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Abstract

We study the problem of how to cover a polygonal region by a small number of
axis—parallel ellipses. This question is well motivated by a special pattern recogni-
tion task where one has to identify ellipse shaped protein spots in 2—dimensional
electrophoresis images. We present and discuss two algorithmic approaches solving
this problem: a greedy brute force method and a linear programming formulation.
Furthermore we discuss related theoretical questions.
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1  Detecting Spots in 2—dimensional Gel Electrophoresis
Images

1.1 Gel Electrophoresis: The Application Background

Proteomics is a rapidly growing field within computational molecular biology. In pro-
teomics 2-dimensional gel electrophoresis (2DE) is the best known and widely used tech-
nique to separate proteins. A 2DE gel is the product of two separations performed sequen-
tially in acrylamide gel media: isoelectric focusing as the first dimension and a separation
by molecular size as the second dimension. A two-dimensional pattern of spots each rep-
resenting a protein is the result of that process. Eventually, spots are made visible by
staining or radiographic methods. By analyzing series of such 2DE images one hopes
to identify those proteins that change their expression (size, intensity) and reflect/cause
certain biochemical and biomedical conditions of an organism, see [17]. Ideally, in an gel

Figure 1: Twin spots, streaks and complex region

image each spot has the shape of an axis—parallel ellipse, which is a widely accepted mod-
eling assumption, see e.g. [3] or [12]. However, spots that are very close to each other can
partially merge (modeled by overlapping ellipses) and form rather complicated regions as
depicted in Figure 1.

At Freie Universitdt Berlin we have started a few years ago to develop the software
system CAROL (see [6]) that answers local and global matching queries for gel images
(given in GIF format). The novelty of its matching tool was that setting landmarks by
hand, a necessary preprocessing step in previous algorithms, could be avoided. Instead,
the matching between a source and a target image uses the history of the incremental
Delaunay triangulation, [13], [11], of the target spots. The matching tool starts from
the assumption that images are already given as spot lists with each spot represented by
point coordinates of its center and a real value describing its intensity. However, since the
accessible spot detection algorithms did not supply results precise enough for our approach
we developed and included a new detection algorithm into the CAROL system, see [15]
for details.

The most difficult task for the algorithm is how to interpret twin spots, streaks (left
side in Fig. 1) and so called complex regions (right side in Fig. 1) as unions of ellipses. In
fact, in [15] the latter case was left open and in the implementation the user had to edit
these complex regions manually. To present an algorithmic solution to this question is the
subject of this paper and to our knowledge it is the first algorithmic approach that deals
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Figure 2: Part of a gel image and spots computed

with complex regions in 2DE images.

In fact, just by looking at the images it is evident that there is an inherent uncertainty
in the 2DE gel images. This is due to the electrophoresis process itself which is highly
susceptible to faults and geometric distortions, so there is no hope to come up with a
perfect spot detection algorithm. Consequently, in the upcoming CAROL version we try
to cope with that problem by maintaining a list of proposals how such an ambiguous region
could be covered instead of computing only the ‘best’ covering which could be erroneous.
In the matching algorithm part we then have the possibility to accept the matching of two
ambiguous regions if there is a pair of proposed coverings that match.

1.2 Modeling the Covering Problem

The following formalization is a compromise stemming from discussions with practitioners
who solve these covering instances by peer review. We assume that a connected pixel
pattern R is given, which is fat in the sense that there are no short horizontal/vertical
cuts consisting of two pixels only. In the application R is usually a 1-connected subpattern
of a 100 x 100—pixel square. We identify a pixel with its center and denote by OR the
rectilinear polygonal curve traversing the boundary pixels. Then we shrink and expand
this boundary to the inside and the outside as follows by defining the two pixel sets
OR_ = {p € R|dx(p,0R) = 1} and, analogously, OR, = {p € R|dx(p,OR) = 1}.

Now we can formulate the approximative covering problem we are interested in from
the application point of view. For numbers 0 < p,q < 1 and a natural number p > 1 find
a smallest possible set £ of axis—parallel ellipses fulfilling the following conditions.

