
Remote controlling an autonomous

car with an iPhone

Miao Wang

B-10-02
March 2010



Remote controlling an autonomous car with an iPhone

Miao Wang
Free University of Berlin

Department of Computer Science
14195 Berlin, Germany
mwang@mi.fu-berlin.de

Abstract

This paper describes iDriver, an iPhone software to re-
mote control “Spirit of Berlin”. “Spirit of Berlin” is a com-
pletely autonomous car developed by the Free University of
Berlin which is capable of unmanned driving in urban ar-
eas. iDriver is an iPhone application sending control pack-
ets to the car in order to remote control its steering wheel,
gas and brake pedal, gear shift and turn signals. Addi-
tionally, a video stream from two top-mounted cameras is
broadcasted back to the iPhone.

1 Introduction and Motivation

Autonomous cars are robots capable of unmanned driv-
ing in an unknown urban area. Research in autonomous cars
have received a broader interest in recent years and unfolded
many insights for robot systems in different applications.
The industry, especially automobile manufacturers, are ea-
ger to improve advanced driver assistance systems (ADAS),
such as lane departure warning and intelligent speed adap-
tation systems while the military is strongly interested in
unmanned drones for military purposes. From a Computer
Science perspective autonomous vehicles function as a re-
search foundation for progress in machine learning, com-
puter vision, fusion of sensor data, path planning, decision-
making and intelligent autonomous behavior.

While unmanned driving is the ultimate goal, in the de-
velopment process of autonomous vehicles human drivers
must be present in case of failures. A remote control is a
perfect instrument to send commands to the vehicles as well
as receiving status data from without actually remaining in
the car. In this paper a solution is described where an Apple
iPhone is used as a remote control. Mobile phones like the
iPhone possess the necessary computing capabilities and
sensor functionalities to act as a remote control. The remote
can toggle between completely autonomous mode, where
the phone acts as a mobile monitoring panel, and manual

mode, where the operator can use the phone to steer and
drive the car.

The mobile application was named “iDriver” and tested
with the autonomous car “Spirit of Berlin” from the Free
University of Berlin which also participated in the 2007
DARPA Urban Grand Challenge. We tested the remote soft-
ware on the abandoned airfield in Berlin Tempelhof, where
a human operator sent commands for the desired position of
steering wheel, gas and brake pedal as well as gear shift and
turn signals to the car. Additionally, a video stream from
two mounted cameras on top of the car is broadcasted back
to the iPhone as feedback.

A remote control is typical for a client-server-
architecture whereas the client software resides in the re-
mote sending out control signals to the server system to
be controlled. The server is responsible to accept or re-
ject these commands and execute them accordingly. As of
a feedback service the server may return an answer back to
the client.

The remainder of this paper is structured as follows. In
Section 2, we give information on the background of au-
tonomous cars in the DARPA Grand Challenge and also
describe the architecture of “Spirit of Berlin”. Section 3
explains the user interface of the remote software iDriver.
The following two sections will describe the communica-
tion between the phone and the car: Section 4 will describe
the communication from the phone to the car, whereas sec-
tion 5 will describe the communication back from the car to
the phone. Finally, Section 6 presents our conclusions and
potential future use of this work.

2 Related Work

2.1 DARPA Grand Challenge

The US Defense Advanced Research Projects Agency
(DARPA) has organized three challenges for unmanned
land vehicles in 2004, 2005 and 2007.

1



In 2004, the goal was to drive a predefined route of 150
miles within 10 hours in Barstow, California. Price money
of 1 million dollar was awarded for the team who finished
first. Over 100 teams participated in this challenge, but none
of them managed to complete the whole distance to win the
price money. The best performance was accomplished by
Carnegie Mellon Red Team’s robot Sandstorm with 7.36
miles before crashing with a road obstacle [1].

DARPA repeated the same challenge in 2005, with 195
applicants whereas 43 where chosen for a National Qualifi-
cation Event (NQE) and 23 teams made it to the finals. All
but one of the finalists surpassed the distance of Sandstorm
in the preceding year. Five vehicles successfully completed
the race with the winner robot Stanley from Stanford Rac-
ing Team that finished the course in under 7 hours [2].

