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Abstract

We consider the following l'esource constrained scheduling problem. Given 111. iden­

tical processors, S l'esourccs with upper hounds, 11, independent tasks of unit length l

where each task has astart tüne and requires Olle processor and a task-dependeni

amount of every resourcc. The optimization problem i8 1,0 schedule all tasks at dis~

crete tilncs in 1N J minilnizing the latest c.ompletion time Cmax subjeet to the processor,

reSOluce and start-time constraints. Multidimcnsional bin packing is a special case of

this problem. The problem is NP-haI'cl even under rnuch simpler assumptions. In case
"-

:bt-z'ero start times Röck and Schmidt (1983) showed an (m/2)-fador approximation
k
algorithm and de la Vega and Lueker (1981), improving a classical result of GareYI

Graham. Johnson and Yao (1976)1 gave for every [ > 0 a linear time algorithm with

an asymptotic approximation guarantee of s + Co The contribution of this paper i8 to

break I.he O(m) resp. O(s) barrier, even in the case of zero st.art tÜlles, at least for

problems where the llUlnbcr of processors and the reSOUl'ce bounds are in D(log III).

111 being the input size of the problem. The main results are constallt factor approxi­

n1ation algorithms for such problems and the proof of the optimality of thc achieved

approximation under the hypothesis P #- NP,
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1 Introduction

Problem Definition and Complexity

Resource constrained scheduling with start timcs is the following problem: The input is

• a set T = {Tl,"" Tn } of independent tasks. Each task Tj needs one tilne ullit fOT its

campletion and cannot be schednled befoTe its start tinle Th Tj E lN.

• a. set P = {PI, ... , Pm} of identical processors. Each task needs one processor.

• a set R = {R1, ... 1 Rs } of linllted l'eSOUTces. This means that at allY time a.ll resourccs

are available, but the available arnount oi each resource Ri is bounded by bi EIN.

• For 1 ~ i ~ s, 1 :s; j :s; n let RiU) E [0, 1] bc rational resource requirerneuts, indicating

that every task Tj needs RiU) alnount oi Tesource Ri in order 1.0 be processed.

Th \ b' .al ... bl'. e tom InatoIl optImlzatlOn pro em 16:

Definition 1.1 (ResouTce ConstTained Scheduling) Find a schedule (or assignrnent) (J :

T ~ IN of minimal time length subjeet to the staTt times, processor and resource con-

straints.

o

According to the standard notation of scheduling problems thc unweighted version oi our

probleIn (Ri(j) = 0, 1) can be -fonnalized as

This notation means that the llumber of identical processors is part of the input ( PI )
that resources are involvcd ( res) that the number oi resources and the amount of every

resource are part oi the input, too ( res·· ), that every task necds at most 1 unit of a
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resource ( res ,·1 ), that start times are involved ( Tj ) and that the processing time oi all

tasks i8 cqual (Pi = 1) and that the optimization problem i8 to schedule the tasks as soon

a.s possible ( ICmax ).

The problem 1s N P-hard in the strang sense, even if Tj == 0 for all j = 1, ... , n, S == 1

and m == 3 [GaJ079].

An intel'esting special case of resource constrained scheduling i8 the iollowing general­

ized version of the multidimensional bin packing probleIn.

Definition 1.2 ( Bin Packing Problem EIN(l, d)) Let d, l, n be non negative integers.

Given vectors iit, . .. ,vn E [0, l]d, pack all vectors in a minimum number of bins such that

in cach bin Band for each cooTdinate i, i == 1, ... , d,

D

observe th at ß I N (1, cl) i8 the multidilnensional bin packin g problem, and BIN (1, 1) is

the dassical bin packing problem. The intention behind the formulatioll with a para.lnetcr

I 2: 1 is to analyse the relationship bctween bin si7,es and polynomial-timc approximability

of tlte problem.

Previous Work

The known approximation algorithms far the problem dass Plres "', 1'j == O,Pj = llCmax

are due to Garey, Graham, Johnson, Yao [GGJY76] and Röck and Schmidt [RS83]. Garey

et a1. constructed with the First-Fit-Decreasing heuristic a schedule of length CFFD which

asymptotica1ly is a (s + ~ )-factor approximation, i.e. there i8 an non negative integer N

such that for all Copt 2: N
f 1

CFF D ~ Copt (s +3)'

de la Vega and Lueker [VeLu81] improved this result presenting for evcTy E > 0 a linear-time

algorithm with asymptotic approximation factor d+ (. Röck and Schmidt showed, employ­

ing thc polynomial-time solvability oi the sirnpler problem P2\res .. " Tj = 0, Pj = l\Cmax

with 2 processors, a r~1factor approximation algorithm. Thus far problems with small op­

timal schedules or many reSOUTce constraints resp. processors these algorithms have a wcak
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performance. Note that all these results are based on the assumption that no start-times

are given, i.e. Tj = 0 for all tasks Tj E T. For example, Röck and Schlnidt's algorithm cau­

not be used, when start-times are giveu, because the problem P211'es . ·1, Tj,pj = llCmax

is also P{P-complete, so their basis solution cannot be constructed in polynomial tin1e.