1. (Shape) For each E € £ the ratio of its halfaxes is in the interval [1/p, p].
2. (Fitting) Each ellipse F € & respects OR,, i.e., it does not intersect R ..

3. (Intersection) The boundaries of any pair of ellipses FE,E’ € £ intersects in at
most 2 points, and -area(E N E') < ¢ - min{area(E), area(E")}.

4. (Covering) Uy E covers at least a 1 — p portion of pixels in OR_.

The aim to find minimal coverings is in accordance with Occam’s razor principle, since the
smallest cardinality set is, in a sense, the simplest hypothesis to explain how a complex
region could have been evolved. Moreover, we especially emphasize that the somehow



strange intersection condition 3 is justified by the application because two spots (ellipses)
can only partially merge and do not form a cross.

2 Brute Force Solution vs. Linear Programming

In this section we present two algorithmic solutions to our covering problem that have been
implemented and tested. In the implementation we assumed that the regions R are simply
connected and rectilinear, however it is straightforward how to extend the algorithms to
arbitrary polygonal regions. Aiming at better running times the sets OR_ and 0R, are
sampled by subsets S and S,;. Since a convex boundary segment is likely to be part of
a single ellipse, S_ and S are chosen in such a way that convex segments have denser
samples.

2.1 Computing a Brute Force Solution

The basic idea behind the naive brute force solution is to generate all ellipses that fulfill
condition 1 and 2. A voting scheme is then set up to select the covering.

In a first step we discretize the parameter space of possible ellipses. Recall that an axis—
parallel ellipse is formed by all points (x,y) fulfilling the equation

x —c)? —d)?
wf | P

1=0 (1)

with parameters a,b,c,d € R.

To this end we restrict the ellipses to have centers which are pixel centers and one of

the halfaxes, say a, has to have multiple pixel side length. Finally, to model condition 1,
for a fixed a we restrict the second halfaxis to values from the set {as’| —k < i < k}, with
5= P
Now, the algorithm simply computes for each center (c,d) and for each i the maximal
halfaxis a such that the ellipse with parameters (a,as’,c,d) does not intersect OR, .
For each ellipse we store which points from S_ it covers and their number. Eventually, in
a greedy fashion we choose the covering. Assume a partial covering is already chosen. The
next ellipse F is selected among all ellipses satisfying condition 3 (with respect to already
chosen ellipses) according to the following criteria, ordered as ranked:

1. E covers a maximal number of previously uncovered points from S_
2. E maximizes the length of longest chain of consecutive covered points from S_
3. E minimizes maximal intersection area with an already chosen ellipse.

After selecting a best E (ties are broken randomly) we update the scores of all other re-
maining ellipses by deleting the points covered by E. We stop augmenting ellipses when
condition 4 is met.

The drawback of the brute force approach is obvious, too many ellipses are tested. More-
over, by discretizing ellipse parameters we may miss interesting ellipses like the big one in
the right hand solution in Figure 3.

Remark: Let F be the family of ellipses (a, as’, c,d) as described above, and let kopt be
the minimal number of ellipses of F, needed to cover all points of S_ and avoiding the



Figure 3: Ellipse covering computed by brute force method (left) and by LP approach
(right)

ones of ORy. Then the standard log |S_|-approximation (see [7]) of the optimal solution
by the greedy approach cannot be guaranteed, at least for arbitrary sample sets S_ in
polygons with holes. This is due to the restrictive intersection property. An example that
illustrates this observation consists of a set of rather thin ellipses arranged in a grid like
fashion. Besides the very recent paper [2] we are not aware of approximation results for
set covers with restrictive intersection properties.

2.2 Using an LP Approach to Generate Ellipses

Compared to the brute force approach we do not want to restrict the set of ellipses under
consideration for covering a region by an apriori parameter discretization and we want to
avoid to generate to many explicite ellipses.

Observe that each element in the pixel set R, now sampled by S, forms a constraint
for each ellipse in the cover, since any ellipse must not contain such pixels. On the other
hand, we want at least a few points (say, at least three) from S_ to be included in a ellipse
of the covering.

