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if an order has width k can be done in O(kn?) time and whether a graph has Dilworth number
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For very small & we have even better results. We show that orders of width at most 3 can
be recognized in O(n) time and of width at most 4 in O(nlogn).
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1 Introduction

The width of a partially ordered set is the size of its largest antichain. Orders of
small width are a particularly attractive class since several optimization problems,
known to be intractable for general orders as can be solved in polynomial time when
the input is restricted to this class [3, 27,26, 10]. It is therefore desirable to have fast
recognition algorithms for orders of small width. Since the width of an n element
order can be obtained using a max—flow computation on a bipartite network with
unit capacities there is a O(n%?) recognition algorithm. For special classes of orders
much faster algorithms exist. Given a realizer, the width of a 2-dimensional order
can be computed in O(nlogn) time [17], a fact which has been discovered many
times in different contexts since it corresponds to the natural problem of finding a
maximum decreasing subsequence. Using ven Emde Boas’ data structure [30], the
time complexity can be reduced to O(nloglogn). The width of an interval order
can be determined in O(n) time given an interval representation. 2-dimensional
realizers and interval representations can be constructed in linear time [22, 23].

In the next section we show that orders of width at most k& can be recognized
in O(kn?) time. The high level idea of the algorithm is to compute the max—flow
mentioned above in two phases. In the first phase a greedy chain decomposition is
used to obtain a feasible flow which is at most k logn units less than the maximum.
In the second phase the true max—flow is computed using augmenting paths.
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The Dilworth number of a graph is the size of the largest subset of its vertices in
which no vertex contains the neighborhood of another. Dilworth number 1 graphs
correspond to the well-known class of threshold graphs [15,9,21] and graphs with
Dilworth number at most 2 are the threshold-signed graphs [4]. Both these classes
can be recognized in time linear in the number of edges and vertices [8, 9, 5]. Graphs
with Dilworth number at most 3 are studied in [19], and shown to be a subset of
a class called “good graphs” [19] or “quasitriangulated graphs” [18] defined by a
special elimination ordering scheme. Graphs with Dilworth number 4 are shown to
be a subset of perfectly orderable graphs in [24].

The known algorithm [19] for computing the Dilworth number of a graph works
by constructing a partial order based on neighborhood containment relationships
between pairs of vertices and then computing the width of the resultant order.
The typical method of constructing the order from the given graph uses matrix
multiplication.

In Section 3 we give a non-trivial application of the algorithm for deciding
whether an order has small width. We show that graphs with Dilworth number at
most k can be recognized in O(k?n?) time. The key idea here is an algorithm which
either constructs the partial order mentioned above or concludes that the input
graph has Dilworth number larger than k. From the point of view of recognizing
Dilworth number & graphs, this step effectively finesses away the bottleneck step
of using matrix multiplication to compute the partial order.

In Section 4 we come back to orders of bounded width. We show that orders
of width at most 3 can be recognized in O(n) time, and orders of width at most
4 can be recognized in O(nlogn) time. These results are achieved by assuming
that a linear extension of the order is given and a query about the relation of two
elements is answered in O(1) time. More realistically, if the input is given as an
adjacency matrix, we show that an initial O(nlogn) preprocessing step can be
used to obtain the required linear extension.

2 Orders of Bounded Width

Throughout this paper, G = (V, E) denotes a simple undirected graph and P
represents a partially ordered set (or poset or order). The letter n denotes either
the number of vertices in a the graph under consideration or the number of elements
in the poset.

We consider an order P = (X, <) to be a pair consisting of a ground set V" and
a reflexive, antisymmetric and transitive binary relation < on X. The notations
r <yin P and y > x in P will be used interchangeably. If neither < y in P nor
y <z in P we say z and y are incomparable and write z||y. If x < y and x # y, we
write x < y or y > x. An antichain of P is a set of pairwise incomparable elements
and a chain of P is a set of pairwise comparable elements. The width of P is the
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size of a maximum antichain and the height of P is the size of a maximum chain
in P.