In (SrSt94] we sllOwed a 2-factor approximation algorithm for resource constrained

scheduling problems, when the resource bounds and the nuruher of processors are in

il(log(C s)), where C is the length of an optimal fraetional schedule, and pToved that

even for this dass a polynomial-thne p-approxiIDation algorithm for p < 1.5 canllot exist,

unless P = NP. Since this llon-approxilnability result was derived with a reduction to

the NP-complete problem of deciding if a schedule of length 2 does exist 01' not, it was

conjectured that for other instances - exept this pathological one - better a,pproxinlations

might he possible.

We will show that this conjecture is tTue in a comprchcnsive sense:

The Results

Let Copt be the minimum sched ule length and let the integer C dcnote the lllinirIluIIl'length

of a schedule, if we consider the LP relaxation, where fractional assign ments of the tasks

to scheduling tirnes are allowed. V\fe bTiefly caU solutions to thc LP relaxation "fractional

schedules" and solutions to the original integer problem "integral schedules"J. As the aue

rnain result we will presenL a polynomial-time approximation algorithm for the problclTI

dass Plres . -I, Tj,pj = llCmax ,induding its rational weighted version (0 ~ Ri(j) ~ 1):

(a) For every (. > 0, (1/f.) E IN, we can find in strongly polynomial time an integ/al

schedule 01 size al most f(l + f)Coptl, provided lhat all resource bound8 bi are at least

3(~t() loge4Cs) and the number 01 processol'S is at least 3(~tt:) log(4C).

As a surprising consequence a schedule of length Gopt + 1 can be constructed in

polynomia.l-time, 2 whenever bi ~ 3e(C + 1) log(C s)) for an resource bounds bi anel

m ~ 3C(C + l)logC. This approximation guarantce is independent of the number of

IThis should not CCLuse any confusion: C is always an integer, only the assignments of tasks to times in

the discrete interval {l, ... , C} are fractional nll~bers.

2Note that Cis at most the sum of n and the maximal start time, hence the factor log(Cs) is within

the size of the problem input.
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pTocessors or resources and cau be used also for small schedules, for example Cmax = 2,3

01' 4. The results cau be extended to the case of integer resource requirements ( Ri(j) E JN

) by scaling and exploitillg the fact that we can handle rational weights, thus we ob­

tain polynomial-time approximation algorithm for problem.s of the form Plres .. " Tj,pj =

llCmax .

One nlight wander, if under the assumptians bi E n((-2log(C s)) fOT all i alld 'In E

f2( f- 2 1og C) the scheduling problem is interesting enough. In ather wOIds, can it bc that

such problenls are easily solvable in polynolnial time ? The answer ia that unclel' the

hypothesis P 1= NP our approxhuation is best possible:

(b) For the simpler problem with zero start-tirnes and C ~ 3 it is NP-complete 3 to

decide the question ('1s Copt = C ? ", even ij

• a fractional schedule 0/ size C is known}

• an integral schedule oi size C +1 is known,

• b1: E n(C2 1og(Cs)) JO?' alt reBource bounds bi .

Iu conclusion, both results togethcr precisely determine the border of a,pproximabilit.y

oi' resource constrained scheduling and sheed light on üs complexity.

An interestillg special case oi reSQurce cOllstrained scheduling i8 the multidimensional

bin packing problem and the above results imply

(c) Let f > O} (1/ f) EIN. /1 1 ~ 3(:tc
) flog (4nd))1, then we can find in 0 (dn3 Iog(nd))

ti?ne a bin packing with L bins such that L :s; f(1+E)Lopt1- But even iJ 1= n(Lh log(nd)),

then it is N P-complete to decide whether L opt = LR or L opt = LR + 1.

Furtherrnare, extcnding the luethod oi loge n-wise independence from the case of 0 - 1

to IDultivalued ra.ndom variables, we ca.n parallelize our algorithm in special cases.

Let T ~ lo~n and S1.tppose that m, bi ~ 2n~+T jlog 2n(s + 1) for all i. Then

there is a NC-algorithms that runs on O(n2(ns)1+~) parallel processors and fi,nds in

o(log n log3(ns)) time a schedule of size at most 2Copt '

3 For G = 2 see [SrSt94]
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1
Observe that tbere i8 a gap of a n2"+r factor between the lower bounds of the resource

bounds and number of processors in the sequential and in the parallel algorithm. This

factor comes into picture due to the estimation oi higher moments required by the lnethod

of loge n-wise independence. We leave open the question, if there i8 a parallel 2-factor

approxiInation algorithm for problems with rn, bi E n(log(Cs)).

The paper i8 organized as follows. In section 2 we study a general system of integer

inequalities related to resource constrained scheduling, show under whlch circumstances a.n

integer solution can be constructed via derandomization and apply the results to resource

constrained scheduling. In section 3 it Is proved that the achieved approximation is optimal,

unless P = lVP. In section 4, as an example, the nlultidimensional bin packing problenl

is dlscussed and in section 5 we give für same special cases parallel counterparts of our

scheduling and bin packing algorithms based on an extension of the Inethod of loge n-wise

independence to multivalued randorn variables (appendix section 6).

2 Integer Irlequalities

Resource consLrained scheduling can be modclled as a special case oi 0, system of integral

inequalities with equaJity constraints:

Let I, n, N be non negative integers. Far k = 1, ... , N let A(k) be rationall X n luatrices

with 0 ::; a~J) ::; 1 and b(k) E Q~. For a vector Yj E {O, l}N let Yjk be its k-th cOlnponent,

k = 1, ... , N. Let y(k) be the vector of all the k-th components, i.e. yCk) = (Ylk,.' ., Ynk)'

Consider the following systeln of linear inequalities

Inequality System (IS)

A(k)y(k) < b(k) Vk = 1, ... ,N

IIYjlll IVj===l, ... ,n

Yj E {O,l}N

y(k) (Ylb . .. , Ynk).