Therefore, we start from a randomly chosen triplet of mutually visible points from .S and
ask whether there is an axis—parallel ellipse containing these points such that it does not
violate an outer constraint. Once having the information that for a given triplet there is
a feasible solution one can efficiently extend the covered sample subset by an LP-based
approach.

We start from the observation that the parameters of an ellipse £ can be transformed into
variables of an LP in such a way that each of the three points which have to be covered
by E adds a linear constraint to the outer constraints. The constraints are derived by

2 )2
putting a point p = (ps,py) into the ellipse formula (p””a_zc) + (p’"’b2d) — 1 which has to
be zero (negative, positive) for points on (inside, outside) E. Since this is not a linear
constraint we start with one of the form

PeT1 — PoTy + Pyt — T4 =ps  (vesp. <,>) (2)
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By elementary calculation, setting t = 5+ + Ty — T4, WE derive as ellipse parameters
a = \/% b = %2
c=3 d= g

Once having the existence of a feasible solution (not an explicite ellipse yet!) one wants
to extend the point set that can be covered. Clearly, it makes sense to add and check
first the neighbors of the already covered sample points. This is also done in a random
way. However, it is clear that one can easily get stuck, when there is a very restrictive
partial solution, in the sense that we have still a feasible system but the actual solution
set of ellipses is very small and does not allow to add a new sample point. To implement
the necessary backtracking step, we have adapted a simplified version of the so called
Metropolis methodology, see for example [14], where it has been used for the generation
of large cliques in graphs, a similar situation to ours.

This random Markov-chain like process is organized in rounds. With probability ¢ we have
a round ‘extend’, that is we choose and try to add a random neighbor; with probability
1—¢q we have a round ‘backtrack’ and we delete a randomly chosen point from the already
covered point set. After a fixed number of rounds we actually compute an explicite can-
didate ellipse to be included next into the partial covering. Among all possible ellipses we
choose that one yielding a halfaxes ratio closest to 1. This is repeated a constant number
of times and we augment the candidate that is optimal according to the criteria above.
The only thing that remains to explain is how to incorporate condition 3 into the LP-
approach. As before we delete already covered points from S_. But now for each selected
ellipse ¥ we add new ‘outer’ constraints to Sy by sampling the ellipse interior. These new
points prevent later chosen ellipses from having large intersections with E. Again, this
scheme is run until condition 4 is met. In the example depicted in Figure 3 the black pixels
represent S_. The dots outside the region describe the initial outer constraints, within
the chosen ellipses the additional outer constraints are also indicated. Together they form
the final set S..

2.3 Some Implementation Details and Discussion

We implemented the Brute Force greedy approach with ellipses that have a halfaxes ratio
from the set {s’| — 10 < i < 10,s = V/5}, cover the inner sample by 80% and do not
pairwise intersect in more than 30% of the area. For the region in Figure 3 (subset of a
76x 80 array,with 59 inner sample points drawn in black) this yields 13000 ellipses that
fit into it, to compute the 10 ellipse covering indicated took 24 seconds on a SUN Ultra
Sparc 300MHz.

In the LP based solution we used the CPLEX software ( [8]). Again, for Fig. 2 (ini-
tially 76 points defining outer constraints) it took 13s to compute the indicated (random)
solution. For each ellipse to be included into the covering we computed 10 candidate
ellipses, and for each candidate we run 30 rounds of the Metropolis process, with a 4 : 1
expected ratio of extend to backtrack rounds.

Both the running times and the solutions computed on all the test regions we studied
clearly indicate that the LP based solutions outdo the brute force solutions. To refine the
latter by denser sampling the ellipses quickly ended in running time and memory problems.



A clear advantage of the LP solution is its randomness which allows to compute several
alternative coverings that are then input to the matching procedures.