Chains and antichains are linked by two classical duality theorems stated below
in Proposition 1. Interestingly, while the formulation of these theorems is com-
pletely symmetric with respect to the exchange of “chain” and “antichain,” the
first is a folklore result admitting an obvious proof, while the second is a remarkable
result known as Dilworth’s Theorem [13].

Proposition 1 For every finite order P.

(1) The mazimum size of a chain in P equals the minimum number of an-
tichains needed to cover the elements of P.

(2) The mazimum size of an antichain in P equals the minimum number of
chains needed to cover the elements of P.

Fulkerson [16] gave a proof of Dilworth’s Theorem by reducing it to the Konig-
Egervary duality theorem for bipartite graphs. This theorem states that in a bi-
partite graph the size of a minimum vertex cover equals the size of a maximum
matching.
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Fig. 1. (i) An order P, (ii) a chain cover for P, and (iii) the corresponding matching in S(P). (The bold
edges in S(P) are the edges in the matching.)

Fulkerson’s proof uses the split S(P) of P = (X, <), i.e., the bipartite graph
having as vertices two copies X', X" of X and an edge (z,4") whenever x < y in
P. A matching M in S(P) corresponds to a partition of P into |X | — |M| chains.
To see this, begin with the partition of P into 1—element chains. For each edge
(«',y") € M hook the tail of the chain ending with = to the beginning of the
chain starting with y thus reducing the number of chains by one. (Figure 1 has
an example of an order P, a chain cover for P, and the corresponding matching
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in S(P).) With a vertex cover U of S(P) associate the antichain Ay = {z € X :
z' 2" ¢ U}. Using the fact that S(P) comes from a transitive order relation it can
be shown that |Ay| = |X|—|U| when U is a minimal vertex cover. (In Figure 1 the
antichain associated with the minimal vertex cover U = {V',d', ", f"} is the set
Ay ={a, e, g}.) Dilworth’s theorem now follows from the Kénig-Egervary duality
theorem, i.e., from max |M| = min |U].

By the above considerations the alternating path algorithm for bipartite match-
ing allows one to compute the width of P in O(n?) time: an augmenting alternat-
ing path can be found with a depth-first search in O(n?) time and at most n
augmentations along alternating path are possible. With the Hopcroft and Karp
algorithm [20] (see also Tarjan’s monograph [29]) this can be improved to O(n°/2).
A small improvement to O(n>2/y/logn) has been obtained in [2]. If one only wants
to compute the width of the poset rather than find the corresponding antichain
or chain cover, there is a randomized algorithm which has matrix multiplication
rather than matching as its bottleneck step [7].

A greedy chain decomposition of an order P = (X, <) is a chain cover obtained
by the recursive extraction of chains of maximum length from P. More formally,

we define Py = P and recursively define chain C; to be a maximum chain in
P,y = (X;_1,<) and P; as the order induced on the set X; = X; | \ C;.

Lemma 1. Let P = (X, <) be an n-element order of width at most k. The greedy
chain decomposition of P can be computed in O(kn?) time and consists of at most
klog.n chains.

Proof. Clearly, any antichain of an induced suborder P’ of P is an antichain
of P, hence, width(P') < width(P). By Dilworth’s theorem this implies that P;
can be covered by at most k chains and by the pigeon-hole principle the longest
chain in P; has size at least |X;|/k. Therefore, | X;| < n(1 — )" < ne”% and for
t > klog, n the set X; has size less than one and is thus empty. Hence the greedy
chain decomposition consists of at most £ log, n chains.

A maximum chain of an order can be found by a modified depth-first search in
O(n?) time; this is sometimes given in texts, for example [11], as finding a longest
path in a directed acyclic graph. The removal of the chain and all comparabilities
involving elements of the chain can be done within the same time bound. Using
the considerations of the previous paragraph we obtain the recurrence T'(n) <
T(n(1—3))+c-n? for the time T'(n) used by the greedy decomposition algorithm
on n-element orders of width at most k. This works out to T'(n) < ckn?. =

Theorem 1. Deciding whether width(P) < k for a given n-element order P and
an integer k can be done in O(kn?) time.