In 2007, DARPA moved to a urban scenario. The Urban
Challenge in November 2007 took place at the site of the
now-closed George Air Force Base in Victorville, Califor-
nia. The goal involved finishing a 60 mile course in urban
area in less than 6 hours including obeying all traffic laws
while negotiating with other traffic participants and obsta-
cles and merging into traffic. The winner was Tartan Racing
(Carnegie Mellon University and General Motors Corpora-
tion) with their vehicle Boss and a finishing time of 4 hours
and 10 minutes [3].

While the 2004 and 2005 events were more physically
challenging for the vehicles, because the robots only needed
to operate in isolation with focus on structured situations
such as highway driving, the 2007 challenge required en-
gineers to build robots able obey all traffic regulations and
make intelligent decisions in real time based on the current
situation.

2.2 Spirit of Berlin

“Spirit of Berlin” was the participating robot of Team
Berlin of the Free University of Berlin in the 2007 DARPA
Urban Challenge [4]. It finished as one of the 35 semifi-
nalists. The 2007 team was a joint team of researchers and
students from Free University of Berlin, Rice University,
and the Fraunhofer Society working together with Ameri-
can partners. The vehicle was a retrofitted Dodge Caravan
with drive-by-wire technology, modified so that a handi-
capped person could drive using a linear lever for brake and
gas (the lever controls all intermediate steps between full
braking and full acceleration), and a small wheel for steer-
ing the front wheels. The rest of the car’s components can
be controlled through a small contact sensitive panel or us-
ing a computer connected to A/D converters.

Several sensors are used and mounted on top of the car:
Two GPS antenna give information about the position and
direction of the car. An IMU unit and an odometer pro-
vide temporal positioning information when GPS signal is

lost. Two video cameras are mounted in front of the car for
stereo-vision modules to detect lane markings and roadside.
One of the camera broadcasts its video stream to the iPhone
to provide a view of where the car is heading. Three laser
scanners are used to sweep the surroundings for any obsta-
cles that need to be evaded. All sensor data are collected
and fusioned into one state model about the vehicle itself
and its surroundings that is representing the perception of
the car.

A blade server from IBM provides the necessary com-
puting power for the running software modules, the ac-
tual intelligence of the vehicle. Here, the fusioned sensor
data are used to make decisions on what action needs to
be executed next given the current situation. The necessary
commands are then transmitted to actuators in the steering
wheel, gas and brake pedals to execute the made decision.
When the iPhone acts as a remote control in manual mode,
the intelligence in the car is turned off, and the commands
given from the phone are directly transmitted to the actua-
tors.

3 User Interface

The remote software was developed for the Apple iPhone
3GS. The multi-touch screen of the iPhone can be used to
capture multiple commands with more than one finger si-
multaneously, e.g. giving gas and steering to the left. The
user interface of iDriver is similar to many available race
games for the iPhone: Two touch sensitive buttons repre-
sent gas and brake control, touching them will send out
commands either to give gas or to brake. If both buttons
are pressed, the brake control overrides the gas control. The
steering wheel is controlled by the built-in accelerometer
sensors: Tilting the phone to the left will cause the car
to steer left; tilting to the right will cause the car to steer
right. The operator can activate the steering wheel control
by touching the wheel. The steering wheel control is in-
active by default to prevent continuing steering commands
being send out when the user accidentally drops the phone.
Two arrows on the left and right represent controls for the
turn signals, where an operator can turn either left, right or
both signals on or off. A flashing of the arrow control de-
picts the activity of the corresponding turn light. The top bar
shows information about the steering and gas/brake value
currently send out to the car as well as the current vehicle
speed. An info button toggles the settings view, in which
the default value for gas and brake can be set up. The gear
can also be changed via the settings menu. Since the “Spirit
of Berlin” is an automatic, the gear can only be switched
between reverse, park, neutral and drive. Holding the brake
is required for a gear shift. The iPhone possesses a 120
MHz PowerVR-MBX graphics processor, capable of ren-
dering OpenGL ES 2.0. This graphics processor is used to



display the camera image from the video camera of the car
onto the main screen.