Resource constrained scheduling fits in this scheme as follows: consider thc processors as a

resource Rs+1 with requirement Rs+1(j) = 1 for all j and bound m. Let R === (Ri(j))ij be

the resource constraint matrix, set A(k) = Rand b(k) = (b,m) for all k = 1, .. . ,N. Then,
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the problem of ftnding a minimum N such that a so defined inequality system (18) has a

solution is equivalent to the problem of finding a schedule oi minimallength.

In general, Olle cannot expect to solve (15) in polynomial time, even if a fl'actional solu­

tion exists, because then we would be able to dedde the 80lvability of resource cOllstrained

scheduling.

The key observation is that (18) can be solved, if the same systern with a tighter right

hand side, say (1 +E)-lb(k) instead of Mk), i8 fractionally solvable.

Define the f- version oi (18) for 0 < f S; 1 as

f-Inequality System (IS(f))

A (k)y(k) < (1 +E)-lb(k) 'r/k = 1, .. . ,N

IIYjlll 1Vj=1, ... ,n

Yj E {O~ l}N

(k)
(Ylk", ',Ynk)'y

We need the following parameters. Let h be an integer with h ~ land define

(1)

Theore:ln 2.1 (Rounding Theorem) Let 0 < f S; 1, II and bf,i as in (1). S1LPPOSC thai

b~k} ~ bE,1 for all 1 S; i ::; h and b~k) ~ b(,2 Jor alt i > h. Suppose thai u ::::: (Ul, ... , un )

with 'l.Lj E [O,l]N is a fractianal solution Jor the E-scaled system IS(E). Then a vector

x = (Xl, .. . ,Xn ) 'l.liith Xj E {O,l}N satisJying the ineq11alities 01 system, IS, i.c.

can be constructed in 0 (N ln21og(N 1n )) time.

o

Für the proofwe need the following derandomization rcsult which is an algorithmic version

of theAngluin-Valia.nt inequality for Inulti-valued random variables. Let 1, n, N be nOll­

negative illtegers. We a.re given n mutuaHy independent randOlll variables Xj with values

in {I, ... , N} and probabHity distribution Prob(Xj = k) = Xjk for ali j = 1, ... , n, k =

1, ... , N and L~l Xjk = 1. Suppose tllat the Xjk are rational nUITlbers with 0 S; Xjk :::; 1.

Let Xjk denote the ra.ndom variable which is I, if Xj = k and i8 0 else. For 1 :::; k :::; N l
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1 S; i ~ l, 1 S; j S; niet w};) be rational weights with 0 S; w~J) .::; 1. For i = 1, ... , land

k = 1, ... ,N define the sums 'l/Jik by

n

"/'"k - "" w (k) X .
'f/~ - LJ ij .1 k •

j=l

Let 0 < ßik S; 1 be rational numbers.

Dellote by Eik the event

Let (Eik) be a collection of ZN such events. Define

f(ßik) = exp(- ßtk~(?jJik)).

By the Angluin-Valiant inequality ([McD89], Theorem 5.7) we have fol' all k

(2)

D

Thus the proba.bility that thcre is SOlne (i, k) so that Eik holds is at most L~l 2:i:=1 !(ßik).

Let us assume that this is boullded away from oue, i .e.

m N

I: L f(ßik) S; 1- 8.
i=l k=l

(4)

for same 0 < fJ < 1. The following theorem is a special case of the algorithmic version oi' tbe

Angluin-Valiant inequality for multivalued random variables (Theorem 2.13 in [SrSt94]).

Theorem 2.3 ([SrSt94] Let 0 < 8 < 1 and Eik be as above satisfying (4). Then

lP(n~l n~=l Eik) ~ fJ and a vector x E n~l n);=l Eik can be constructcd in

o (N ln2 10g Nln]) -time.

o

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1: Set [N] = {I, ... , N}. Let XI, ... , X n be mutuaJly independent

random variables with values in [N] defined by IP[Xj = k] = Ujk, k E [N]. For j, k let

X jk be the 0 - 1 random variable which is 1 if Xj = k and 0 else. Furthermore, for each

k E [N] let X(k) be the vector (XIk,' .. , -"Ynk). For i = 1, ... , l define sums 'l/Jik by

n

'l/Jik = (A (k) X(k))i = ~ a~J) Xjk.

j=l
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Let Eik be the evellt

By the Angluin- Valiant inequality and the assumptjon b~k) > bt:,l for 1 < 1- < hand

b~k) ~ bE,2 for 11 + 1 ~ i ::;; 1

where fL = Zr or J..L = l - Zr resp .. Hence

With {j = ~ we can invoke the algorithluic Angluin-Valiant inequality for multi-valued

random variables (Theorem_ 2.3) and can construd vectors Xl,"" X n with Xj E {O,l}N

and 11 x j 111 = 1 such that

in O( N ln2 log( N Zn)) tiIne.

o

In order to show the claimed approxilnatjoll guarantec for resource constrained scheduling

we procp('.d as follows. In the first step wc salve the linear progralnluing relaxation of the

integer program associa.ted to reSOUl'ce cOllstrained schednling. Now an integer schedule can

be generated in principle with aUf rounding theorem (Theorem 2.1). Since the roundillg

theorenl ca.n be applied only if a fractional solution within the smaller resource bound

vector (1 + t)-lb is available, in the second step we must show the existence of such a

solution.

