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Abstract

For sums of radicals Zle v; d\z/ﬂ, where v;, p; are elements of some real algebraic
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to decide whether the sum is zero. The time is polynomial in the number of bits
required to represent «, the v;’s, p;’s and d;’s. The algorithm can be extended to
sums of complex radicals over certain complex algebraic number fields.
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1 Introduction

A standard problem in Computer Algebra as well as in other areas of Computer Science is
to decide whether some complicated expression, which may be given as a result of symbolic
computations, is zero or, more general, contained in some field, for example the field of
rational numbers. In this paper results theorems from algebraic number theory we show
how to solve this problem for a large class of expressions in polynomial time.

Consider for example a sum S of the form § = Ele c; 4/q; with ¢;,q; € Q,d; € N
such that 4/¢; € R. We prove that the question whether this sum is zero or, more general,
rational can be decided in time polynomial in the number of bits necessary to represent
S. Observe that sums of the form described above play an important role in various
geometric problems (e.g. Euclidean shortest paths, Euclidean traveling salesman tours).
It is not known how to decide efficiently whether such a sum is positive. Although our
result concerning these sums obviously relates to this question it has only little effect on
the complexity of determining the sign of a sum of radicals. In fact, it only shows that if
the latter problem is in NP then it is already in NPNco-NP.

In the main part of the paper we describe an algorithm that applies to sums of a much
more general form than the one mentioned above. In fact, the algorithm can be applied to
sums § = Ele v;4/pi, where v;, 4/p; are elements of some algebraic number field Q(a)
and the extension Q(a, 4/p1, %/pz,- .., %/pk) is a so-called admissible radical extension of
Qla).

These extensions are basically defined by the following property: Any p-th root of
unity, p a prime, that can be written as

k
71_[ kV pieiv 7€ Q(Oé), e; €74,
=1

is already an element of Q(«).
In particular, if Q(a, 4/p1, %/p2, ..., %/Pr) C R then the extension is admissible.
The algorithm for sums of radicals over algebraic number fields is based on the following
corollary to a theorem due to M. Kneser [13]:

Let Q(a, 4/p1, ..., %/pr) be an admissible radical extension of Q(a) such that

d; .
VP4 Qua) for all i # .
i

then the elements of the set {%/p1,...,%/pr} are linearly independent over Q(a).

Special cases of Kneser’s theorem have first been shown by Besicovitch [5], Mordell [21],
and Siegel [22]. If Q(«) contains a primitive d;-th root of unity for all ¢ then the theorem
follows immediately from Kummer theory (see [4]).

Using Kneser’s theorem the question whether a sum of radicals over Q(a) is zero
basically reduces to the question whether certain ratios of radicals are contained in the
algebraic number field Q(a).

We describe an algorithm solving this problem that runs in polynomial time. Given a
ratio of radicals 4/py/%/pz using Newton iteration we first compute an approximation to
the ratio. Using this approximation the lattice basis reduction is applied to determine an
element in Q(«a) such that if the ratio is in Q(«) then it must be this element. Finally, we
use a recent algorithm of Ge [8] to decide whether the ratio and the element computed in
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the previous step are equal. We also present a simple probabilistic algorithm (of Monte-
Carlo-type) that can replace Ge’s result.

2 Linear dependence between radicals

In this section we study linear relations between radicals. Based on a result due to Kneser
[13] we prove that under certain conditions the elements in a finite set of radicals are
linearly independent if any two of them are linearly independent.

Throughout this section we assume that F is a subfield of the complex numbers C. An
element v € C is called algebraic over F'if it is a root of some polynomial p(X) € F[X].
The smallest degree polynomial with leading coefficient 1 and root v is called the minimal
polynomial of ~.

A field I/ D F is called an algebraic extension of F'if each element in F is algebraic
over F. An element v € C is called a radical over F iff

e F.

for some positive integer d.

Hence radicals are solutions of equations of the form X% —p =0, p € F, d € N, and
are therefore algebraic over F.

Although d and p alone do not uniquely specify a number, throughout this paper we
will denote a radical by the familiar symbol #p. Sometimes this symbol may in fact refer
to any of the d different solutions to X¢ — p = 0. On other occasions, however, statements
may be correct only for a specific solution of this equation. Therefore it is always assumed
that &p denotes a unique complex number (This will be made more precise in Section 4.).

Definition 2.1 An algebraic extension I/ of I is called a radical extension iff it has

the form E = F(4/p1,..., %/pr) for a finite number of radicals 4/p; over I

As it turns out it is convenient to characterize radical extensions via group theory. Let F
be an algebraic extension of F. By F* and E* denote the multiplicative groups F'\{0} and
FE\{0}, respectively. Assume F = F((G) is generated by the elements of a subgroup G of
I*,i.e. I is the smallest field containing /' and G. Throughout this section for a group
G denote by I'(G) the group F*G := {v|3 € F*,vy € G}.

With these notations E' is a radical extension iff the factor group I'(G)/F™ is finite.
In fact, if F/ is a radical extension as defined in Definition 2.1 then it is also generated by

the group G = {ﬂ Hle 4/pi‘ilei €L, B € F*} . In this case G = I'(G).
On the other hand, if F is generated by a group G such that I'(G)/F™ is finite then

i) For any element v in G an integer d = d() exists such that v¢ € I™*

ii) A finite subset H of G exists such that any element of G' can be written as a product
of an element in H and an element in F™*,

i.e. F is generated by a subset H satisfying (ii), a finite set of radicals over F.
As Kneser [13] has shown for a large class of radical extensions £ = F(G) the degree
of the extension can be determined by looking only at the group I'(G).

Definition 2.2 A radical extension 2 = F(G) is called admissible if it satisfies the
following two conditions:



(1) If I'(G) contains a p-th root of unity C,, p an odd prime, then ¢, € F*

(ii) If 14+ /—1 € T(G) then /-1 € F*.

Theorem 2.3 (Kneser) If ' = F(G) is an admissible radical extension then the degree
of E over F is the same as the index of F* in I'(G), i.e. the number of elements of the
factor group I'(G)/ F*.

Observe that the degree of the radical extension I/ = F/((G) is always at most the index of
I'(G) in F*.

Before we derive some corollaries from Kneser’s theorem let us describe important
classes of admissible radical extensions.

Example 2.4 The first class consists of those radical extensions E that are contained in
the real numbers R. These extensions are admissible since the only real roots of unity are
+1 and —1.

For this class of extensions Theorem 2.3 was originally proven by Siegel [22].

Example 2.5 A radical extension F(4/p1, %/p2;. .., %/pr) such that I' contains /—1
and for all prime divisors p of d = Hle d; a primitive p-th root of unity is an admissible
extension.

To proof that these extensions are indeed admissible it suffices to prove property (ii) from
Definition 2.2.

Assume that for p prime the group G = I'(G) = {ﬁ Hle &/piTle €4, B e F*}
contains a p-th root of unity (. Since (¥ = 1 € F for some k between 1 and p the k-th
power of { must be in F. If the smallest & for which this is true is strictly less than p then
F contains all p-th roots of unity. Hence, for these p the condition of Definition 2.2 is
fulfilled.

So suppose that pis the smallest integer k such that (¥ is in F. Now for any element 7
in G its d-th power lies in F. Moreover, we claim that for each v in G the smallest integer
k such that v* is in F divides d. The fact that F(G) is admissible follows from this claim.

To prove the claim let & be the smallest integer such that v* € F for v € G. Assume
k does not divide d. Then d can be written as d = kl + r, with 0 < r < k. Since ’yd el
and % € F it follows 7" € F, contradicting the minimality of k. This proves the claim.

However, not all radical extensions are admissible. The simplest counterexamples are
the extensions F((), where ( is a root of unity not contained in F. On the other hand, by
enlarging I any radical extension £ = F((G') can be made admissible: One simply has to
adjoin to F the appropriate roots of unity.