Proof. The first phase of the decision algorithm consists of a call to the greedy
chain decomposition for P. The decomposition algorithm is enhanced by a test for
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|C;| > | Xi_1|/Fk; if this condition fails the output ‘width exceeds k’ is returned. By
Lemma 1 the first phase takes no more than Q(kn?) time.

After P has successfully passed the first phase we have a chain cover (', .., C,
with » < klogn. If r < k, we are done by Dilworth’s theorem. Otherwise, re-
call that P, = (X;,<) is the order induced by P on the elements covered by
Cit1,-.,Cp. The order P,_; has width at most £ as proved by the chain cover of
size k. Corresponding to this chain cover is a matching M, in the split S(P._y)
Wlth |M,«_k| = |X,«_k| — k‘

The work in the second phase is now done by considering the splits S(FP;)
backwards, i.e., starting from the split S(P,_) down to the first one S(Fp). Given
that P; is of width at most & we show how to check whether P;_; is of width at
most k in O(|X;_[?) time.

To be precise we use a more complex assumption. We assume that a matching
M; in the split S(P;) of P; with |M;| = |X;| — k has been constructed. Consider
the split S(P,_;) of P,_;. Since S(P;) is an induced subgraph of S(P,_;) we may
view M; as a matching of S(P,_1). A second matching in S(P; ;) is the matching
Nj corresponding to the chain C; = x1, .., 7; which matches each z; with 27, for
t=1,..,7—1.Since C; and X, _; are disjoint the union M;UN; ; also is a matching
in S(P;_1); the size of the union is | M;UN;_| = | X;|—k+|Ci—1|—1 = | X;—1|—(k+1).

Search for an augmenting path in S(P;_;) with respect to the matching M; U
N;_1. If this search is not successful we conclude from Fulkerson’s proof of Dil-
worth’s theorem that the width of P;,_; is £ + 1 and return an appropriate state-
ment. Otherwise, there is an alternating augmenting path which is added to the old
matching to obtain the matching M;_; of size |X;_1| —k in S(P,—1). As mentioned
before the search for the augmenting path can be accomplished in ¢’ - | X; ;| time.

Using the bound |X;| < n(1 — )’ and summing up the time used in each stage
of the second phase leads to the recurrence T'(n) = T'(|X,|) < T'(|X1]) + ¢ - n?
for the time 7"(]X;|) used until S(P;_;) is considered. As in Lemma 1, this works
out to T"(n) < dkn?. Since both phases are in O(kn?) the whole algorithm has the

same complexity. [ ]

Although the above algorithm is a decision algorithm, it can be modified to
find a maximum antichain of P = (X, <) or a minimum chain cover of P in the
claimed O(kn?) time, if the size of the antichain is at most k. To see this, let M be
the maximum matching obtained in the algorithm; using the K6nig Construction
Technique [6], find a minimum vertex cover U of S(P) in time linear in the
number of edges and vertices. Then, as discussed earlier in Fulkerson’s proof of
Dilworth’s Theorem, Ay = {z € X : 2/, 2" ¢ U} is a maximum antichain of P. To
find a minimum chain cover, view P as a directed graph and consider the subgraph
obtained by restricting to the edges {(z,v) : (¢/,y") € M}. Again, as in Fulkerson’s
proof, it is easy to see that this subgraph yields the desired minimum chain cover.
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Until this point, we have assumed that the input is an order, and that we
only have to determine the width of the order to solve the recognition problem,;
that is, we have assumed that the input is transitive. The best known algorithm
for verifying that a directed graph is transitive takes time proportional to matrix
multiplication. However, given a set of k£ chains, it is easy to verify transitivity in
O(kn?) time. For each vertex v, find the first vertex ¢; on each chain (including the
chain containing v) such that v has an edge to ¢;; the input is transitive if and only
if for every vertex v, N(v) contains N(c;) for each ¢;. Thus, checking transitivity
reduces to performing kn neighborhood containment operations each of which can
be done in O(n) time, giving a total running time of O(kn?).