Fractional Sohltions

Let Trnax := maXj=l, ... ,n Tj and D = T max +n. Thus

c s; Copt ::; D.

The following integer linear program is equivalent to resource constrained scheduling with
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start times.

minE

Lz Xjz 1

Xjz 0

Xjz E {O, I}.

V Ri E R,

Z E {I, .. . ,D}

VTj E T

V Tj E T, z < 7'j and

V Tj E T,z > S

The fractional optimal schedule C can be found in a standard way (see for example

(LST90]): Start with an overall integer deadline C S; D and check whether the LP

L:z Xjz 1

Xjz 0

Xjz E [0,1]

\j Ri E R,

Z E {I, .. . ,D}

V Tj E T

V Tj E T, Z < 'I'j ancl

\j Tj E T, Z > C

has a solution. Using blnary search we can find C along with fractional assignmcnts (Xj;;)

solving at lnost log D such LPs. W.l.o.g we can assurne that D = O(n). Hence this proce­

dure is a polynomial-timc algorithm, if wc use standard polynomial-time LP algorithn1s.

Our goal is to find an integer solution using the rounding theorenl (Theorem 2.1). Hut

at this moment we cannot apply it, because the rounding theorem requires a fractional

solution within the tighter resource bound 1tc' while C and the assignnlents (Xij) are

feasible only within the bound b. It should be illtuitively clear that given a fractional

solution within the resource bound b and a fractional schedule of length C, a new fractional

solution within Itt: might be constructable enlarging the length of the schedule to BOllle

Cf> C.

But how can we choose an appropriate Cf ? Let € > 0 with (1/ f) E JN. COllsider

the time interval {I, ... , f(l + c)C1}. Define a new fractional solution as follows. CaU

{C + 1, ... , f(l + E)C1} the f- compressed image of {1, ... , C} and put 8 = 1~('

Set

I = {I, ... , f(1 + c)Cl },
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10 = {I, ... ,Cl,

I{ = {C +1, ... , C + lECJ}

and

{

0, if ce E lN
JE. -

2 - { r(1 + c)Cl} else

Then I = 10 U Ir U 12, For integers llet g, f be fUllctions defilled by

I-C I-C 1
f(l) =-- and gel) =-- +1- -.

( E t

The new fractional assignments xji are

8Xj,i for I E 10

f(l)

Xji := L (1 - 8)xjt für I E If
t=g(l)

C

L (1 - 8)xjt für I E I~.
t=g(l)

(5)

lt is instructive to state tlle raudomized roullding algorithnl behind the rounding theorem

(Theorem 2.1) for resource constrained scheduling explicitly. Here is the algorithm:

Algorithm RANDOM-SCHEDULE

Schedule the tasks at tirnes selected by the followillg ralldomlzed procedure:

(a) Cast n mutuaJly independent dice each having N = f(l +c)Cl faces whcre the z-th

face of the j-th die corresponding to task jappears with probability Xjz' (Thc faces

stand for the scheduling times)

(b) Schedule task Tj at the time selected in (a).

The füllowing examples illustrate this algorithm.

Für E = 1 wc double the interval 10 and get {I, ... ~ C, C + 1, ... , 2C}. Then each task

Tj is randomly scheduled at time z E 10 with probability ~Xjz and is scheduled at time

z +C with the sa,lne probability. While trus is quite dear, the idea of E-cümpressed image

becoll1.es more transparent looking at c = ~.

11
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Für f = ~ we have the enlarged interval {I, .. "C, C + 1, .. " r~Cl}. Given a task 1~' we

randomly assign it to a time z E {I, ... , C} with probability ~Xjz, assign it to z = C + 1

with probability ~Xjl + ~Xj2' to z = C +2 with probability ~Xj3 + ~Xj4 and so on up to

the assignment to z = l~CJ. Now thel'e are two cases:

If 3C i8 even, we assign Tj to l~CJ with probability ~Xj,C-l+~Xj,c and since r~Cl =

l~CJ, we are done. If 3C is odd, then we assign Tj to l~CJ with probability ~Xj,C-2 +
~Xj,C-l and to l~CJ + 1 with probability lXjc.

The following figures illustrate this schedule enlargment. Given a fractional schedule

as iudicated in figure 1 we generate the schedule as shown in figure 2.

zl z2

PI

P2

FignTe1: A fractional schedule

zl z2 z3

PI

P2

FiguTe 2: The new fractional schedule

The following lemma shows that the new fractional schedule i8 indecd Icasible.
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Lemma 2.4 The vectors xj = (xj1, ... , 55jN ) J j = 1, ... , n form a fractional solution

for resource constrained scheduling with (1 + t)-l m processors and resource bound vector

(1 + t)-lb.

o

Proof: Let 6 = l~c and consider an arbitrary resonrce Ri' (We can regard the proccs­

. _ SOl' cOllstralnt as an additional resource, thus the following arguments also apply to the

processor constraillt)