The main algorithm of this paper is based on the following corollary to Kneser’s the-
orem.

Corollary 2.6 Let F(4/pi,...,%/px) be an admissible extension of F. If a sum § =

ko K; %/p; is zero for k; € F not all zero then different radicals 4i/p;, 4;/p; exist such
i=1 p Pis N/P;
that

i/ p; = /{W
for some xk € F.

In other words, the radicals 4/p1, ..., %/px are linearly independent over F' if any two
of them are linearly independent.
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Proof: By GG = I'(G') denote the group {ﬁ Hle &/picile; €L, B e F*} .
We claim that if for every pair of different radicals 4/p;, 4/p;

Vil §/pi & 1,
then the set {4/p1,..., %/pr} can be extended to a basis of F'(4/p1, %/pz, ..., %/pk) over

F. 1t follows from Kneser’s theorem that a complete system of representatives for the
factor group I'(G')/F™ is a basis for the extension £. Hence we only need to show that
{4/p1s-- ., %/pr} can be extended to a complete system of representatives of the factor
group I'(G)/F™.

To prove this let .5 be a complete system of representatives. Not all radicals ¢/p; need
to be an element of 5. However, the condition d\z/p_z/W ¢ F implies that any radical 4/p;
is a multiple of a different element s; in 5. Replacing each s; by 4/p; still yields a complete
system of representatives for I'(G)/ F*. The claim and hence the corollary follows.

For the analysis of our main algorithm one more corollary to Kneser’s theorem is needed.

Corollary 2.7 Let 4/p1, %/pz be radicals over F such that F(%/p1) and F(%/pz) are

admissible radical extensions. Denote the greatest common divisor of di,dy by d. If

W/pi/%/pz € F then 4/pi, %/py? € F.

Proof: 4/pi/%/p; € F implies (4/pr/%/p2)* € F. Hence
d{/p_ld — ’}/d‘%/p_Qd

for some y € F.

We claim that the degree of 4/p? over F is a divisor of d| = dy/d and that likewise
the degree of %/py? over F is d}/d. We proof this only for d{/p_ld.

4/pr? = 4/py for a di-th root of pi. Since F(4/py) is an admissible radical extension
so is F( 4/p1) C F(%/p1). By Theorem 2.3 the degree of 4/py over F'is the smallest
integer k such that d{/,ak is in F*. As in the discussion of the second class of admissible
extensions one shows that k divides d.

Returning to our original problem observe that the equality d{/p_ld = ’ydg/p_gd implies
that d{/p_ld and dg/p_gd have the same degree over F. Since this degree is a divisor of d}, d},
and since ged(d], d}) = 1 the degree must be 1, hence 4/pr?, %/p2" € F.

For the sake of completeness let us mention one more corollary to Kneser’s theorem al-
though this will not be used in the sequel.

As mentioned already in the proof above, Kneser’s theorem implies that the minimal
polynomial of a radical &p over F' that generates an admissible extension of I has the
form X* — p*, where p* € F. More general, if F((G) is an admissible extension then the
minimal polynomial of any element in I'(G) has the form X* — v ford € N, v € F.

Now consider an admissible extension F((G) and a subgroup H of G. F(H) is an
admissible extension of F' and F((G) is an admissible extension of F(H). We want to
determine the form of the minimal polynomials of elements in G (or equivalently I'(G))
over F(H). From Kneser’s theorem follows that these polynomials have the form X% — v,
where k is a positive integer and 7 is a linear combination of elements in I'(H) with
coefficients in F. However, it can be shown that v is an element of I'(H ) itself. It suffices
to prove the following result.



Corollary 2.8 Let F(G) be an admissible radical extension of F. Assume that H is a
subgroup of G containing F*. Then the degree of E over F(H) is the index of I'(H) in
I'(G), i.e. the number of elements of the factor group I'(G)/T'(H).

Proof: The degree [F(G) : F(H)] of the extension F(G) over F(H ) is the same as the
degree [F(G) : F] of F(G) over F' divided by the degree [F(H): F] of F(H) over F.
From Kneser’s theorem we know that [F(G) : F] and [F(H) : F] are the indices of F™*
in I'(G7) and I'( H ), respectively. Let us denote these indices by [['(G) : F*] and [I'(H ) : F™].
The factor group I'(H )/ F* is a subgroup of the factor group I'(G')/F™*. Moreover by
one of the isomorphism theorems for groups (see [10]) the factor group I'(G)/I'(H) is
isomorphic to the factor group of I'(H)/F* in I'(G)/F*. Hence

is the index of I'(H) in T'(G).

As a consequence from this corollary we get for example that the only real radicals that
are contained in a real radical extension F((') are the obvious ones, they are exactly the
elements of I'(G).

3 The rational case

To demonstrate the basic features of our algorithm in this section we restrict ourselves to
real radicals over the rational numbers.

So suppose that we are given a set of real radicals {4/q1, %/q2,..., %/qx} over the
rational numbers. We want to check whether these radicals are linearly independent.
Likewise, we want to determine whether a given linear combination of these radicals with
coefficients in Q is zero.

Due to Corollary 2.6 we only have to check for any pair of radicals 4/q;, 4/g; whether
their ratio is a rational number. As will be seen later, using Corollary 2.7 this property
in turn can be tested by determining for three radicals over Q whether they are rational.
So let us consider this problem first. From unique factorization follows

Lemma 3.1 Let ¢ € Q, ¢ = %, gcd(a,b) = 1 and d € N. Then g € Q if and only if
Ya€Z and Vb € 7.

We now show how to check in polynomial time whether an integer is a d-th power.

Lemma 3.2 [t can be decided in polynomial time whether /z € Z and, if so, it can also
be computed in polynomial time.

Proof: We may assume d < log z. Otherwise X — z = 0 has a solution in Z if and only
if z=1or z = —1. Furthermore we can restrict ourselves to positive integers.

The integer 2’ € Z such that if /2 € Z then /2 = 2’ can be determined by a binary
search on the integers in the interval I = [0, 2%]], where [ = [log z] + 1. In each step of
the binary search we have to determine whether an element 2 from [ if raised to the d-th
power is smaller or larger than z or equal to z. The d-th power is computed by successive
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squaring. Also observe that we may stop when a power of Z has been computed that is
larger than z. Hence the binary search can be done in polynomial time.

Theorem 3.3 Let 4/q1,%/q2 be [-bit radicals over Q. It can be decided in polynomial time
whether the ratio of these radicals is in Q. Furthermore if the ratio is rational it can be
computed in polynomial time.

Proof: First the greatest common divisor d of dy and dy is computed.

By Corollary 2.7 if /g, /%/q; € Q then Wd =4/q;=¢ € Q,i=1,2. By Lemma 3.1
we can check whether this is the case by applying the algorithm leading to the previous
lemma to d} and the numerator and denominator of ¢;, i = 1, 2.

Then we compute ¢j/¢5 and determine (using again Lemma 3.1 and Lemma 3.2)

whether
q/
V q

All steps can be done in polynomial time.

Combining this result with Corollary 2.6 leads to

Corollary 3.4 Let {%4/q1,%/qz, ..., %/qk} be a set of real radicals over Q. It can be decided
in polynomial time whether this set is linearly independent over Q.

Moreover, for any sum S = Ele v;4/q; it can be decided in polynomial time whether
it 1S zero.

Proof: To check whether the set of radicals is linearly independent it suffices to apply the

algorithm of the previous theorem to the @ different ratios of radicals.