The evaluation of the programs on original gel data is rather hard because even experts
have problems to agree on optimal solutions. Thus, in addition to tests on original gel
data, the LP based program has been validated by a series of runs on randomly generated
input samples. Each sample consists of ten randomly generated ellipses which overlap in
such a way that the requirements of our modeling are fulfilled. This way there was always
a unique optimal solution the algorithm’s result could be compared with. The regions
were approximated by rectilinear polygons of average size 140 x 120 what lead to sets of
about 150 inner and 175 outer sample points. The average running time was 13 seconds.
For each run the following three ellipse types were counted:

1. Correctly detected ellipses, i.e., ellipses from the sample such that all inner points
defined by their boundary are covered by a single ellipse of the solution;

2. Partly detected ellipses, i.e., ellipses from the sample such that at least 60% (but
not all) of their inner points are covered by a single ellipse in the solution;

3. Missing ellipses, i.e., ellipses from the sample that are neither correctly nor partly
detected.

Missing ellipses and the uncovered part of partly detected ellipses are usually covered by
small ellipses in the solution, so called dummy ellipses. Since the algorithm is randomized
we evaluated ten runs for each input sample. The following table shows the average num-
bers for the worst and the best sample and the total average values over all test samples.

correctly | partly | missing | dummy
detected | detected | ellipses | ellipses

worst case 9.2 0.6 0.2 1.1
best case 9.8 0.2 0.0 0.0
average case 9.5 0.4 0.1 0.9

The computation of the complete spot detection for a full gel image ( 1200 x 1500
pixels, 4500 spots) takes about half a minute without complex regions, in such large
images we observed between 0 and 20 complex regions. Finally we remark that usually a
spot detection is only computed once before storing the image in a data base.

3 Further Theoretical Aspects

We discuss the ellipses coverage problem from a more theoretical point of view. Assume
P ={p1,...,pm} is an input polygon, now neither necessarily simple nor rectilinear, and
let ¢ > 0 be a given fault parameter. Again we assume that the polygon has no short
cuts of length < 2e. Moreover, we drop the condition that two ellipses in the covering can
intersect in at most 2 points. Let S_ (resp. S ) denote the vertices of polygonal chains P_



Figure 4: A randomly generated input sample. The solid (transparent) arrow marks a
dummy (partly detected) ellipse.

(resp. P;) which approximate the boundaries of the e-neighborhood of P, have Hausdorff
distance € from P, and fulfill the property that the distance between any two consecutive
vertices is at most €.

The ellipses-covering problem is to find a collection & = {F,..., Ex} of minimal cardi-
nality of axis-aligned ellipses such that the union U = |J E; contains all the points of S_
and none of the points of S;. Let n denote the number of points in S_ and S5 together.

In this context, ¢ is of course a bound on the error of our estimation of the boundary
of the original collection of spots.

Note that we do not require that each point of OU has a point of P within distance
< e. Thus, we are willing to accept holes in the solution. We will discuss later the problem
of finding a set of ellipses that avoids Sy and approximately covers the whole interior of
P.

The problem of (approximate) covering a shape with ellipses is strictly related to the
problem of exact covering a shape with rectangles, which was shown to be an NP-hard. It
also related to the problem of covering a shape with strips [1], and to the problem range
covering in a hypergraph [5]. Thus, in the general setting there is no much hope for finding
a polynomial-time algorithm. On the other hand, there is no much difficulty to obtain a
polynomial time algorithm that approximates the set up to a log k., factor, where kg is
the cardinality of the optimal-size solution, using the algorithm of [5]. The running time
of a straightforward implementation of their algorithm is O(n5kopt logn).

3.1 Efficient algorithms for the greedy approach

In the “traditional” greedy approach we perform a sequence of iterations, in each we
find an ellipse that respects Sy (that is, contains none of its points), and covers the
maximal number of points of S_ not covered by previously chosen ellipses. We show how
to perform each such iteration in time O(n3a(n)logn), where n = |S_|+|S|. This, using
standard greedy arguments, yields a running time of O(nkepa(n)log?n) where ko is
the cardinality of an optimal output, and a(n) is the inverse Ackermann function.