The resource constraints are satisfied, because for 1E Ja we have

n

E Ri(j)Xjl ::; Obi,
j=l

far 1 E 11 (using f(l) - (g(l) - 1) = ~)

n

~ Ri(j)Xjl
j=l

<

a.nd for 1E 12(using C - (g(l) - 1) ::; ~ )

n J(l)

~ L (1 - 6)Ri (j)xjt
j=1 t=g(l)

1
-(1 - 6)b' - 6b·z - Z)
E

n

L Ri(j)Xjl
j=1

Furthennore [ar aU tasks Tj,

n C

L L (1 - b)Ri(j)Xjt
j=1 t=g(l)

1
< -(1 - 8)bi = cbi -

E

j(l) C

2: OXjl + 2: L (1 - o)Xjt + L I: (1 - 8)xjt
lElo lElf t=g(l) lEI~ t=g(l}

G G

L OXjl +L(1 - O)Xjl
l=l 1=1

1.

o

Using the rounding theorem (Theorem 2.1) the derandomized version of the algorithm

RANDOM SCI-IEDULEsimply i8:

Algorithnl SCHEDULE
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Detennine by the rounding theorem for each task its scheduling time.

o

Theorem 2.5 For every E > 0 with (l/f':) E IN, the algorithm SCHEDULE finds a

feasible integral schedule 01 size at most f(l + E)Cl in polynomial time, provided that

m 2:: 3(~tf) flog (4C))1 and bi 2: 3(~tE) flog (4Cs))l for all i = 1, ... , s.

o

Proof: As above let N = f(l +E)Cl Let A = (Ri(j))ij be tlte extended (8 + 1) X TL

resource cOllstraint matrix where the resource R 8 +1 represents tle processor requiremcnts

and thus 18 defilled by Rs+1(j) = 1 for all j. For k = 1, ... , Niet b(k) := (b, m) be the

resource bound vector. The theorem i8 equivalent to the problem oi finding a solution to

thc following inequality system

AyCh) < b(klVk=l, ... ,N

IIYjl11 lVj=L ... ,n

Yj E {O,l}N

(k) (Yl k, ... , Ynk)'Y

(6)

(The vector Yj and the condition IlYj111 = 1 stand for the assignmcnt of task '1j to

cxactly one time in {I, ... , N}. )

By Lemma 2.4 the assignlnent vectors Xl, ... ,Xn with Xj E [O,l]N and 2:1'=1 Xjk = 1

are a fractional solution to the f-sca.led system

Ay(k) < (1 +c)-lb(k) Vk = 1> ... , N

IIYjlll 1Vj=1, ... ,n

Yj E {G,l}N

y(k) (Ylk, ... , Ynk)'

We invoke the rounding theorem (Theorem 2.1) with h = s: the assumptiollS of the

theorem in the new notation read as

and

b(k) > 3(1 + c) flo (4C))l
ll+1 - ('.2 g i
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thus the conditlolls required by the rounding theorem are satisfied. With the rounding

theorem we can find in determinist~c polynomial time a solution to the inequality system

(6).

o

"Vith ( = 1 we get our result of [SrSt94]

Corollary 2.6 1f m 2:: 6fIog(4C))1 and bi 2:: 6fIog(4C(s + 1))1 fo1' alt i, then a schedule

0/ size at most 2C can be found in determ,inistic polyn01nial time.

o

And with f = lJ we infer the - as it will be shown in the next section - optimal approxi­

matioll.

Corollary 2.7 Ifrn 2:: 3C(C +1)f1og(1C))1 and bi 2:: 3C(C +1)rlog(4C(.5 + l))lJ Ja'!' all

i, l1um a schedule 01 size at most C +1 can be found in dete1'ministic polynomial time.

D

Note that in case uf 0-1 weights (i.e. Ri(j) E {O, l}) we have a st1'ongly polynomiaJ

approxirntion algorithm, bccause thell the strongly polynomial LP algorithm of Tardos

[Ta86] can bc uscd tn find the opthnal fractionaJ schedule. In any case the running tirne

or the TJP algorithm dOlninatcs dem'1y the funning time of derandomization.

Finally, suppose that the resouree requirements Ri(j) are integers with bounds bi ,

whereas in the problem8 above we assumed 0 :s; H-i(j) ::; 1. Scaling the resource bounds

reduces the problem to the 0-1 case witll rational resource requirelnents and we may

apply the results above. Scaling goes as folIows: compute for every resource Ri the number

Rmax(i) = max.TJ"ET Ri(j), set Ri(jy = RRi(j) and b~ = ~Rb" . Identifying the pTocessors
ma.ll max

with resource Rs+1 we have

Corollary 2.8 Consider the resource constrained scheduling problem with integer resource

1'cquirmentsJ i.c. Ri(j) E IN for all i = 1, ... , n and i = 1, ... , S + 1. FOT every t > 0,

(1ft:) E iN an integral schedule 01 size at most f(l + f)Copt1 can be found in polynomial

time, p1'ovided that bi 2:: 3(~t€) rlog (4C(s + 1))1 for i = 1, ... ,s + 1.

D
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Proof: The proof i8 based on the observation that if a schedule for the scaled problem

using bi and Rt.(j)' i8 feasible, then the rescaled schedule i8 feasible for thc original problem.

Now construct an integer schedule for the scaled problem with Theorem 2.5.

o

Furthennore, the choice of f = 1 yields a 2-factor approximation for probleIns of the general

form Plres .. ',Pj = 1, TjlCmax , and setting f = b the optimum oi an arbitrary resource

constrained schedllling problem -can be approximated up to one tinle-ullit, provided the

b/s are as large as required abüve. Note that for any constant ILmax this gives a tight

approxima.tion, since then bi still grows logarithmically in the input size.