A graph G is a comparability graph if G is the underlying undirected graph of
a poset. The algorithm of this section can be combined with results from [22] to
recognize comparability graphs with no independent set of size &k in O(kn?) time.
[22] contains an algorithm which finds a transitive orientation of a comparability
graph in linear time. However, that algorithm will also assign orientations to input
graphs which are not comparability graphs. Thus, if we want to test whether G is a
comparability graph without any independent set of size > k, we run the transitive
orientation algorithm to get a directed graph G’ and test whether G’ is a width
k poset. Here we cannot asume that the input is transitive, so we must make the
additional test of the previous paragraph.

3 Graphs of Bounded Dilworth Number

The open neighborhood of a vertex v in a graph, written N(v), is the set of neigh-
bors of v in the graph, and the closed neighborhood of v, written Nv], is the set
N(v) U {v}. Vertex v dominates vertex w in G if N(w) C N[v]. Two vertices are
twins if they have the same open neighborhoods. The Dilworth number of G is the
cardinality of the largest set S of vertices in GG such that no vertex in S dominates
another vertex in S.

There is a simple relationship between Dilworth number of a graph and poset
width. For any graph G, we create a corresponding neighborhood containment (di-
rected) graph G' in which z has an edge to y if and only if z dominates y. By
definition, the Dilworth number of GG is the size of the maximum independent set
in G'. Note that twins in G' cannot be in an independent set of G'. Therefore,
one may as well consider the reduced (undirected) graph H of G which has the
set of equivalence classes of twins of GG as vertices and there is an edge between
equivalence classes [z] and [y] if and only if there is an edge between x and y in G.
Observe that H', the neighborhood containment graph of H, is a partially ordered
set using the relation x > y whenever there is an edge from x to y and that the
Dilworth number of G is precisely the width of H'. The fact that the neighborhood
containment graph H' is a poset seems to have first been noticed in the context of
Dilworth number in [19].
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Using this observation, the Dilworth number of a graph can be computed in
polynomial time. First, the reduced graph can be obtained in linear time given an
adjacency list as input. This seems to be a folklore result; one algorithm is given
in [25]. Next, the neighborhood containment of the reduced graph can clearly be
constructed in O(n*) time. This can be improved to O(MM) time, where MM is
the time to multiply two n by n matrices. The square of the adjacency matrix has
the quantity |N(xz) N N(y)| in the (z,y) entry of the product for all distinct  and
y. Hence, x dominates y in G precisely when the degree of y in G is equal to the
(x,y) entry in the square of the adjacency matrix of G if x and y are nonadjacent,
and when z and y are adjacent x dominates y if the (z,y) entry of the square of the
adjacency matrix is equal to the degree of y - 1. The current best time bound for
matrix multiplication, due to Coppersmith and Winograd [12], is O(n*37%). For
practical purposes, the matrix multiplication bounds of O(l:ggn) [1] and O(n*8)
[28] given by earlier algorithms may be more appropriate. Finally, the Dilworth
number can be computed by finding the width of the neighborhood containment
of the reduced graph using network flow techniques or the algorithm given in the
previous section.

The main result of this section is a proof that we can do better for graphs of
small Dilworth number.

Theorem 2. Deciding whether the Dilworth number of an n-vertex graph G is at
most k can be done in O(k*n?) time.

Proof. We start by obtaining the reduced graph G’ from the input graph G. As
mentioned earlier, this can be done in O(n?). From the discussion above and using
the O(kn?) algorithm of the previous section, it suffices to show how to construct
the neighborhood containment poset of G’ in O(k*n?) time. Strictly speaking, it
suffices to describe a procedure which will either correctly conclude that G’ has
Dilworth number larger than k or construct the neighborhood containment graph
in the required time. Indeed, this is what we now describe.