To check whether a sum 5 = Ele v;4/q; is zero first use the algorithm of Theorem
3.3 to partition R = {4/q1, %/qz, ..., %/qk} into subsets Ry, ..., Rj such that two radicals
are in the same subset if and only if their ratio is rational. To simplify the notation
assume ¢/q; € R;, @ = 1,..., h. Also the rational numbers r;; are computed such that if

W/W € Q then W/ 4/¢; = r;;. Hence

k h
SIZ?JZ'WIZ Z ViTiy & q;.
=1

=1 d}(/q] ER;

Since for any pair of different radicals in R’ = {4/q1, /02, ..., %/qr} their ratio is not
a rational number, by Corollary 2.6 5 = 0 if and only if

Z vir;; =0, fori =1,...,h.
4/TER;

These sums can be computed in polynomial time. By Theorem 3.3 the previous steps can
also be done in polynomial time.



4 Background and an outline of the general algorithm

In the remainder of this paper we generalize the results of the previous section to radi-
cals over algebraic number fields. This section surveys the fundamental definitions from
algebraic number theory and explains the problems that have to be solved to achieve the
general result on sums of radicals over algebraic number fields.

An algebraic number field F is a finite extension of Q. As is well-known any algebraic
number field can be generated by a single algebraic number a,i.e. £ = Q(a)is the smallest
field containing Q and a. If o is a root of a polynomial p(X) = >"7" p; X', p; € Z such that
p has relatively prime coeflicients, p, > 0, and p is the smallest degree polynomial with
root « then p called the minimal polynomial of a. The different roots ag = a, @y, ..., a1
of the minimal polynomial of a are called the conjugates of a.

The mappings 0;,7 =0,...,n — 1, which are defined as follows

0;:Q(a) — Q(aj)

n—1 n—1
g - Qiajv

are called the (n distinct) embeddings of Q(«) into the complex numbers. The o;’s are
field isomorphisms (see [19]) and the fields Q(«) are called the conjugate fields of Q(a).

The number )

A=Ala)= I[ (ai-«)

0=:1<j=n—1

is called the discriminant of a.

The ring of algebraic integers (or simply integers) in Q(«), denoted by R, is the set of
all 8 € Q(a) such that there exists an integer polynomial f(X)=>", f;X* with f, = 1
and f() = 0. This set endowed with the usual addition and multiplication in C forms a
ring (cf. [19]).

We may assume that a itself is an algebraic integer. If o is not and p(X) = Y% p; X"
is the minimal polynomial of o then p,« is an integer and generates the same field. If «
is an algebraic integer then Z[a] is a subring of R,. Since we cannot afford to compute a
basis for R, itself we will need a superset of R, as well.

A proof for the following lemma can be found in [19].

Lemma 4.1 Let a an algebraic integer. Then A(a) € Z and the ring of integers R, of
Q(a) is contained in the Z—module G = (Z/A) & (Z/A) a @ ... (Z/A) a1, de., any

. . . 1
number in R, can be uniquely written as % Yoy ciat, ¢ € 7.

Note that the inclusion is always strict.

Next a few words on the number of bits needed to encode number fields, elements in
these fields, and radicals over number fields. The representation for an algebraic number
field we use is the one that has been used for example by Loos [17]. In order to distinguish
Q(a) from its conjugate fields we assume that Q(«) is specified by the minimal polynomial
p of a and an isolating rectangle R, that is, a rectangle that contains no root of p except a.
It follows from the root separation bound (cf. [20]) that if |p;| < 2! for all i then R can be
specified using O(nlog n+nl) bits. That is, Q(a) can be encoded using O(n log n+nl) bits.
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However, for the sake of simplicity our theorems and algorithms we will never explicitly
mention the rectangle R.

In number theory usually an element 5 of an algebraic number field Q(«) is described
by an n-tuple (go,q1,---,Gn—2,¢u—1) € Q" such that p = E?:_Ol ¢, In this paper we
assume instead that 3 is encoded by an (n+ 1)-tuple (b,bg, b1,...,0,—2,b,_1) € Z"F! such
that 3 = %E?:_Ol b;a'. Moreover, we assume ged(b, bo, by, ...,b,_1) = 1 and b > 0. The
integer b will be called the denominator of p. By computing the least common multiple of
the denominators of the ¢; we can easily go from one representation to the other. In any
case, the total input size of p is a linear in n and the maximum bit size of the integers
Pis b, b;.

The question whether a sum of radicals 5" = Ele v d/pis Ui, pi € Q(a), is zero clearly
depends on the values of the radicals 4/p;. Hence in the algorithms to be described below
it is assumed that a radical @p is given by d, p, and a positive integer k between 0 and
d — 1 such that

p = Cllpla (cos %qﬁ +isin éqﬁ) :

where ¢ € (—m, 7| denotes the angle of p when written in polar coordinates, |p|é is the
positive d-th root, and {4y = cos %T” +¢sin %TW' For the sake of brevity, the integer £ will not
be mentioned explicitly.

In summary, the input size of a set of radicals { 4/p1, %/p2, ..., %/pxr} over an algebraic
number field is polynomial in the degree of the field, in the bit size of the coeflicients
of the minimal polynomial of «, in the bit size of the coeflicients of the p;’s, and in
logd;, i =1,2,...,k.

Before we can outline the basic algorithm we have to address one more question. The
main algorithm that decides whether a sum of radicals 5 = Ele vid/pis v, pi € Qa),
is zero, is correct only if Q(a, 4/p1, %/p2,. .., %/pr) is an admissible radical extension of
Q(a). How do we guarantee this property? As mentioned in Section 2, if Q(«a) and the
radicals 4/p; are real then the extension Q(a, 4/p1, %/pz,. .., %/pr) is admissible. This is
the situation that is most appropriate to our algorithms. The algorithm will be polynomial
in the input parameters mentioned above and these parameters are mutually independent.

However, if the radicals 4/p; are complex numbers, in general there is no satisfying
way to guarantee admissibility. To check whether Q(a, 4/p1, %/p2, ..., %/pr) is admissible
we know no better way than determining all roots of unity in I'(G) (using the notation
from Section 1). The methods of this paper lead to an algorithm for this problem. Its
run time, however, will be exponential in k. But given that much time we can determine
whether a sum of radicals is zero by a brute force bit comparison test.

By Example 2.5 in Section 2 we can avoid this problem by replacing Q(«a) by the field
containing Q(«a) and for all primes p dividing [ d; a primitive p-th root of unity. Using
standard methods in algorithmic algebraic number field (see [17]) a generating element
for this field can be found. However, the degree of this field and the complexity of the
following algorithms will again be exponential in k, leaving us with the same problem as
before.

We nevertheless describe our algorithms in the general setting of admissible extension
for two reasons. First, considering arbitrary admissible extensions instead of real radical
extension does not add anything to the problem. The same algorithms can be used.
And second, there are cases in which a complex radical extension is admissible without
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assuming a ground field Q(«) of exponential degree. In fact, the degree may even be of
the order max{logd;}. Consider for example the case in which the d;’s are huge powers of
a single small prime or of constantly many small primes. In these cases our algorithm will
also run in time polynomial in the input size.

Finally let us briefly outline the main algorithm. Due to Corollary 2.6 deciding whether
S = Ele v;4/p; = 0 can basically be reduced to k% tests whether a ratio of radicals
4/p1/ %/p2 is in Q(a). Our main task is to describe an algorithm for this problem. Since
the ring of integers in Q(«) is in general not a unique factorization domain we really
have to work with ratios and cannot, as in the rational case, restrict ourselves to roots of
algebraic integers.

The algorithm that decides whether a ratio of radicals is in Q(«) has three phases.
In the first one the ratio is approximated. In the second one, this approximation is used
to determine an element in Q(a) such that if the ratio is in Q(«) then it must be this
element. In the third step, it is checked whether the ratio of radicals really equals the
number determined in the second phase.

The first step is done using Newton iteration. In the second phase we use a variant of
the Kannan, Lenstra, Lovasz algorithm (cf. [12]) to reconstruct exact representations of
algebraic numbers from approximations.