Remark 2.9 For scheduling oi unrelated parallel machines results oI similar flavour havc

been achieved by Lenstra, Shmoys and Tardos [LST90] and Lin alld Vitter [LiVi92].

Lenstra, Shmoys and Tardos [LST90] gave a 2-factor approximation algorithm for the

problem oi scheduling independent jobs with different processing times on unrelated pro­

cessors and also pl'oved that there is no p-approxinlation algorithrn for p < 1.5 , unless

P = NP. Lin and Vitter [LiVi92J cOllsidcl'ed thc generalized assigllrnent probl~m and

the problern of scheduling of unrelated parallel machines. For the gencralized assignmellt

problem with reSOlJfce constraint vector b they could show for cvcry f. > 0 an 1+( approx­

imation of the mininlum assignment cost, which if feasible within thc enlarged packing

constraint (2 + ~ )b.

3 Non-Approximability

In this seetion we da not distinguish between the processor and the other resource C011­

straints, but consider the processor requirement as an additional resource constraint.

Dndcr the assumption bi = n(C2 1og(Cs)) we have construeted an integral schedulc

of size at most C + 1. This i8 very elose to the truth, because now Copt i8 cither C 01'

C + 1. We will show for all fix C 2:: 3 that even uudel' the assumption bi = n(C 2 log(es))

it is N P-complete to decide whether Copt = C + 1 or Copt = C. (Für C = 2 we refer to

[SrSt94])

In the remainder of this sectioll we cansider thc "simpler" problem with zero start

times. Then C ::; n and the N P-completeness of scheduling problems with bi = n(log(ns))
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implies the N P-completeness of problems with bi = n(log(Cs )). The following results

show the N P-completeness of resource constrained scheduling under different cOllditions.

In Theorem 3.1 we consider bi = 1 and 0-1 resource requirements 14(j) E {O, 1} .. Theorem

3.2 covers the case of bi = D(log(ns)) (and still Ri(j) E {O, 1}). In Theorem 3.3 we include

the case of some Ri(j) being fractional, Le Ri(j) E {O, 1, ~}, and Theorem 3.1 covers the

case bi = n(C 2 1og(es)). In particular, this shows that resource constrained scheduling is

N P-colllpiete, even if we ask for small schedules, i.e. "18 Copt = 3 7".

Theorem 3.1 Under the assumptions that there exist a fractional schedule 0/ size C ~ 3

and an integral schedule 0/ size C +1, and bi = 1 for all resource bounds, it is N P-complete

to decide whethcr or not there exists an integral schedule of size C.

o

Proof: \lile give a reduction to the chromatic index problern which is IY P-complete

[HoI8l]. The following i8 known about the Chr01llatic index X'(G) of a graph G. Let 6.(G)

be the lnaximal vertex degree in G. Then by Vizing's theaTeln [Viz64] .6.(G) ~ X'(G) ~

ti(G) + 1 and an cdge coloring with .6.(G) + 1 calors can be cOllstrncted in polynomial

tinle. But it is 1\TP-cOlnplete to decide whether there exists a colouring that uses ~(G)

colours) even for cubic graphs, i.e. ß(G) = 3 [Ho181]. Thcrefare the edge colouring problmn

is N P-complete for any fixed ß ~ 3. This 1S an ilnportant fact which will be used in the

proofs of Theorem 3.3 and Theareln 3.4.

Now to the reduction. Let G = (V, E) be a graph with lVI = v, I EI = 11. and deg(v) ~ 6.

far a.ll'/) E V. We construet a resource constrained scheduling problelll asssociated to G as

follows.

Introduce for every edge e E E exaetly Olle task Te and cOllsider J-L = lEI identical

processors. We will freely call the edges tasks and vice versa. For every node V E V define

a resource Ru with bound 1 and resource/task requiremcnts

{

1 if V E e
Rv(e) =

o if V t/:. e.

Claim 1: There exists a colauring that llses 6.. calours if and anly if there i8 a feasible

integral schedule of size ß.
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Suppose there is an integral schedule of size ß: colour each edge with the "colour" equal

to its scheduling time. Now all edges incidellt to the same node have different colours. If

this i8 not true, then there would be anode v E V covered by two edges e~ e' E E of the

same colour, which mea,ns that the tasks corresponding to the edges are 8cheduled at the

same time z. So

Xe' z = X ez = 1

and

cOlltradicting our assumption of a feasible schedule.

Suppose there i8 a.n edge colouring X' : E ~ {l, ... ,ß}. Then schedule task Te at the

time x'(e). It i8 easily verified that this is an fea,':üble integral schedule.

Furthermore, there i8 a fractional schedule of size C = ß: Simply set

1
X ez = D..

This schedule has size ß and we have

'V 1 ~ z ~ ß.

A

L X ez = 1 V Te

z=l

and

e

o

In Corollary 2.6 we assumed that bi 2: 6i1og(4C(s + l)l which we did not respect in the

reduction above. In the next two theorems we show how this assulnption can be included.

Theorem 3.2 Under the assumption thai there exist a ]ractional schedule 0] size C 2: 3

and an integral schedule 0] size C + IJ bi = !1(log(ns)) for all resource bounds, and C is

fixedJ it is N P-complete to decide whether or not there exists an integral schedule of size

C.