Our algorithm uses a recursive approach for the calculation of the Dilworth
number. Partition the vertices of GG into two sets X and Y of nearly equal size, i.e.,
|X| and |Y| may differ by at most 1. Recursively, decide that the subgraphs in-
duced by either X or Y has Dilworth number greater than £ and stop, or conclude
that both subgraphs have Dilworth number at most £ and obtain both their neigh-
borhood containment posets. In the latter case, use the algorithm of the previous
section to compute minimum chain covers C'x and Cy respectively of each poset.
We now show how to use these two chain covers and the corresponding two posets
to compute efficiently the neighborhood containment poset of the entire graph G.

First, we find for each vertex v of G and each chain C' in C'x U Cy, the vertex
Pv,c on C such that v is a neighbor of every vertex at or above p, on C, and
is a nonneighbor of everything below. Taking advantage of the total order in each
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chain, for a given chain C' and a given vertex v the vertex p,c can be found in
O(log |C|) time by binary search.

Next, we compute the relations between elements in two chains C' € C'x and
C'" € Cy. This is done in two rounds. First, we determine relations of the form
x < yforxz € C and y € C’; in the second round the role of X and Y are exchanged
to determine the relations y < x. Initially, define for each vertex x on C' a vertex
highest(xz,C,C") of C" as the highest vertex y such that there exists some vertex
v for which y = p, v and p, ¢ is at or below x on C. Now if 2’ is the descendant
of x in C, then highest(x, C,C") is the higher of highest(x’,C,C") and the highest
point p, ¢ among vertices v such that x = p, . Since each vertex v marks exactly
one vertex as p, ¢, we can calculate highest(z, C, C") for all vertices z on C'in O(n)
time. In other words, the total time to calculate highest(x,C,C") for all vertices
z on C over all pairs of chains C' € C'xy and C' € Cy is O(k*n).

Finally, note that for each vertex x on C' € Cx, N(z) is contained in the
neighborhood of every vertex at or above highest(xz,C,C") on C' € Cy, and is not
contained in the neighborhood of any vertex below. Therefore, once the highest
functions have been computed, one can derive all the neighborhood containment
relationships between pairs of vertices r € X and y € Y.

To analyze the time complexity of this recursive procedure, we need to distin-
guish between two different variables—n, the number of vertices in the entire input
graph, and r, the number of vertices in the subgraph of the current recursive call.
Then the time complexity T'(r) of any recursive call to the decision procedure for
a graph on r vertices is given by the recurrence relation:

T(r) =2T(r/2) + O(kr?) + O(nklogr) + O(k*n) + O(r?)

Here the term O(kr?) corresponds to the time for using the algorithm of the
previous section to compute the chain covers given the posets, the term O(nk logr)
corresponds to the time for finding p, ¢ for each vertex v and each chain C, the
term O(k?*n) corresponds to the calculation of the highest(x,C,C") function as
explained above, and the term O(r?) corresponds to the final calculation of all the
neighborhood containment relationships given this function.

A routine analysis of this recurrence relation leads to the solution T'(r) =
O(kr?) + O(nkr) + O(k*nr), whence for an initial value of r = n we get an overall
time of O(k%n?) for deciding if an n-vertex graph has Dilworth number k. m

4 Very Fast Recognition of Orders of Width < 4

In this section of the paper, we develop sublinear algorithms to recognize posets
of width k for k£ < 4. Note that we must assume that we are given a true poset as
input; if we must verify that every edge implied by transitivity is in the input, it
takes £2(n?) time to recognize even posets of width 1.
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The approach for recognizing orders of width at most k£ (k < 4), i.e., orders
with no antichain of size k + 1, presented here makes implicit use of a further
important Theorem of R.P. Dilworth.

Proposition 2 (Dilworth 1958) The antichains of mazimum size of P form a
distributive sublattice of the lattice of antichains of P.