Note that for each ellipse with parameters a, b, ¢, d equation (2) yields a dual representation
by a point (z1,z2,73,74) € R* where z; = 2¢, 2o = a?/b?, 3 = 2a?d/b?® and x4 =
c? — a? + a%d?/b?. Consequently, the set of ellipses containing (not containing) a given

point (pg,py) is described by the hyperplane pyz; — pzxz + pyxs — x4 > p2 (vesp. <).



Let ¢1, to be two points of S_, and consider the two-dimensional plane D in R?* representing
all axis-parallel ellipses that pass through t;,%5. Then D is the intersection of the two
hyper-planes that corresponds to ¢1,t2. Each point p of S_ U S, determines a line p in
D, and an ellipse E contains p if and only if § is below the point E which is the dual
point in D of E. Accordingly, E respects all points of S if and only if E is below all
lines corresponding to point of S,. Let S_ (resp. ,§’+) denote the collections of lines
corresponding to points of S_ (resp. S;). Let I denote the lower envelope of the lines of
S’+. We seek a point E which is below I', and above a maximum number of the lines of
S_. Consider the arrangement A_ formed by the lines of S_. Clearly E lies on an edge
of one of the cells of A_ intersected by I". The collections of these edges (and the vertices
they define) is known in the Computational Geometry literature as the zone of I' in A _.
See [4] for further reference.

Using the recent algorithm of Har-Peled [10], the zone of I' in .A_ can be constructed

in time O(na(n)logn). Once the zone is created, finding a point in this zone that lies
above the maximal number of lines of A_ is therefore doable by scanning this zone (in
linear time). Since ¢; and t5 are not known in advance, we need to iterate over all pairs of
points of S_, and repeat this process for every new ellipse that we find. Using standard
greedy-algorithms arguments, this number of ellipses we find is larger by at most O(logn)
than the optimum number, thus the running time of O(n®kopcr(n)log?n) where ko is
the cardinality of an optimal output, as asserted.
Remark: We can use a similar algorithm also for finding a collection of ellipses which
respect S, and approximately cover the interior of P. The necessary simple modification
is as follows: We replace S_ by the point set D_ which are the vertices of a uniform
grid of edge length £/2 which are inside P ( i.e., all points of the form (ie/2, je/2) for i,j
integers). Additionally, S, is replaced by a point set S’, lying in between P and S,. Using
either the greedy approach or the algorithm of [5], we find a small collection of ellipses
&' ={E|... E.} whose union avoids S’ and covers D_. Next we replace each ellipse E;
of & by an ellipse E; slightly larger. Formally, E; and E! share the same centers, but
each of the axes of E; are larger by v/2¢/4 than the corresponding axes of E!. Clearly,
the collection & = {Ej,..., E;} avoids the points of S, given S’ was chosen accordingly.
Since each interior point is at distance at most v/2¢/4 from a point of D_ the polygon is
completely covered. One can also show that the cardinality of £ is within O(logn) factor
of the optimum. Note that the number of grid-points in D_ is at most O(n?).

3.2 Polygons with long edges.

If the input polygon P consists of long edges (i.e. the assumption that the length of
each edge is O(e) is not valid), we can use one of several variants of this algorithm. The
decision which variant to use depends on the assumption of the model we use. More
precisely, whether an edge of P needs to be covered by a single ellipse, or can it be covered
by an arbitrary number of ellipses. In the later case, we currently see no better alternative
than artificially replace this edge by a sequence of short edges, each of length O(¢e), and
treat this case as this was the original input. We strongly suspect that one can do better
by implicitly creating these edges.

However, if we assume that each edge of P is covered by a unique ellipse, (but a single
ellipse can cover several edges) a better alternative exists. For each boundary edge e; of P

we create the edges e (e;) of the circumscribed (inscribed) polygon with distance e from
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P. Instead of defining S_ to be an e-dense sample it is sufficient to choose the vertices of
the inscribed polygon.

Fixing two points of S_, and using the same duality transform as above, we have to
consider a two-dimensional plane D in R*. We need to cope with a few modification of
the algorithms.