Proof: We follow the proof of Theorem 3.1. Hut instead of l'espresenting each edge of

the graph G = (V, E) by one task, we consider 2I(ß tasks where ]( = ilog)11 and fL = 11:1·
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For each e E E let us introduce 2I( red tasks

Tl(e), ... ,T2I< (e)

and 21((6. - 1) blue tasks.

\Ne get rid of the processor constraint considering !l21(6 identical processors, hence there

are enough processors to schedule every task at any time. For every node v E V we define a

resource R v with bound 21( and introdnce for every edge e E E a resource Re also having

bound 2!(' The requirements are: every red task Ti (e) needs one unit of resource R 1}) if

e i8 incident with v. All the other tasks including the blue tasks TP( e) do not lleed any

unit of the reSOllfee Ru. Every red or blue task needs Olle unit of its corresponding edge

rcsource Re. Hcnce a feasible schedule of size ß has to schedule all tasks corrcsponding to

an edge in packings of size at most 21(, The crudal observation 1S:

[1 'Wc can ensure thai all red tasks c07Tesponding lo the same edge are scheduled at the

same time, then we can define a scheduling time for this edge and can conclude arguing (J,S

in the proof oj Theorem, 3.1/ where we showed that it is as hard to find a schedule 01 size

ß as to dcterrnine the existence 01 an edge COlO1.lTing with ß colors.

Figure 3 shows such a feasible schedule. To ensure that all red tasks corrcspondjllg to

the san1e edge are scheduled at thc salne time we introduce a new resource type:

For every edge e, every red task Ti (e) and cvery !(-element subset .5' of blue tasks

corresponding 1;0 e, define a Tesource RTt(e),S with bound !( whose requirelnents are

defined as follows. Each task in S U {T[(e)} needs one unit of RT[(e),S alld all the other

tasks do not need any unit of the resource RT[(e),s, Observe that thc nUlnber of such

resources ]S

21( (2I((ß - 1))
s.. M T.~ •

.l(

We are ready to show:

Claim 1: The edges of G can be colored with ß calors, if and only if the above defined

scheduling problem has a schedule of length ß.

Here is a proof.
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Figure 3: Apart of a feasible schedule with tasks corresponding to one edge.

Suppose that the edges of G can be colared with L1 calors. Let Z be thc time set

Z = {1, .. ') ß}. For each e E E schedule all red tasks Ti (e) at the time corresponding

to the color of C, say Ze E Z and schedule the blue tasks Tib( e) in packets of 2[( at the

reluaining times Z #- ze, Z E Z. It is easily vcrificd that this is a feasible sched1l1e.

Suppose we are givcn a schedule of length L1. Due to the baund ]( for the resources

RT[(e),S it i8 not ltard to show that in such a schedule all red tasks T;( e) corresponding

to the same edge e Inust be scheduled at thc same tirne. This schcduling tüne defines a.

ullique color for every edge and thc proof of Theorem 3.1 shows that this is a desjred

coloring.

We are done, if we can show bi

v :::; p.. In total we introduced

Ü(log(ns)). Let v IV I and let us aSSUllle that

s (2(~ - 1) log /L)
1./ + p, + 2Jllog Jl log J.L

< 2J.L + 2tL log fL22~ log It

< J-L322~

< J.t6A

resources alld we have n = 2~ log J-L tasks. I t is straightforward to show the existence of a

constant a ::; 7 with ns :::; {LD'ß, hence

log(ns) :::; aL1log J.L = Cl.L1[(,
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wllich together with the assumption that C, and consequelltly f::1 is fix, imply

bi = n(I() = n(log(ns)) .

. It remains to show that there i8 a fractional schedule of size ~ and an integral schedule

oi size f::1 +1. Since the chromatic index of G 18 ß + 1, we can define an integral schedule

of this size as in the proof of Clahn 1. Furthermore, it i8 easily checked that the setting

XTz = ±fol' all tasks T and times z defines a fractional schedule of size .6.. 0

FinaJly, If we allow that same resource requirements are fractional numbers, we have:

Theorenl 3.3 Under the assumptions thai there exist a fractional schedule 01 size C ~ 3

and an integral schedule 01 size C +1, bi ?:: 6ilog(4C(s + l))l fo1' all resou1'ce boundsJ C

is fixed and Ri(j) E {O,~, l}J it is N P-c01nplete to decide whether or not theTe exists an

integral schedule oi size C.

o

Proof: Gnee again we reduce the probleIn the the chromatic index pToblelll and arguc as

in the proof of theorelll 3.1. Let G :::: (V, E) be a graph. Put ]( :::: lOOlog(j1.) and p, ':::: lEI.
For every edge c E B we considcf 2J( red and 21((.6.. - 1) blue Lasks

Consider 2JL1(.6.. identical proeessors. For every nod.e v E V let R v be a reSOUIce with

bOUlld 21C Its resource requiremcllt is

. 11 if 1j = TJ (e)
Rv(J) = and e contains v

o else.

V'Je follow the argulllentation of Theorem 3.2 and define one more resource- type to

enforce that all red task corresponrnng to the same edge are scheduled at the same time.