The order relation of the lattice of maximum antichains is given by A < B for
maximum antichains A, B of P iff for all « € A there is a b € B with a < b in P.
We will use the notation HMA(P) to denote the highest mazimum antichain of P.
In other words, HMA(P) is the unique maximal element of the lattice of maximum
antichains of P.

The idea for the algorithms for recognizing orders of width 2,3 and 4 is to use
a linear extension L of P and insert the elements in the order given by L into a
data structure that maintains a tower of antichains of decreasing sizes. Let () be
the order induced by the first ¢ elements of L. The invariant structure associated
to (Q = Qg is recursively defined by the following rule:

Given Q; let A; = HMA(Q;) and Q;11 = {x € Q; : x > a for some a € A;}.

Since width(Q;+1) < width(Q;) the order @y is empty, when k is the width of
(. While inserting the ¢ + 1st element we have to update the invariant structure.
This is done by examining a list of candidate sets for the new highest antichains.
For width two this is quite easy. For width 3 and 4 it gets increasingly involved
and we will have to introduce some additional bookkeeping. It is quite possible
that the approach can be generalized to higher values of k = width(P). However,
the case kK = 5 already seems to require an unpleasantly involved case analysis.

Theorem 3. Given an order P with n elements and a linear extension L of P,
there is a algorithm that decides width(P) < k for k = 2,3 in O(n) time. For
k = 4 there is an algorithm for the decision problem running in O(nlogn) time.

In the next three subsections we describe the algorithms proving the theorem.
Notationally it will be convenient to work with a vector (By, Bs, .., By) of antichains
with B; = 0 or |B;| = j such that the non-empty antichains in this vector are
exactly the antichains A; = HMA(Q);) defined above.

The assumption that a linear extension L of P is given as part of the input
can be removed if we are willing to spend O(nlogn) time to either find such an
extension or show that P has width > k, as described below.

Construct a complete binary tree 1" with root 7, which has elements of P
as leaves. Maintain at each internal node i the set S(i) of minimal elements of
the subposet induced by the elements assigned to the leaves below i; note that
|S(7)] < k or P has width > k. We compute the initial values of S(i) during a
postorder traversal of T'; this can be done using k? comparisons at each internal
node, and thus takes O(k?n) time. We then choose any element z from S(r) to
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output next in the linear extension L. Delete x from our tree; this involves repeating
comparisons only along the path from x to r in T". Since each element can be deleted
in O(k*logn) time, L is found in O(k?nlogn) time for a width & poset.

Note that if we are not given a linear extension as part of the input, instead
being given access to an adjacency matrix, finding a chain decomposition requires
2(nlogn) time, since if the input is a totally ordered set we must produce a sorted
sequence using only comparisons between elements.

4.1 Width Two

Let L = xy,29,...,x, be the linear extension of P which is assumed to be given
as part of the input. Let z;||z;;1 be the first incomparable adjacent pair in L. The
algorithm is initialized with By < {z;, 241}, By < 0.

When inserting a new element x = x; we first compare x to the elements of Bj.
If z is incomparable to both we have detected a three element antichain and stop.
The remainder of the algorithm is broken up into two cases.

In the first case we assume By = {a} # (). If z > a then B; < {z} and we are
done, otherwise, if z||a we set By < {a,z} and By + ().

The more complex case is when By = (). Let By = {b, ¢} here we have three
cases.

(1) If z > b and = > ¢ then By « {z}.
(2) If x > b and z||c then By < {z,c}.
(3) If z||b and = > ¢ then By < {b,z}.

Since, it is easy to extend the algorithm such that a chain covering by two chains
is maintained the correctness of the algorithm is obtained by Dilworth’s theorem
(Proposition 1(2)). We need at most three comparisons to insert a new element,
hence, the complexity of the algorithm is O(n).

4.2 Width Three

The initialization of the algorithm for width three is as in the width two case
with the addition that Bs < () has to be initialized. When the new element xz is
comparable to some element of By or By we reuse the width two algorithm and
only have to modify By and/or Bs.