For the third phase we present two different solution. The first one is deterministic and
based on a recent result of Ge [8]. The second one is a very simple probabilistic algorithm.

We describe the second phase first in order to determine the quality of the approxima-
tion that has to be computed in the first phase. But before we can do so, several bounds
on polynomials and representations of algebraic numbers have to be shown.

5 Some basic bounds

Let p=>" ,p;X' € C[X] be a polynomial with complex coefficients. The length |p|z of

1
p denotes the euclidean length (37 |p;|?)? of the vector (po,...,pn).
The measure M(p) of p is defined as

n—1
M(p) = |pa| J] max{1, |oy[}.
7=0

M (p) satisfies

M(p) < Ipl2

(see [20] and [28]). Combining the bound for the measure of a polynomial with Hadamard’s
bound for the determinant of a matrix yields an upper bound for the discriminant of a
polynomial p (see for example [14], [28]).

Lemma 5.1 Let o be an algebraic integer with minimal polynomial p. The discriminant

A of a satisfies

1
[AlZ < n”|pl3.
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Next we deduce some bounds on the representation size of algebraic numbers. For an
algebraic number 5 = [y of degree m its infinity norm [3]., is defined as the maximum
of the absolute values of its conjugates. If 3 is an element of the algebraic number field
Q(a) given by the representation § = %E?:_Ol biat, b,b; € Z, ged(b,bo, by, ... byq) = 1,
and if the distinct field embeddings of Q(«) over Q are o;, j = 0,...,n — 1, then [l =
max{loo(B)],[1(B); . .-+ |7r ()]}

The infinity norm is subadditive and submultiplicative, i.e.
(i) [a + Bloe < [a]oo + [Boos
(i) [afle < [@]oolBloo-
For § € Q(a) as above [] is defined as max{|bl, |bo|,|b1],. .., |bn-1]}. We will call [5]

the coefficient size or representation size of [ with respect to Q(«). [5] depends on the
field Q(«) and the generator a. But it will always be clear which field Q(«a) and which
generator we are referring to, therefore we do not mention them explicitly in the symbol
3.

The following lemma bounds the coefficient size of 3 with respect to its infinity norm.
Formulated differently the lemma has already been shown by Weinberger, Rothschild [27]
and others (see [14], [15], [28]). So we omit its proof.

Lemma 5.2 Let Q(a) be an algebraic number field, where o is an algebraic integer with
minimal polynomial p. Then any element 3 of the ring of integers R, of Q(«) satisfies

[8] < 0" |pl3"[B]oe-

We also need to bound the infinity norm of 3 and of 8~! by the coefficient size. First
let us recall from Loos’ paper on resultants [17] how to construct for an element 3 =
% E?:_Ol b;a',b; € Z, an integer polynomial whose roots are the conjugates of /3.

Let f(X) = YF,fX% and g(X) = Y7, ¢:X" be polynomials over an arbitrary
commutative ring R. The determinant of the following (n 4 m) X (n + m)-matrix M that
consists of m rows of shifted coefficients of f and n rows of shifted coefficients of ¢

fn fn—l fn—2 fl fO
Jo Jar oo o f1 Jo
M = fn fn—l U fl fO
I9m  Gm-1 s g1 9o
9Im Im-1 - g1 9o
L 9m Ym-1 g1 Yo |

is called the resultant res(f,g) of f and g.

Lemma 5.3 (Loos) Let § = %E?:_Ol biat,b,b; € Z be an element of Q(a). Denote by
B(Y) the polynomial B(Y) = Y170 b;Y". Then the resultant r(X) € Z[X] of bX — B(Y)
and p(Y') taken with respect to the ring Z[X] has roots 0;($),j = 0,...,n— 1. Here p is
the minimal polynomial of o and the o;’s are the distinct field embeddings of Q(«).
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To bound the length of the resultant polynomial of the previous lemma the following
generalization of Hadamard’s bound is used (see [9], [28]).

Lemma 5.4 (Goldstein-Graham) Let M(X) = (M;;(X)) be an n x n-matriz whose
entries are polynomials with complex coefficients. Denote by m;; the Ly-norm of M;;(X),
that is, the sum of the absolute values of the coefficients of M;;. Furthermore define M’
as M' = (m;;). Then the polynomial det M(X) € C[X] satisfies

| det M(X)|2 < H(M').
Combining these results yields
Lemma 5.5 Let Q(a) and [ be as above. Then

(i) B and 371 are roots of polynomials r and r', respectively, whose length is bounded by
[rl2 = [r']2 < 0" |pl3 15"
(i)
[Blee < 3[A]Ipl3

and
(670 < 0" |pl5[8]".

Proof: We may choose r to be the polynomial from Lemma 5.3. Moreover, if
r(X)=) rX' ez,

=0

then 37! is a root of
n

T/(X) = Z Tn—iXi-
=0
Hence |r|3 = |r'|]2. To get the bound on |r|y apply the Graham-Goldstein bound to the
matrix defining » which shows

n—1 %
rl2 = [r']2 < Ipl3 (Z [il* + (160l + Ibl)z) < |Ipls(n+3)2[8]" < n*"[pl5[5]"

=1

Since [371] s < M(r') < |7/|5 this proves the bound for [371]..

To prove the better bound on []., observe that p is non-linear and irreducible hence
its length is at least v/2. [#]o, < [B]max{3 "7 |oj(a)|'}, where the maximum is over all
field embeddings o; of Q(a). Since [a]. < |plz we get

n—1 ' n—1 ' |p|n _1
o)l < 3 Ioly < 22
z; ]( ) ; 2 |p|2 -1

=

and the bound for [3].. follows from |p[» — 1> v2—1> 1.

We apply the previous results to derive a bound on the representation size of a ratio of
radicals over Q(a).
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Lemma 5.6 Let Q(a) be as before. Assume 4/p1, %/pa are radicals over Q(a) such that
Q(a, p1, p2) is an admissible radical extension of Q(«). If 4/p1/%/p2 € Q(a) then

[
P

Proof: First we prove a bound on the denominator of 4/p;/%/ps.

By Lemma 2.7 4/p1/%/p2 € Q(a) implies d{/p_ld € Q(a), dg/p_gd € Q(a), where d =
ged(dy, dy). Furthermore let df = dy/d, d), = dy/d.

Hence d{/p_ld is a root of

< 30" |pl3"[p1]?[p2]*"-

X P

and dg/pg_d is a root of
xh o L
P2

4/p1 is a solution to the equation X% — p; = 0. Let b be the denominator of p;. by/p1
is a solution to X% — b%1p; = 0. Since b?p; is an algebraic integer b4y/py is an algebraic
integer, too.

We need a similar result for W. Again we only need to bound the size of a rational
integer o’ such that b’p% is an algebraic integer.

It is well-known that if p% is a root of the polynomial » € Z[X] whose leading coefficient
is r,, then rmp% is an algebraic integer. By Lemma 5.5 p% is root of a polynomial r whose

length |r|y is bounded by n?"|p|3[ps]”. This gives the bound on . Moreover, combined
with the bound on b it shows that an integer c, |¢| < |p|5n®"[p1][p2]”

c (di /—pl/dg/pz)d is an algebraic integer. Next observe that Z% is a root of

exists such that

Xd—(zg)d,

which is by assumption a polynomial over Q(«). As before we conclude that ¢ (dypl/ dg/pg)
is an algebraic integer.
By Lemma 5.2 and the submultiplicativity of the infinity norm

2
%/

< 307" p[3"ellprloc P2 ']oc-

4/p1
42/p2

discriminant of a (see Lemma 4.1). Hence the denominator of ZVZ_; is bounded by |¢||A].

Using the bound on ¢ from above, the bound for A (Lemma 5.1), and the bounds for
[p1]oo, [P5 oo from Lemma 5.5, the lemma follows.