First, we seek for ellipses in D respecting all edges e;r. The dual é;“ of this edge
is a quadratic curve. The lower envelope I' now consists of pieces of such curves. Its
complexity is still O(na(n)). The second modification applies to the points in the zone of
I' we are looking for. We require that they are located above a maximal number of line
pairs corresponding to edges e;” of the inscribed polygon. It is not hard to show that the
running time remains O(n®kopc(n) log? n) in this case as well.

3.3 Partitioning into Essential Parts

Next we sketch how to amplify algorithmically the observation that an almost convex
boundary segment of a region is typically covered by one ellipse. That is, we assume that
the region to be covered is indeed the result of merging a small number of axis-parallel
ellipses. Recall that this idea was already used in the design of the LP based solution.
We assume therefore subsequently that an input polygon P, with edge length ¢, is well-
behaved in the following way:

1. We assume that there exists a set of ellipses £’ = {E, ..., E} } whose union boundary
is within Hausdorff distance < ¢ from P, and

2. BEach vertex v of |J E is “significant” in the following sense: Let D be a disk of
radius Ke (for an appropriate constant K) centered at v, and let E] and E), be the
ellipses of £’ determining v. Then for every pair of points p; € JE] and ps € OFE)
inside D, the orientation of the tangent to Ef at p; differs by at least a constant &
from the orientation of the tangent to Ej at po.

Given the polygon P obeying this condition (for an unknown set £'), we propose the
following algorithm.

Approximating tangents. For every vertex p € P we compute p", the approrimate
tangent to the right, defined as the line that passes through p and the orientation of which
is the average of all lines passing through p and one of the vertices of P clockwise from p
and within distance < Ke. The approximated tangent to the left p' is defined analogously,
when points counterclockwise to p are considered.

Approximated vertices. We compute the set V of all vertices p of P for which the
orientation of p' is different by at least x/2 from the orientation of p". Note that by
property (2) above, each vertex of | JE yields a vertex of V. However, V might contain
other points as well.

Partition into parts. We partition 9P into parts, where each part is the portion of P
between two consecutive approximated vertices of V. A part is called essential if the total
angular span (difference of approximated tangents in the approximated vertices) is at least
some constant «. All other parts are called non-significant.

Covering significant parts. We represent again each possible ellipse as a point in the
4D parameter space. Let v be a significant part, and let v* denote the region in the dual
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space of all ellipses that respect P and approximate . As one easily observes, v* is “fat”
in the sense that for each axis in the parameter space, the diameter of v* along this axis
is roughly €. We replace v* by a box 4 of size e, which is easier to handle, yet each point
q* € 4 is dual to an ellipse that is within distance ce from -, for a constant c.

Now, the main observation is that a set of ellipses that covers all the significant parts
1, ...,y corresponds to a stabbing set .S for the regions 4y, ...,4; in the parameter space.
Using very similar ideas to the ones in [9], one can find such a set S in time O(Ipolylogl)
where [ is the number of significant parts, and the size of S is within a constant factor off
the optimum.

Eventually, we are left with the task of covering the non-significant parts. Here we use
the standard greedy approach which is doable in polynomial time and gives a solution with
a logarithmic factor far from the optimum. Thus the size of the output is O(I} + I3 log [3)
where [ (resp. [3) is the size of a minimal covering of the significant (resp. non-significant)
parts.

3.4 Using the Bronnimann & Goodrich paradigm

The purpose of this subsection is to show an efficient implementation of the Brénnimann
& Goodrich paradigm for finding a collection £ of ellipses that approximately covers that
interior of P. For technical reasons, we use the following strategy: Let D_ be the grid
defined in Remark 3.1. Following the discussion of Remark 3.1, it is enough to find a
collection & of ellipses that avoids S, whose union covers D_, and whose centers lie on a
grid point of D_. Let kopt be the minimal cardinality of such a collection.