For the remaining discussion assume that x is incomparable to all elements of
By U B,. We describe the algorithm as a list of cases with the assumption that the
algorithm picks the first applicable case.

Case 0. B; # () and z is incomparable to all elements of Bs: We have detected a
4-antichain and stop.
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Case 1. B, # (): The update is done by the two assignments Bz < By + x and
B2 — (b

For the remainder of the width 3 recognition algorithm, B; = {41, y2,y3} and
B2 — (b

Case 2. B; = (): Compare x to the elements of Bs. If z is comparable to exactly
one element y € Bs then B3 <— Bs — y + z, otherwise, leave B3 as it is and let
B, « {l‘}

Now suppose that B; = {a}. The set of elements above Bj is a chain C' =
(21 < 23 < .. < z) with z, = a. Since Bj is the highest 3-antichain in the order
induced by the elements inserted before x the element z; is greater then at least
two elements of B3. We assume that y; < z; and y < 2.

Case 3. In this case we consider 3-antichains {z, z;, y3}. The candidate for z; is
the highest element in C' which is incomparable to ys. If z; > y3 we proceed with
case 4. Otherwise the candidate z; can be found by comparing the elements of
chain C one by one to y3. This may cause a non-constant cost for the insertion
of x, however, all but the last of the elements will be removed from chain C. We
will charge the cost of these comparisons to the elements of the chain. When z; is
found we have two subcases.

Subcase 3a. z||z;: Let By < {z,z;,y3} and if i =1 also By + ).

Subcase 3b. x > z;: Since this implies that x is greater than two elements of B3
we know that z is not contained in any 3-antichain and we let By < {z,a} and
B, « @

Case 4. Element z is greater then exactly one element of Bs: In this case y3 < x
or z; is greater than all elements of B; and we may rename them so that = > ys.
Assign Bz < {y1, 99,2}

Case 5. In this last case x is not contained in any 3-antichain and we safely let
By «+ {x,a} and By « 0.

Taking into account the amortization of cost in Case 3, the running time of the
algorithm is obviously in O(n). As consequence of the algorithms for recognition
of orders of width 2 and 3 we obtain alternative algorithms for recognizing graphs
of Dilworth number 2 and 3 which are as fast as the algorithm given in Section 3.
Since our O(n) algorithms only make a linear number of comparisons between
elements and an domination-comparison takes O(n) we obtain a time complexity
of O(n?). It only remains to make sure that we can generate a linear extension of
the domination order of a graph in O(n?) time. Here we can avoid an n? bottleneck
by simply using the ordering of the vertices by degree.

Theorem 4. Graphs of Dilworth number at most 3 can be recognized in O(n?)
time.
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4.3 Width Four

The initialization of the algorithm for width four differs from the width three case
only in that By < () has to be initialized. When the new element z is comparable
to some element of B;, By or Bs we reuse the width three algorithm and only
have to modify a subset of B;, By, Bs. However, as an additional feature we have
to maintain a chain cover of the width two order on the top. We assume that this
cover (1,5 has the property that every element in C5 is incomparable to some
element in C; note that such a cover can be produced by the recognition algorithm
for width two.

For the remaining discussion assume that x is incomparable to all elements of
B; U By U Bs. Again, we describe the algorithm as a list of cases such that the
algorithm picks the first applicable case.

Case 0. B, # () and z is incomparable to all elements of B;: We have detected a
b-antichain and stop.

Case 1. B3 # (: Set By < B3+ x and B3 < ().
Henceforth By = {y1, Y2, y3, y4} and Bz = ().

Case 2. B, = () and B; = (): Compare z to the elements of B,. If x is comparable
to exactly one element y € B, then B, < B4 — y + x, otherwise, leave B, as it is
and let By < {z}.