Since ¢ is an algebraic integer its denominator is bounded by |A|, where A is the

The important thing to notice here is that the bounds are independent of d. This may
seem quite surprising but it only reflects the fact that the size of the coefficients of a factor
of a polynomial depends only on the degree of the factor and on the size of the coeflicients
of the polynomial but not on its degree (see for example [14], [27]).
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6 Lattice basis reduction and reconstructing algebraic num-
bers

In this section we answer the following questions:
Given an approximation 7 to an element v € Q(«a) and a guarantee that the integer coef-
ficients ¢, ¢; in v = % E?__Ol c;of are bounded in absolute value by 28. Can the coefficients
¢, ¢; be computed exactly? How good do we have to choose the approximation 7?7

We will show that a variant of the Kannan, Lenstra, Lovdsz algorithm to reconstruct
minimal polynomials (see [12]) can be used to solve this problem.

Given a set V of vectors V = {v1,...,v,} C R", the lattice A(V) generated by these

vectors is the set
A(V) = {zzzﬂ | z; € Z}

=1

of vectors that can be written as linear integer combinations of the vectors in V. The
vectors v; will be described as the columns of an (n X m)-matrix, which is also called V.

If we assume that the columns in V' are linearly independent any vector v € A(V) can
be identified with a unique vector (z1,...,2,) € Z™ such that v = >, zv;. Using the
matrix V' this reads as v = V(zq,...,2,)7.

Observe that a lattice is a discrete object. So the length of a shortest vector taken
with respect to the euclidean length ||.||2 is uniquely defined although there may be many
different vectors of this length. It is not known whether a shortest vector can be computed
in polynomial time. However, in their break-through work on polynomial factorization
Lenstra et al. [16] used the concept of a reduced basis of a lattice to show that in polynomial
time a vector can be computed that is not too large compared with a shortest vector.

We will not define exactly what a reduced basis is, instead we just state its basic
properties in the following lemma.

Lemma 6.1 Given a lattice A(V), V = {vi,...,vn} C Z", a reduced basis of A(V') can
be computed in polynomial time.
The length of the shortest vector in a reduced basis of A(V') differs from the length of

a shortest non-zero vector in the lattice by at most a factor of 975,

As mentioned, both properties were originally proven in [16]. The lattice reduction algo-
rithm of [16] has been improved by various authors. The best run times so far are due to
Schnorr [23] and Schénhage [25].

The next theorem establishes the relationship between shortest vectors in a reduced
basis and representations of algebraic numbers.

Theorem 6.2 Let Q(a) be an algebraic number field, where o is an algebraic integer with
minimal polynomial p(X) = >7" pi X', pn = 1,p; € Z. Let vy be an element in Q(a) such
that [y] < 2B, B > 1. Assume s and € are real numbers satisfying

2
s> 2% 24”n”|p|§24B”, €= 457 L.

Moreover, suppose ¥, @ are approximations to vy and a, respectively, such that the following
estimates hold for the real and imaginary parts R, of v, a

RO = RO < 56 137) = ()] < 56
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R(@) = R(a')| < %g, I3(@) — S(ai)| < %g, Vie{1,2,...n—1}.

If A(V) is generated by the columns of the following (n + 3) X (n + 1) matriz

[sR(F) s sR(@) sR(@%) ... sR@ )]
sS(F) 0 sS(@) sS(@?) ... osS(@h)
1 0 ... 0
velo 10 0 7
0 0 ... 0 1 ]

then the shortest vector g = V (¢, co, ¢y, .. oy en_1)T of a reduced basis of A(V') satisfies

n—1

v = %zciai.

=0
Moreover, ged(c, co,c1, ...y 6p1) = 1.

Proof: The columns in V' are linearly independent. Each vector v € A(V') can be identified

with a unique vector (2,20, 21,...,2,_1) € Z"t" such that v = V(z, 20,21, .., 20_1)".

Every vector (2, 20, 21, - - -, 2p—1) € Z"* in turn can be identified with a unique polynomial

o(X,Y) = 2X 4+ 377 %Y in the two variables X and Y. Hence there is a one-to-one

correspondence between vectors v € A(V') and certain polynomials v(X,Y) € Z[X,Y].
The euclidean norm ||v]|z of a vector v € A(V') satisfies

n—1

loll} = Lo @+ =P + 3 [l

=0

Consider the vector g = V(e, co, .. . ¢n_1)" and the polynomial g(X,Y) = CX—I—E?:_OI eY?,
corresponding to the representation v = _Tl ?:_01 cial, e, ¢; € 7.
g(v,a) =0 hence

l9(7, @) = lg(7,@) — g(7, )| <

n—1
<fel[7 =71+ ledl@ - a'] < n2Pe,
=1
since by assumption |c| < 2B, |¢;| < 2B forall i = 0,...,n—1. So the length { of a shortest

vector in a reduced basis for A(V') satisfies (see Lemma 6.1)

n—1 2
(< 23|g|l; = 27 (52|g(7,a)|2 +le*+> ICiIZ) <

=0
< 23 ((esn2P)? + (n2P)?)7 < 25 (es + 1)n2P.

By choice of € and s
(< 2¥+B,
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Next we claim that for any vector v € A(V') whose euclidean norm ||v||; is smaller than
22748 the corresponding polynomial v(X,Y) satisfies v(7y,a) = 0.
To prove the claim first note that

n—1 2
[of]o = (82|v(775)|2 P4 |Zz'|2) < 27
=0
implies
lo(7,@)| < 2285~ and
|2| < 2+B |y < 2¥B i =0,...,n— 1.
From |v(7,@)| < 22"*B Bs~! we deduce
[o(y, @)l < [o(y, @) = v(7, @) + |o(7,@)] <

S 22n+Bn€ _I_ 22n+B8—1 — 22n+B8—1(4n _I_ 1) < 24n+B8_1,

where the bound on |v(7, a)—v(7, @)| follows in exactly the same way as the corresponding
bound for g shown above.

By assumption on the representation size of ¥ a non-zero integer ¢, |¢| < 28, exists
such that ¢y € Z[a]. Consider the norm

no(cv(7y, a 1:[ oi(a))

of ev(y, a). Since ev(7y, o) is an algebraic integer this is a rational integer (see for example
[19]). Hence

1:[ ),05(a))| € NU{0}.

We show that the product is smaller than 1 and hence must be zero.

n—1 n—1
¢ IT v(i(v). o)) = [e"llo(r. )l [ I0(a)(3), ai(a)] <
J=0 7=1
n—1 n—1 n—1 '
5120+ B0 T ooy (7), 7j(@)] < 57120 +B0+0 (Izay‘(v)l s |zmj<a2>|) .
j=1 j=1 =0
Using the above estimates for |z| and |z;| this shows
n—1 n—1 n—1
n — n?q4n n 7
¢TI v(ei(r), o)) < s7122 212250 TT (|Uj(7)|+ > lojla )|) :
7=0 7=1 =0

Writing o;(7) as = EZ o ¢oi(a)t, combining corresponding powers of ¢;(a), and expand-
ing the product ylelds n("=1) terms each of which is smaller than (25 + 1)~ M(p)"~!,
where M(p) is the measure of p.
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Hence by applying M(p) < |p|2 we get
n—1
2
e TL vl oi(a))| < 520 21248y,
=0

By choice of s the claim follows.

Since ¢ # 0 ‘c” H;:& v(o;(7y), O']‘(Oé))‘ = 0 implies that one factor in H;:& v(oj(v),05(a))
is zero. But these factors are conjugates of each other. Hence if one of them is zero all
are, which proves our claim that ||v|| < 228 implies v(7y,a) = 0.

Applying this result to the shortest vector g in a reduced basis of the lattice A(V') shows
that ¢ corresponds to a polynomial g(X,Y) = ¢ X + E?:_Ol ¢;Y" such that g(v,a) = 0. This
proves the first part of the theorem.