Figure 1: Graphical User Interface of iDriver

4 Communication from iPhone to car

The communication between iPhone and car is based on
simple Wi-Fi. The transmission from the phone to the car
requires the values for the desired gas or brake position,
steering wheel position, desired gear and turn signal activ-
ity. All this information is packed in one UDP packet and
then send out to the server. The gas or brake position con-
sists of a float value between -1.0 (maximum brake) and 1.0
(maximum gas), the default value for brake is set to -0.44
allowing a smooth deceleration until a full stop is reached.
Similarly, the gas value is set to 0.58 by default to limit the
maximum speed in a test scenario to about 15 km/h. An-
other float value holds the steering wheel position with -1.0
for maximum left and 1.0 for maximum right. As a safety
precaution to prevent rapid turns the steering wheel position
is limited to -0.7 till 0.7. The desired gear is saved as an in-
teger value with 1 = park, 2 = reverse, 4 = neutral and 8 =
drive. The turn signals are also stored in an integer with 0 =
both signals off, 1 = left signal on, 2 = right signal on, 3 =
both signals on. Both float values for gas/brake and steering
and both integer values for gear and turn signal are packed
into one 16-byte UDP packet shown in Table 1.

gas/brake steering wheel gear turn signal
4 bytes 4 bytes 4 bytes 4 bytes

Table 1: structure of outgoing UDP control packets

UDP packets are only sent out when at least one finger
is touching the screen. If no fingers are touching the screen
no UDP packets are send out, causing the car to perform an
emergency stop after a short time interval. This is a safety
measure to ensure that the car comes to a full stop when the
connection between remote and car is lost or if the car is out
of Wi-Fi range.

5 Communication from car to iPhone

The car is functioning as a server for the remote and is
sending back two kinds of packets: feedback and camera
packets. Feedback packets are send for every incoming con-
trol packet described above, containing 16-byte information
for packet version, current speed, set gear and set turn sig-
nal mode. Table 2 shows the structure of feedback packets.
The speed value is displayed in the top bar whereas gear and
turn signal information are used by the client to verify the
last sent desired gear and turn signal commands.

version number current speed gear turn signal
4 bytes 4 bytes 4 bytes 4 bytes

Table 2: structure of incoming UDP feedback packets

Camera packets are constantly send from the car to the
iPhone. Each packet contains data for several rows of the
camera image encoded with a bayer filter and additional
meta information. The meta information consists of three
short values for which row is send, the maximum number
of rows and how many rows are sent. The raw image data
follows the meta information as the payload of the packet.
Table 3 shows the structure of camera packets.

row maximum rows number of rows image data
2 bytes 2 bytes 2 bytes variable

Table 3: structure of incoming UDP camera packets

The remote software receives these camera packets and
updates part of its OpenGL ES texture accordingly which
is displayed in the main screen. With the use of a bayer
filter the bandwidth of camera data is reduced to one third
comapred to raw RGB data. iDriver then uses a pixel and
fragment shader as an efficient demosaic filter on the GPU
described by McGuire [5].

6 Conclusion

This paper has described the architecture and mechan-
ics of the iDriver remote software. Completely autonomous
driving as well as manual driving with a remote like a mo-
bile phone will probably not be accessible for everyone to
use in everyday’s traffic for the next few years. Although
it would be technically feasible as the DARPA Urban Chal-
lenge or iDriver obviously demonstrated, there are many le-
gal issues to be worked out. For example, if two robot cars
crash into each other in traffic, it is not resolved who will be
responsible for the accident. Will it be one of the owners of
the car or will it be the manufacturer or will it even be the
company that built the failing module that was responsible



for the software error? It is obvious, that manufacturers and
legal institutions are not eager to discuss the terms of com-
pletely autonomous or remote controlled driving in the near
future.

