a non�constant polynomial	
Due to the following four facts the run time of the algorithm is polynomial	 First�

polynomially many integers z are chosen in Step ���� second� the size of each z is bounded
by a polynomial in the input size	 Third� arithmetic in Z��� can be done in polynomial
time �see ����� and� fourth� the reduction steps can be performed in polynomial time
�see ����	

It remains to analyze the error probability of the algorithm	 First observe that if
� 
 � then the algorithm will give the correct answer	 On the other hand� if the algorithm
answers � �
 � this answer is also correct since the algorithm found an integer z such that
the coe
cients of � are non�zero modulo z� Hence z witnesses � �
 ��

Call an integer unlucky if it divides all coe
cients of � or� equivalently� the gcd of these
coe
cients	 Otherwise we call z lucky	 If � �
 � then exactly the unlucky numbers will lead



��

to an incorrect answer of the algorithm	 Hence to prove the claim that the algorithm gives
the correct answer with probability at least 


� we have to show that among the integers z
chosen in Step ��� with probability at least 


� one number is lucky	
We need a bound on the gcd of the coe
cients in ��

Lemma ��	 Let �
� � � ��d � Z��� such that ��i� � �L� i 
 �� �� � � � � d� and � is as usual�
Then the coe
cients of

Qd
i�
 �i are bounded in absolute value by �d�logn�n�l�
��L��

Proof� Let Ri�X� 

Pn�


j�� r
�i�
j Xj be de�ned by Ri��� 
 �i	 Hence computing the coe
�

cients of
Q
�i is the same as computing the coe
cients of

Q
Ri�X� mod p�X�� where p is

the minimal polynomial of �	Q
Ri�X� is a polynomial of degree �n���d and its coe
cients are bounded in absolute

value by �d�logn�L�	 Write
Q
Ri�X� as

Pd�n�
�
i�� miX

i and consider the following matrix�

d�n� ��� n� � rows

�������
������

	





�

� pn�
 � � � p
 p�
� pn�
 � � � � � � p
 p�
	 	 	

� pn�
 � � � p
 p�
md�n�
� md�n�
��
 � � � � � � � � � � � � m
 m�

�





�

Using Gauss�elimination this matrix can be transformed into an upper triangular matrix

d�n� ��� n � � rows

�������
������

	





�

� pn�
 pn�� � � � p
 p�
� pn�
 � � � � � � p
 p�
	 	 	

� pn�
 � � � p
 p�
� m�

n�
 m�
n�� � � � � � � m�


 m�
�

�





�

It follows that m�
i are the coe
cients of

Q
Ri�X� modulo p�X�	

We have to analyze this process	 Denote by Li an upper bound on the absolute values
on the entries in the last row after the i�th step of the Gauss�elimination	 In particular�
L� � �d�logn�L�� We have Li�
 � jpj�Li � Li 
 �jpj� � ��Li� Hence

Li � �jpj� � ��i�d�logn�L��

As we have to apply d�n� ��� n steps in the Gauss�elimination the lemma follows from
jpj� � �l�

Recall from Lemma �	� that jb
j� jb�j� jcj� ���
�� ������ ���� � ���n logn�nl�nL� � Hence the
previous lemma gives a bound of

��d
d��n logn � nl � nL� 
 C

for the bit size of the coe
cients of �� Accordingly� the gcd of the coe
cients in � is
bounded by �C �

Unfortunately� an integer z � Z may have almost z
ln �

ln ln z di�erent divisors �cf	 ����	 This
is the main reason why we cannot show directly that most numbers in I are lucky	 Instead
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we will show that most primes in I are lucky and that by choosing randomly ��C numbers
from I with probability 


� at least one of them is a lucky prime	
First note that any integer z has at most log z� log log z di�erent prime divisors �see ����	

Hence the gcd of the coe
cients of � has at most C distinct prime divisors	
On the other hand� the number of primes less than an integer x is a least 


�x� ln x
�see ����	 Hence the number of primes in I is at least 


��
� logC�� logC 
 �logC��� which

shows that a random prime in I is unlucky with probability at most 

� �

It also follows from the lower bound on the number of primes less than x that a random
number in I is composite with probability at most �� 


��C � Therefore the probability that
none of the numbers chosen in Step ��� is prime is bounded by ��� 


��C �
��C 	

Since
�
�� 


��C

���C � 

e � the probability that no prime has been chosen in Step ��� is

bounded by e�� � 

� �

Now there are two ways we may fail to hit upon a lucky integer	 First no prime may
have been chosen	 Second� even if a prime has been chosen it may not be lucky	 Both
cases happen independently and with probability at most 


� � This shows that the error
probability is of the algorithm Probabilistic Checking is at most 


� � Summarizing it has
been shown

Lemma ��
 The algorithm Probabilistic Checking runs in polynomial time and gives
the correct answer with probability at least 


� �

� Putting things together

The results of the previous three sections can be summarized in the following theorem	

Theorem ��� Suppose d�
p
�
� d�

p
�� are radicals over an algebraic number �eld Q��� such

that Q��� �
� ��� is an admissible radical extension of Q���� Furthermore let � be an
algebraic integer with minimal polynomial p�X� 


Pn
i�� piX

i� pn 
 �� pi � Z� jpj� � �l

and assume ��
�� ���� � �L� It can be decided in time polynomial in n� l� L� and log d
� log d�
whether the ratio d�

p
�
�d�

p
�� is an element of Q���� If so� the representation d�

p
�
�d�

p
�� 




c

Pn�

i�� ci�

i� c� ci � Z� can also be computed in polynomial time�

As in the rational case due to Corollary �	� this result immediately extends to sums of
radicals	

Theorem ��� Let f d�
p
�
� d�

p
��� � � � � dk

p
�kg be a set of radicals over the algebraic number

�eld Q��� such that Q��� d�
p
�
� d�

p
��� � � � � dk

p
�k� is an admissible radical extension of Q����

Assume that � is an algebraic integer whose minimal polynomial has degree n and has
length jpj� � �l� Furthermore assume that ��i� � �L� i 
 �� �� � � � � k� It can be decided
in time polynomial in n� l� L� and maxflog dig whether a sum S 


Pk
i�
 �i

di
p
�i� �i �

Q���� ��i� � �L� is zero�

Proof� First using the algorithm of the previous theorem the set f d�
p
�
� d�

p
��� � � � � dk

p
�kg is

partioned into subsets R
� � � �Rh such that two radicals are in the same subset if and only if
their ratio is an element of Q���� To simplify the notation assume di

p
�i � Ri� i 
 �� � � � � h�

This partitioning can be done in polynomial	



��

Also in polynomial time elements �ij can be computed such that if dj
p
�j� di

p
�i � Q���

then dj
p
�j� di

p
�i 
 �ij � So
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kX
i�


�i di
p
�i 


hX
i�


�
� X

dj
p
�j�Ri

�j�ij

�
A di
p
�i�

Since for any pair of di�erent radicals in R� 
 f d�
p
�
� d�

p
��� � � � � dh

p
�hg their ratio is not in

Q��� we conclude by Corollary �	� that S 
 � if and only ifX
dj
p
�j�Ri

�j�ij 
 � for i 
 �� � � � � h�

Since arithmetic in Q��� can be done in polynomial time �cf	 ����� the bound given in
Lemma �	� for the coe
cient size of the elements �ij implies that these sums can be com�
puted in polynomial time	 In particular� it can be decided in polynomial time whether
they are zero	
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