To prove the second claim observe that if ged(c, co, ..., c,—1) # 1 we would find a vec-
tor ¢’ = V(c/,e),...,cl_ )T € A(V) such that ged(c/,¢),...,cl_y) = 1 and ¢'(y,a) = 0.
The unique representation of elements of Q(a) as rational linear combinations of powers
of a shows ¢’ = C—c/g. Since ged(¢/, ¢p, ..., ¢!, _1) = 1 the integer ¢ cannot properly divide
¢’. On the other hand, ¢’ can be written as an integer linear combination of the vectors
in the reduced basis. Since the elements of the basis are linearly independent even over

Q, this representation must be g’ = %/g. But then C—C/ =41 or %/ = —1 which proves the
second claim of the theorem.

The proof above is based on ideas of Lovasz [18] but replaces a brute force estimate by
M (p) < |pl2. Applying this modification to Lovasz’ analysis of the corresponding bounds
for minimal polynomials leads to an improvement of his bounds by a factor of n. Thus
this analysis can be used to deduce the same bounds as in [12].

By choice of s and € we can assume that the entries of the matrix V in Theorem 6.2
are integers, hence combining this theorem with Lemma 6.1 gives

Theorem 6.3 Let Q(a) be an algebraic number field, where o is an algebraic integer with
minimal polynomial p(X) = "o p: X' p, = 1,pi € Z, |pl2 < 2. Let ¥ be an element in
Q(a) such that [y] < 2B. Assume € > 0 satisfies

logl > 202 +4n 4+ nlogn + nl + 4nB.
€

Moreover, suppose that approzimations 7, @ to v and «, respectively, are given such that
the following estimates hold for the real and imaginary parts R, S of v, «

RO = RO < 56 137) = ()] < 56

R(@) - R(a)] < =

. . 1
6 1S(@) — S(a')] < € Vie{l,2,...,n—1}.

Then the representation of v as vy = %E?:_Ol cial, e,c; € L, el |ei| < 2B, can be computed
in time polynomial in n,l, B.

Combining Lemma 5.6 with Theorem 6.3 shows
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Corollary 6.4 Suppose 4/p1, %/ps are radicals over an algebraic number field Q(a) such
that Q(a, p1, p2) is an admissible radical extension of Q(«). Here a is an algebraic integer
with minimal polynomial p(X) = S0 pi Xt pn = L,p; € Z, |pla < 2% Let [p1], [pa] < 2F
and assume that € > 0 satisfies

1
log — > 28n2(logn +1+ L)
€

Moreover, suppose that approximations ¥,@ to v = 4/p1/%/p2 and «, respectively, are
given such that the following estimates hold

_ 1 _ 1
(R =Rl < g6 18O =S < 3,
1
—¢
2
Then integers c, co, . . ., cn—1 such that if 4/p1/ %/p2 € Q(a) then 4/p1/ %/pz = % E?:_Ol el

can be computed in time polynomial in n,l, and L.

R(@) = R(a')| < %g, (@) - 3(a')| < 2c, Vi€ {1,2,...,n—1}.

7 Approximating radicals and ratios of radicals

In this section we show how to compute efficiently the approximations required by Corol-
lary 6.4. First the approximations to o*, ¢ = 1,...,n — 1, are considered.

Lemma 7.1 Let a be root of the polynomial p(X) = Y% pia’,pn = 1,p; € Z, |pl2 < 2%
An approzimation @ to a satisfying |o' — @' < € for all i < n, can be computed in time
polynomial in n,l, and log %

Proof: Using standard estimates one can show that if @ € C satisfies |z| < 2™ and € is
less than 27 (™*1) then an approximation T to & with absolute error less than e satisfies

17— 2f| < e22(mth)i,

Hence if ¢ := 272047 then an approximation @ with |a — @] < ¢ will lead to ap-
proximations as required. Applying Schénhages approximation algorithm [24] the lemma
follows.

The main difficulty in approximating a ratio of radicals 4/p1/%/p2 is to keep the run time
polynomial in logd;, ¢ = 1,2. To achieve such a run time Newton iteration is used. We
first show how to approximate a single real radical.

Lemma 7.2 Suppose /p is real radical over a real algebraic number field Q(a), where a is
an algebraic integer with minimal polynomial p(X) = Sr_ o piX ', pn = 1,p; € Z, |p|2 < 2.
Assume [p] < 2%, For any € > an approzimation to &p with absolute error less than € can
be computed in time polynomial in n,l, L, 1logd, and log %

Proof: From the Mean-Value-Theorem follows that if z is a complex numbers satisfying
27" < x| < 2,0 < € < 270" and T is such that |7 — 2| < € then

1
—Fd| < 2mHle,

B L

X
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Since |p| < 2M+EA+2 (Lemma 5.5) it suffices to approximate p and to approximate the
d-th root of the approximation to p. Using the same argument as in Lemma 7.1 a good
approximation to a yields a good approximation to p. Due to the bounds in Lemma 5.5
we can also determine the sign of p in polynomial time. Therefore in the remainder of
the proof we show how to approximate /p assuming p is positive and is given exactly.
Moreover, the bound for |p| in Lemma 5.5 implies that it is enough to show how to
approximate a /p with relative error e.

Considering d as constant this has already been done. (see for example [2]). In our
case, however, d is part of the input. So we will describe and analyze the approximation
algorithm in more detail. As mentioned we use Newton iteration.

p is a root of x? — p, hence the iteration is given by

1 1 p
Lit1 = 1—3 $i+3$§1—1‘

First let us pretend that we could compute ;41 exactly from z;. As is well known given a

good initial approximation zg then Newton iteration has a quadratic convergence, which
means that log log% iterations suffice to get an approximation with relative error e.

We need to determine how good the initial approximation has to be. To do so assume
z; is an approximation to &p with relative error ¢, i.e., ¥p = (1 — ¢;)z;. Then

WP — wiv1] < [{/p— (1_ %) (I—e)lp+ é\d/ﬁ(l—lq)d_l '

d—1 .
: 1 _ oo (d=2475) g
Since (1—5,) => j:o( P )62» we get

1 ZOO d+ 7\ ;
A/ — . d 1— 22 J
|\/ﬁ $Z+1|<\/ﬁ €’Ld (d_2)€
Hence the relative error ¢;41 is

433 (272)4 =t S () <

=0 =0

Agsume ¢ < m. Then

1 d+1
cip1 <€ (d—1) (1_71) <(d—1)e,

2(d+1)

using 1 + 2 < €” for all z.
It follows that an initial approximation with relative error m suffices to guarantee
quadratic convergence.
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Now z;41 can not be computed exactly from z;. However, computing it with relative
error €2 still yields quadratic convergence. These approximations can be computed in time
log d, L, and loge;. Hence except for the computation of the initial approximation zq the
Newton iteration can be done in time polynomial in logd, I, and log e.

To get the initial approximation zg that guarantees quadratic convergence, as in
Lemma 3.1 we can use a binary search technique on the interval [1,p], if p > 1, or on
the interval [p, 1], if p < 1. Again this can be done in polynomial time due to the upper
bound on |p| given in Lemma 5.5. This finally proves the lemma.

Now we consider the general case. Recall that we assume that a radical ¢p is given by
p and an integer £k such that ¢/p = C§|p|é (cos %qﬁ + isin %qﬁ) , where ¢ € (—7, 7] denotes
the angle of p when written in polar coordinates, |p|é is the positive d-th root, and
(g = cos & —|— 7 sin 2;

Lemma 7.3 Suppose Q(«) is a number field generated by the algebraic integer a, whose
minimal polynomial is p(X) = Y. p X' € Z[X],|plz < 2" If d1,d2 € N and py,ps €
Q(«) satisfy [p1],[p2] < 2% then for any € > 0 the ratio 4/p1/ %/p2 can be approxvimated
with absolute error € in time polynomial in n,l, L, logdy,logds, and log %

Proof: To prove the lemma note that by Lemma 5.5, not only |4/p1| < max{l,|pi|} <
27+ L42 hut also |4/py 7| < max{L, |py![} < 22(¢lesnl+ni+nl)  Computing 4/p7 with ab-
solute error €2 2(nlogntnitnlt1) 4y q dg/p_g_l with absolute error ¢ = €2~ ("+L+4) therefore
suffices to prove the lemma.