Nevertheless there are still areas where a car remote can
be used in a beneficial way. We will briefly describe three
possible applications for the future. The first is commercial
use of the car remote for specific maneuvers where jurisdic-
tion can be clearly stated. For example, instead of opening
a garage door every morning to drive out the car and then
closing the door again, all can be executed with a remote
control right before leaving the front door. The garage door
will automatically open while the car drives out before the
door closes up again. This option can save time and is com-
fortably to use. The same can be imagined for parking in a
parking space or parking structure. The second usage was
already outlined in the beginning of this paper: When test-
ing for autonomous cars safeguards are required like people
sitting in the car ready to hit the emergency brake in case
something fails. These precautions and other actions can be
done remotely with a mobile device. Mobile devices can
also act as a mission control overview where checkpoints
can be defined for an autonomous route. Lastly, another
commercial use of mobile devices would be to let them act
as a diagnostic frontend to visualize what is wrong with a
car. Most vehicles today have much more diagnostic infor-
mation stored than is shown on the dashboard. On-Board
Diagnostics (OBD) has also been standardized for many
years to refer to the car’s self-diagnostic and reporting capa-
bility. A mobile remote device can read out this information
to display the necessary steps to repair the vehicle or to offer
the option to call a more specialized mechanic.

We see our work on iDriver as a proof-of-concept on
which more applications can be built upon. As of future
work we would like to incorporate a security protocol to
our communication between car and iPhone and try to inte-
grate more on-board diagnostic information. For a spinoff
project we also envision the visualization of laser scan data
and mission control for autonomous cars.

References

[1] C. Urmson, J. Anhalt, M. Clark, T. Galatali, J. P. Gonza-
lez, J. Gowdy, A. Gutierrez, S. Harbaugh, M. Johnson-
Roberson, H. Kato, P. Koon, K. Peterson, B. Smith,
S. Spiker, E. Tryzelaar, and W. Whittaker, “High speed
navigation of unrehearsed terrain: Red team technology
for grand challenge 2004,” Tech. Rep. CMU-RI-TR-04-
37, Carnegie Mellon University, June 2004.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens,
A. Aron, J. Diebel, P. Fong, J. Gale, M. Halpenny,
G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt,
P. Stang, S. Strohband, C. Dupont, L.-E. Jendrossek,
C. Koelen, C. Markey, C. Rummel, J. van Niekerk,
E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Et-
tinger, A. Kaehler, A. Nefian, and P. Mahoney, “Stan-
ley: The robot that won the darpa grand challenge,”
Journal of Field Robotics, vol. 23, pp. 661 – 692,
September 2006.

[3] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bit-
tner, M. N. Clark, J. Dolan, D. Duggins, T. Galatali,
C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M.
Howard, S. Kolski, A. Kelly, M. Likhachev, M. Mc-
Naughton, N. Miller, K. Peterson, B. Pilnick, R. Ra-
jkumar, P. Rybski, B. Salesky, Y.-W. Seo, S. Singh,
J. Snider, A. Stentz, W. Whittaker, Z. Wolkowicki,
J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,
J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Tay-
lor, M. Darms, and D. Ferguson, “Autonomous driving
in urban environments: Boss and the urban challenge,”
Journal of Field Robotics, vol. 25, pp. 425 – 466, July
2008.

[4] J. Rojo, R. Rojas, K. Gunnarsson, M. Simon, F. Wiesel,
F. Ruff, L. Wolter, F. Zilly, N. Santrac, T. Ganjineh,
A. Sarkohi, F. Ulbrich, D. Latotzky, B. Jankovic,
G. Hohl, T. Wisspeintner, S. May, K. Pervoelz,
W. Nowak, F. Maurelli, and D. Droeschel, “Spirit
of Berlin: An Autonomous Car for the DARPA Ur-
ban Challenge - Hardware and Software Architecture,”
tech. rep., Free University of Berlin, June 2007.

[5] M. McGuire, “Efficient, high-quality bayer demosaic
filtering on gpus,” Journal of Graphics, GPU, & Game
Tools, vol. 13, no. 4, pp. 1–16, 2008. ISSN: 2151-237X.