Theorem 1 Let P and Sy be as above. Let n = |Sy|. Then in expected time O(n3a(n)+
anopt log? n) one can find a set € of ellipses that cover the interior of P, and its boundary
0UE is of distance < 2e from the boundary of P. Moreover, the cardinality of £ is of size

O(kopt log kopt) .

Proof: We use for this the paradigm of Bronnimann & Goodrich, which consists in this
case of the following stages. It assumes that kop¢ is known (otherwise it is found using
unbounded search), and is much less than n. It maintains a set E of ellipses whose union
covers D_. The solution we seek is a subset of E. It gives a weight w(E) to each ellipse of
E, initially all set to be 1. The algorithm consist of phases. At each phase, the algorithm
picks a random sample R of size ckopt log kopt, of the ellipses of E, where the probability
of an ellipse to be picked is proportional to its weight, and ¢ is a constant as computed
in [5]. Next the algorithm checks if R covers D_. Assuming this is not the case. Let p
be a grid point which is not covered, (arbitrarily chosen if there are more then one) and
let E, C E be the set of ellipses containing p. The algorithm doubles the weight of each
ellipse of E,, provided that }°pcg w(E) < w(E)/2kopt. The algorithm stops when a
cover is found. Since the Vapnik-Chervonenk is dimension of the problem is clearly finite,
it is shown in [5] that the algorithm stops after O(kopt logn) phases.

Preliminaries As the first step toward an efficient implementation of the algorithm, we
restrict our search to mazimal ellipses. An ellipse E is y-mazimal if (1) its center is in
a grid point of D_, it (2) respects S;, and in addition (3), among all ellipses that has
the same center and z-axis, F has the largest y-axis. We define an z-maximal ellipse
analogously. An ellipse is mazimal if it is either z-maximal or y-maximal. Clearly, we
can assume that the optimal cover consists of maximal ellipses, and thus assume that E
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consists only of maximal ellipses. We claim the number of such ellipses is only O(n?).
This results from that fact that there are O(n?) points  in D_, and each z gives raise to
O(n) maximal ellipses centered at x.

In a somehow similar fashion to [1], we construct a data structure that enables us to
(implicitly) modify the weight of all ellipses in E,. We describe the process for y-maximal
ellipses. Analogous process is applied to the z-maximal ellipses. Let p be a fixed point
of D_, and let r be a row of a grid-points of D_. Let ¥(w) denote the family of all
axis-parallel ellipses (not necessarily maximal) whose width is w. Let e(z) (for x € r) be
the y-maximal ellipse in U(w) whose center is in z. We paint a grid-point = € r white if
p € e(x). Otherwise z is black.

Lemma 1 There is at most one connected sub-interval consisting of white points.

Proof Let g € Sy be a point.
Claim There is a at most a single z = z, for which e(z,) contains both p and ¢ on its
boundary.

The proof of the claim is based on the fact that if xz1,z9 € r, then the boundaries
of e(z1) and of e(z2) intersect in at most a single point. Details are omitted from this
extended abstract.

Now assume by contradiction that there are at least two white subintervals of r, and
let 21 be the right endpoint of the leftmost sub-intervals. Let fq(z) (for z € r,q € S})
be the unique ellipse whose center is in x, whose width is w, and whose boundary passes
through ¢. Clearly de(x1) contains both p and some point ¢ € S, on its boundary, that
is e(z1) = fq(x1). For any point 22 € r which is very close and to the right of 21, we have
that p ¢ fy(z2), and thus for any z3 € r,z3 > z;, we have that p ¢ f,(x3), (otherwise
there must have been 2’ € r, 2’ # z; for which p € 9f,(z"), which contradicts the claim).
Since f,(x) (if exists) contains e(z) for every z, we deduce that p ¢ e(x) for every z > z;.
This concludes the proof of Lemma 1.