Using standard estimates it can be shown that first approximating 4/py with absolute
error less than €2~ 4(nlogntnitnltl) 44 then computing the inverse of this approximation
%6/ suffices to compute the required approximation to dg/p_g_l
Computing the inverse can be done in polynomial time using Newton iteration (see for
example [6]).

Hence we only need to show how to approximate a single radical {/p in polynomial time.

By the upper bound on |p| given in Lemma 5.5 it suffices to show how to approximate

1 . .o . . .
|p|@ (interpreted as the positive real root), cos ¢, + isin ¢, and ¢} = cos 25T 4 sin 257

efficiently.

Since an approximation to p with absolute error less than e automatlcaﬂy yields an
approximation to |p| with absolute error less than €, approximating |p|d can bhe analyzed
by the previous lemma.

Next recall that the derivative of sin and cos is bounded by 1. Hence if 7 is an approx-
imation to z with error less that ¢ sin @ or cosZ is an approximation to sin z and coszx
with (absolute or relative) error €, too. Now Brent’s results [6] on approximating , sin,
and cos can be used to approximate Cd = cos 2’;” + 2 sin 2’;”

Accordingly, in order to show how to approximate cos dqbp + ¢sin %(bp we only need to
show how to approximate ¢,.

with absolute error less than

Observe that ¢, = arctan (§R ) The derivative of arctan is bounded in absolute value

by 7 and Brent [6] also showed how to approximate arctan efficiently. Therefore it remains
to show how to approximate 5;— Since we can approximate p we can also approximate

the real and imaginary part of p. Finally we can effliciently approximate the ratio ;—p by
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approximating Sp and %Lp separately, provided we can derive good upper and lower bounds
on Sp and Rp, respectively. A good upper bound on the imaginary part follows from the
upper bound on [p]. given in Lemma 5.5. It remains to derive a lower bound on fp.

By the root separation bound the difference between two different roots of a poly-
nomial f = 37 £, X' € C[X], is at least n="F2/2| F37"|A(f)|'/2, where A(f) is the
discriminant of f (see [20]).

By Lemma 5.3 and Lemma 5.5 we know that p is a root of a polynomial whose degree
is bounded by n and whose length is at most n?|p|5[p]". Next consider ip, i = /—1.
Its minimal polynomial is f(%X) Moreover |Rp| = %|zp + ip|, where ip is the complex
conjugate of ip. But —ip is also a root of f(1X). To deduce a lower bound on |Rp| we
may therefore apply the root separation bound. Observing that the discriminant of a
polynomial in Z[][X] is an element of Z[i] (see for example [11]) and therefore satisfies
|A(f)] > 1, this yields

|3?,0| > 2—2n2(logn—l—L)—nlogn—1‘

Since the logarithm of this bound in polynomial in the input size of p this suffices for our
purposes and the lemma follows.

Recall that the absolute error ¢ required for the approximations in Corollary 6.4 needs to
be only of the order O(n*(log n+1+ L) hence the results of this section can be summarized
in

Corollary 7.4 Approzimations to a, 4/p1, and %/py as required by Corollary 6.4 can be
determined in polynomial time.

8 Testing for equality.

In the previous sections it has been shown how to compute the coefficients of a number v €
Q(«) such that if a ratio of radicals 4/p;/%/p; is contained in Q(a) then v = 4/p1/%/ps.
But it still remains to verify this equality.

In this section we first describe a deterministic algorithm that solves this problem.
This result is based on a recent algorithm of Ge [8]. Ge’s algorithm is complicated and
as an alternative we describe a simple probabilistic probabilistic algorithm to determine
whether v equals the ratio 4/p1/%/pz. Let us first state Ge’s result.

Theorem 8.1 (Ge) Let Q(a) be an algebraic number field, where o is an algebraic in-
teger with minimal polynomial p(X) = X% pi X' pn = Lyp; € Z, |pl2 < 2. Assume
that p;, 1 = 1,....k, are elements of Q(a) with [p;] < 2L and assume furthermore that
m; € Z,i = 1,...,k. It can be decided in time polynomial in n,l, L, and max{logm;}
whether Hle pitt = 1.

K3

Applying this result to our problem yields

Corollary 8.2 Given the element v from Corollary 6.4 it can be decided in polynomial
time whether v = 4/p1/%/pz.
d1d2 dl

Proof: Using Ge’s algorithm we first determine in polynomial time whether y“192 p;* = p;lz’.

If equality does not hold then v # 4/p1/%/p2, too.
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However, even if ’ydldz)pgl = pilz’ this does not necessarily imply that v = 4/p1/%/ps.
All that can be deduced from this equality is that v 4%/p3 is a di-th root of py. It does not
show that it is the root denoted by 4/p;. To check whether it is 4/p; a bit comparison
test is applied.

If v4/py is a dy-th root of p; it can be written as (4/py, where ( is a di-th root of
unity. Hence |y%/pz — 4/p1| = |¢ — 1||4/p1]- By Lemma 5.5 |4/py| > 2~ (2nlognniinl),
Moreover, two dq-th roots of unity have distance at least 271964 ~1 To verify this bound
recall that the dy-th roots of unity correspond to the vertices of a regular dy-gon inscribed
in the unit circle in the plane.

Together, this shows that if y%/p; # 4/p1 although ’ydldz’pgl = pilQ then v4/py and
4/py differ by at least ¢ = 2~ (2nlogntni+nl+l) Hepce in the final step of the algorithm
we compute 4/p; and y%/py with precision at least €. Using the results of the previous
section this can be done in polynomial time.

Remark that if Q(«), 4/p1, and %/p3 are real then the bit comparison test is not necessary.
In fact, in this case y%1% pgl = pilQ implies v %/ps = 4/p1 or —7 %/p2 = 4/p1. In both cases
the ratio 4/p1/%/pz is in Q(a).

In the remainder of this section we show how to replace Ge’s algorithm by a simple
probabilistic algorithm. The algorithms will decide whether ’ydldz)pgl = pilQ correctly
with probability at least % Applying the algorithm repeatedly yields any desired error
probability.

Assume by, by, ¢ € Z such that b;p; € Z[a], ¢y € Z[a]. Define p; := b;p; and 7 := ¢7.
Then %192 pgl = pilQ is equivalent to

da ~ dj zdid dy didy 5 d
512,02 1712_1321012/012:07

which is an equation in Z[a]. Denote the algebraic number on the left-hand side of the
equation by I' € Z[a]. The probabilistic algorithm works as follows:

A1LGORITHM Probablistic Checking;:

(1) Set C' :=14dydy(nlogn + nl + nlL).
(2) Randomly choose 48 log C integers from the interval I = [1,241°8¢].

(3) For each integer = chosen in Step (2) compute the coefficients of I' taken modulo z by
reducing after each arithmetic operation in Z[«a] the coefficients of the result modulo z.

(4) If for each 2 the coefficients of I' taken modulo z are zero then output I' = 0, otherwise
output I' # 0.

Three things remain to be done. It has to be shown that in Step (3) the algorithm really
determines the coefficients of I' taken modulo z. Then the run time has to be analyzed.
And finally it has to be shown that the error probability is less than % The correctness
of Step (3) follows from the next lemma.