Case 3. B, = ) and B; = {a}: The set of elements above By is a chain C' =
(21 < 23 < .. < z) with z, = a. Since By is the highest 4-antichain in the order
induced by the elements inserted before x the element z; is greater then at least
two elements of By. We assume that y; < z; and y < 2.

Subcase 3a. In this case we consider 4-antichains {x, z;, y3, y4}. The candidate for
z; is the highest element in C' which is incomparable to y; and y4. If 21 is greater
than one of y3 and y4 we can skip to the next case. Otherwise, let h(y;) denote the
highest element of C' incomparable to y; for j = 3,4. Let z be the smaller of h(ys)
and h(yy). If z||x then By + {x,2,y3,y4} and if i = [ also By «+ 0.

Subcase 3b. Element z is greater then exactly one element y of By: Assign B, <
B4 +x — Y.

Subcase 3c. In this last case x is not contained in any 4-antichain and we safely
let By < {z,a} and By + (.

Case 4. B, = {a, b}:

Let C;, C5 be a chain partition of the set of elements above B,. Recall that
we assume that every element in C5 is incomparable to some element in C. For
y € By let h;(y) for i = 1,2 be the highest elements of C; incomparable to y. If y
is below all elements of C; we define h;(y) = y. Since By is the highest maximum
antichain the least element of each of C', (5 is already comparable to at least two
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of the elements of B;. We may assume that every element of ] is greater than y;
and y, and every element of (Y is greater than ys.

Subcase 4a. There is a 4-antichain consisting of z, elements ¢; € C; for ¢t = 1,2
and y4. Such a 4-antichain can only exist if y, is incomparable to x and hy(yy) # y4
and ho(ys) # ys4. If  is bigger then either of hy(ys) and he(ys) then there is no
antichain of this type. Assume that x is incomparable to both.

If 11 (ya)|[h2(ya) then By < {x, h1(ya), ho(ya), ya}-

If ho(ys) < hi(ya) let z be the highest element of C; incomparable to hy(yy). If
z < z then there is no antichain of this type. If z||z let By < {z, 2, ha(y4), ya}-

If hi(ys) < h2(ys) the situation is more complex. If there are elements in Cl
incomparable to hi(y4) let z be the highest such element. If z <  then there is no
antichain of this type. If z||x let By < {x, hi(y4), 2, ya}-

If hi(ys) < ha(ys) and every element of Cy is comparable to hi(yy) let 2o
be the highest element of Cy below hy(y4) and let 2; be the highest element of C}
incomparable to zo. If 2; and 2 are both incomparable to x let By < {x, 21, 22, Y4 }.

Subcase 4b. There is a 4-antichain consisting of =, an element ¢ € C; U Cy and
two elements from By. This requires that x is incomparable to both of y3 and y,. If
¢ € C} then hy(y3) # ys and hy(ys) # ya. Let ¢ < min{hq(y3), h1(y4)}, if z||c then
By < {z,¢,ys3,ys}. The case where ¢ € C is identical up to changes in indices.

In the last two subcases we have ignored the update of By and B;. This update
is easily done by considering the possible relations of the elements in the new B,
and a, b.

Subcase 4c. Element z is greater then exactly one element of By: Assign By <
B4 -y + x.

Subcase 4d. In this last case x is not contained in any 4-antichain and we safely
let By < {z,a,b} and By < 0.

The algorithm requires a procedure that given a chain C' and an element y
returns the highest element of C' incomparable to y. With binary search this can
be accomplished in O(log |C]) time. During insertion of an element this procedure
is only called a constant (<10) number of times. Beside these calls the insertion is
in O(1) per element. This gives an overall complexity of O(nlogn).

5 Concluding Remarks

We have shown that it is possible to avoid the bottlenecks of matching and matrix
multiplication in recognizing small width partial orders and graphs with small
Dilworth number. We have two different techniques (and time complexities) for
recognizing small width partial orders—one technique can be used only for partial
orders of width at most 4 and the other can be used for larger values of width. It
would be interesting to see if these two techniques can somehow be combined to
yield a faster algorithm.
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