Let us denote by I, »(p) the subinterval on r of all points  for which a maximal ellipse
of width w centered at = contains p.
Computing the heights of the the maximal ellipses. Let r be a fixed row and w a
fixed width, as before. We compute for each ¢ € S, the function ¢, (-) , which is defined for
each point z € ¢, and denote the height of the (unique) axis-parallel ellipse in ¥(w) whose
center is in x, and its boundary contains g. Clearly the height of e(z), the maximal ellipse
in ¥(w), equals mingeg, ¢q(z). Thus, in order to compute the height of these ellipses for
each = € r, we merely need to compute the lower envelope of the functions {¢4(z)|qg € S, }
. The complexity of this envelope is known to be As(n) (for an appropriate constant s)
and can be efficiently computed in time As(s)logn, see [16]. Multiplying this number by
the number O(n) of possible values of w, and by the number O(n) of points in S, we
obtained a running time of O(n3a(n) + n%kept log kept) for the algorithm.
Finding an uncovered point. After picking a random sample R as described above, we
need to see if D_ is contained in UR. For this, we compute UR explicitly, (using for example
a line sweep technique). The complexity of this union is O(kopt? log? kopt) = O(n?), as
the size of R is O(kopt log kopt), and it can be computed in time O(kopt2 log? Eopt). This
bound is bounded by O(n?), accourding to our assumption. Next we scan the plan to find
the first point point p € D_ \ UR.
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Computing I, ,(p). Letting r and w be fixed as above, once a point p € D_ \ UR is
found, we perform a binary search along r in order to find a point of I,,,(p), and then
to determine its endpoints. The binary search is done as follows. With each point of r
we maintain the height of e(z) and which point(s) of S, bounds it. If z € I, ,(p) (ie.
p € e(z)) we skip to the second part of the search - determining the endpoints of I, ,(p).
Otherwise (p ¢ e(z)) we can deduce from the configuration of z,p, and the point ¢ € S5
that bounds e(x) whether I, ,(¢), if not empty, lie to the left or to the right of z. Again,
details are omitted from this extended abstract. Thus the time needed to compute I, . (p)
for all rows r and all values of 1 < w < n is O(n?logn).
Maintaining the weights. In order to maintain the weight of the ellipses efficiently,
to [1], we do not construct the weights explicitly. Instead, for each row r and each possible
fixed width w, (1 < w < n) of the ellipses, we construct a binary balanced search tree
T = T;w on the points of r, sorted by their z-coordinate. Each leaf v € T is associated
with the maximal ellipse of width w whose center is (at the point) v. Each node p € T
maintains a weight w,, a subinterval I, C r of all points which are descendants of j, and
the sum o, of all the weights of all its descendants leaves. In order to double the weights
of all maximal ellipses of width w whose center lie on Iy, »(p), we double the field w), for
each node p for which I, C Iy, +(p), but Ifeper(u) is not contained in I, »(p). Analogous
to standard segment trees, we see that we need to update only O(logn) fields wy,, and that
computing the weight of a specific maximal ellipse is doable in O(logn). Thus the running
time of each phase is O(n?logn), since we need to repeat this process for every value of
w (the width of the ellipse) and every row r, we obtain that the updating the weights is
doable in O(n?logn). Note that in order to compute the weight of an ellipse E associated
with a leaf v € 7, we multiply the weights w,, along the path from v to the root of 7.
Picking the random subset is done as follows. We repeatedly pick a tree 7 at random,
according to the sum of weights of leaves of the tree, which is stored in the field o,.454(7)-
Next we compute a random path in the tree (from the root to a leaf), where once visiting a
node p, the probability of branching to the left node lef#(u) or to the right node right(u).
depends on ratio of the sum of weights 0. () and 0,44, The ellipse we pick is the one
assosiated with the leaf that ends the path. This concludes the proof of Theorem 1.

4 Conclusions

We have studied a well motivated covering problem for polygonal regions. The randomized
LP based algorithm gives satisfying solutions for instance sizes relevant in the application.
More advanced algorithmic ideas and data structures like those discussed in Section 3, al-
though interesting from a theoretical point of view, are at present unlikely to be of use in
efficient practicable implementations. Nevertheless, both approximate and exact set cover-
ing problems with additional intersection restrictions (geometric or combinatorial) deserve
to be studied also in the theoretical context (hardness results, approximations,etc.).
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