Lemma 8.3 Let p1,p2 € Z[a], z € Z, and denote by (p;). the number that is obtained by
reducing the coefficients of p; modulo z. Then

((p1)z + (p2)2): = (p1+ p2)-
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and
((pl)z(pZ)z)z = (/01/02)2

using arithmetic in Z[a].

Proof: For the addition nothing has to be done.
For the multiplication it suffices to show that for two integer polynomials g1, g-

((((gl)p)z ((gz)p)z)p) - ((glgz)p) E

where (f), denotes the polynomial f modulo the polynomial p.
Let 7; = (¢;)p. Furthermore let

! —
T, =1+ 2T,

with rl = (r;)..

K3

Then

By definition

(03,), = (¢273,).

(rira), = (rirh), + 2 (ri72 + 1571 + 7172),,

Now

since for a non-constant polynomial p the homomorphism Z[X] — (Z[X]), induces an
isomorphism of Z onto itself.
From the previous equality we finally get

(rir2), = (riré)p,

which proves the lemma.

Remark that

(). (61,).),) = (a),),

is not correct if z is a non-constant polynomial.

Due to the following four facts the run time of the algorithm is polynomial. First,
polynomially many integers z are chosen in Step (2), second, the size of each z is bounded
by a polynomial in the input size. Third, arithmetic in Z[a] can be done in polynomial
time (see [17]) and, fourth, the reduction steps can be performed in polynomial time
(see [1]).

It remains to analyze the error probability of the algorithm. First observe that if
I' = 0 then the algorithm will give the correct answer. On the other hand, if the algorithm
answers I' # 0 this answer is also correct since the algorithm found an integer z such that
the coefficients of I' are non-zero modulo z. Hence =z witnesses I' # 0.

Call an integer unlucky if it divides all coefficients of I or, equivalently, the gcd of these
coefficients. Otherwise we call z lucky. If I' # 0 then exactly the unlucky numbers will lead
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to an incorrect answer of the algorithm. Hence to prove the claim that the algorithm gives
the correct answer with probability at least % we have to show that among the integers z
chosen in Step (2) with probability at least % one number is lucky.

We need a bound on the gecd of the coefficients in T

Lemma 8.4 Let p1,...pq € Z[a] such that [p;] < 2V,4i = 1,2,....d, and « is as usual.
Then the coefficients of Hle p: are bounded in absolute value by 2¢(ogntn(i+1)+L),
Proof: Let R;(X) = ?:_5 T;Z)Xj be defined by R;(a) = p;. Hence computing the coeffi-
cients of [] p; is the same as computing the coefficients of [[ R;(X') mod p(X ), where p is
the minimal polynomial of a.

[I R:(X)is a polynomial of degree (n—1)d and its coefficients are bounded in absolute

value by 240og7+L)  Write [ Ri(X) as Ei%_l) m; X" and consider the following matrix:

1 Pr—1 P11 Po
L puy e e o
din—1)—n+1 rows
N P po
md(n—l) md(n—l)_1 Ce cee el oo My My

Using Gauss-elimination this matrix can be transformed into an upper triangular matrix

L pn-1 P2 - P1 Do
1 Prn—1 e P Do
din—1)—n+1 rows .
1 Prn—1 e P11 Do
0 m%—l m%—2 mll m6

It follows that m! are the coefficients of [ R;(X') modulo p(X).

We have to analyze this process. Denote by L; an upper bound on the absolute values
on the entries in the last row after the i-th step of the Gauss-elimination. In particular,
Lo < 2%0ogn+L) We have Liy1 < |pleoLi + Li = (|p|oe + 1)L;. Hence

Li < (|p|oo + 1)i2d(logn+L)‘

As we have to apply d(n — 1) — n steps in the Gauss-elimination the lemma follows from
1Pl < 28

Recall from Lemma 5.6 that |b1], |bal, ||, [}, [04],[7] < 26(legntnitnl) ence the
previous lemma gives a bound of

14dida(nlogn +nl +nl)=C

for the bit size of the coefficients of I'. Accordingly, the gcd of the coefficients in I is
bounded by 2¢.

Unfortunately, an integer z € Z may have almost stz different divisors (cf. [3]). This
is the main reason why we cannot show directly that most numbers in I are lucky. Instead
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we will show that most primes in I are lucky and that by choosing randomly 48C" numbers
from I with probability % at least one of them is a lucky prime.

First note that any integer z has at most log z/ log log = different prime divisors (see [3]).
Hence the ged of the coefficients of I' has at most €' distinct prime divisors.

On the other hand, the number of primes less than an integer z is a least lz/Inx
(see [3]). Hence the number of primes in I is at least 1241°6C /4log C' > 21°89+2 which
shows that a random prime in [ is unlucky with probability at most %.

It also follows from the lower bound on the number of primes less than z that a random
number in I is composite with probability at most 1 — ===. Therefore the probability that

24C
none of the numbers chosen in Step (2) is prime is bounded by (1 — 517 )*8.

240

Since (1 — %)240 < %, the probability that no prime has been chosen in Step (2) is
bounded by e72 < i.

Now there are two ways we may fail to hit upon a lucky integer. First no prime may
have been chosen. Second, even if a prime has been chosen it may not be lucky. Both
cases happen independently and with probability at most %. This shows that the error
probability is of the algorithm Probabilistic Checking is at most % Summarizing it has
been shown

Lemma 8.5 The algorithm Probabilistic Checking runs in polynomial time and gives
the correct answer with probability at least %

9 Putting things together

The results of the previous three sections can be summarized in the following theorem.

Theorem 9.1 Suppose 4/p1, %/p2 are radicals over an algebraic number field Q(a) such
that Q(a, p1,p2) is an admissible radical extension of Q(«a). Furthermore let a be an
algebraic integer with minimal polynomial p(X) = X" pi X' p, = L,pi € Z, |p|2 < 2
and assume [p1], [p2] < 2V. It can be decided in time polynomial in n,l, L, and log dy,log d;

whether the ratio 4/py/%/pz is an element of Q(«a). If so, the representation 4/pi/%/p2 =

-1 ; . . .
% o Gt e, € Z, can also be computed in polynomial time.

As in the rational case due to Corollary 2.6 this result immediately extends to sums of
radicals.

Theorem 9.2 Let {4/p1, %/p2,..., %/pk} be a set of radicals over the algebraic number
field Q(a) such that Q(a, 4/p1, %/pz, .- -, %/Pr) is an admissible radical extension of Q(a).
Assume that « is an algebraic integer whose minimal polynomial has degree n and has
length |pla < 2'. Furthermore assume that [p;] < 2%, i = 1,2,...,k. It can be decided
in time polynomial in n,l, L, and max{logd;} whether a sum S = Ele v 4/pi, vi €
Q(a), [v;] < 2%, is zero.

Proof: First using the algorithm of the previous theorem the set { 4/p1, %/p2, ..., %/pr} is
partioned into subsets Ry, ... Ry such that two radicals are in the same subset if and only if

their ratio is an element of Q(«). To simplify the notation assume 4/p; € R;, i =1,...,h.
This partitioning can be done in polynomial.
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Also in polynomial time elements v;; can be computed such that if 4;/p7/4/p; € Q(a)
then 4,/p;/4/pi = vij. So

k h
S = Z%’WI Z Z V;iVij % Pi-
=1

=1 di/p;ER:
Since for any pair of different radicals in R’ = {4/p1, %/p2,. .., %/pr} their ratio is not in

Q(a) we conclude by Corollary 2.6 that S = 0 if and only if

Z vjvy; =0fore=1,...,h.
dy/p;ER;

Since arithmetic in Q(a) can be done in polynomial time (cf. [17]) the bound given in
Lemma 5.6 for the coefficient size of the elements p;; implies that these sums can be com-
puted in polynomial time. In particular, it can be decided in polynomial time whether
they are zero.
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