Furthermore, we have to introduce some resource requirements of value !.
First we forbid that more than 21( tasks corresponding to the sallle edge e can be

schecluled at the same tinle: Let Re be a reSOUl'ce with bound 2I( and resource requiremellt

{

I if T· :::: TT(e) or T· = T!>(e)
R ( ') - J t J Z

'e J -
o else.
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Let T denote the set of a11 tasks, Tr the bIue tasks, Tb the bIue task, 7;(e) the red tasks

corresponding to an edge e , and Tb(e) the red tasks corresponding to an edge e.

The resource with fr actional requirements is:

For every red t ask Ti (e), choose exaetly oue other red task g(Ti (e)) correspolldillg to

e as follows.

g(T[(e)) = T[+l(e) for i < 21(

and

g(T;J«e)) = Ti(e).

Let us call g(Ti(e)) the buddy of Tl' (e). For every red t ask Ti (e) let Ri,e be a reSOUTce of

bound ](. The requirements are

if TI (e) =TJ (e)

~ if Tj is a red task,

corrcspondillg to the edge e,

but is not the buddy of Ti (e)

o else

Clairn: G has an edge coloring with ~ colors, if and only ij the above defined scheduling

problem has a schedule 01 lengtlt 11.

Suppose that the edges of G ean be colored with ß colors. Let Z be the time set Z =

{l, ... ,ß}. For each e E E schedule all red tasks T[(e) at the time corresponding to thc

color of e, say Ze E Z and schedule the blue tasks Tl(e) in packets of 2I( at the remain1ng

times z =fi Ze) Z E Z. (See figure 4)

The resource requirments are satisfied: set Xjz = 1, if the task Tj, Tj E T 18 scheduled

at time z, and 0 else. For the resources of type Re we have

L Re(j)Xjz = 21(,
TjET

Now fix an arbitrary e E E. For every resource Ri,e corresponding to a red task 170 (e) we
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z
2K red tasks

••••
••••

z+l
2K blue tasks

Figure 4: A way to schedulc the red and blue tasks

havc for thc schcduling tilne Ze

an cl for an other z f:. Ze, Z E Z

1'his proves the first part of the dahn.

SU]J]Josc that we have a feasible schedule of lcngth ß. We show that it is inlpossible

La schedule the red tasks ccirresponding to the same edge at different times. Thcn we cau

again argue as in the proof of Theorem. 3.1 taking the scheduling time of the red tasks

corresponding to an edge as its color and a.re done.

Assulne for a moment that there i8 an edge Co E E and a time Zo in a schedule of size

fj. at which only I < ]( red tasks corresponding to Co. 1'hen there must be exactly 21( - I

blue tasks being scheduled at time Zo in ord"er not to violate the constraint of resource Re

at any tinle. Since there are strictly less than ]( red tasks in 1;. (e) scheduled at time zo,

tllere i8 a task Tfo(e), whose buddy is not scheduled at time zoo In fact there are at least

two such tasks! Then we havc for rcsource ~o,eo at time Zo:

I: Rio,eo (j)Xjzo
TjETe

I.: Rio,eo (j)Xjzo .
TjETr(e)uTb(e)
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1
1 + - ((2I( - I) + (I - 1))

2
1

:::: !( + 2" > J(,

and the schedule requires more than !( units of resource Rio,eo in contradiction to thc

feasibility assulnption. Hence the red tasks corresponding to the edge must bc schecluled

at the same time.

We lUllst show bi ~ 6 flog(4C(s+ 1))1 far all resource bounds. We introduccd n :::: 21\",I,il

tasks and s :::: V +p, + I(J-L resources. Using J( :::: 481og(J-L) the estlmate s + 1 ::; p,G holds

and with C :::: b.. we contillue

6flog(4C(s+ 1))1 ~ 61og(4Llp,6)

< 6Iog(p,8)

Fillally, oue lllay check as in the proof of Theorem 3.2 that there is a fractional schedule

of size b.. and an integral schedule of size .ß + 1.

o

With ]( :::: ß.C for a constant c satisfying b.. C > 3.ß(ß. + 1) ~og(4ß(s +1))1 the proof

of Theorem :~.3 implies

Theorem 3.4 Unde1' the assumptions that there is a fractional schedule of sizc C ~ 3

and an integral schcdule 0/ size C + 1, bi ~ 3C(C + 1) flog(4C( s + 1))1 for all rCBource

bounds, C is fixed and Ri(j) E {O,~, I}, it is N P-complete to decide whether or not there

exists an integral schedule of size C.

o

4 Multidimensional Bin Packing

Consider the general multidimensional bin packing problelTI BIN(l, d) as defined in thc

introduction. Sillce BIN(I, d) is not hing else than the rcsource constrained scheduling

problem with d rcsources, resource bounds bi = I for all i and zero start times, a.ll the a.p­

proximation and non-approximability results proved for scheduling are valid for BIN (I, cl),

24



tao. To get a feeling for good approximations we briefly recall the known asymptotic ap­

proximation results. Let L opt be the optimal bin number. The First-Fit heuristic gives a

2-factar approximation for BIN (1 1 1), and using this result one can construct a solution

for BIN(l, d) within 2dLopt in polynomial tiIne [VeLu81]. A similar argumentation shows

a (1 +t )d factor approximation for BIN ([\ d). Thus, güod approximations must beat these

factors. The results of Garey, Grahant, Johnson and Yao [GaJo79] for resource constrained

scheduling (whieh we have already discussed in the illtroduction) applied to bin packillg

show the existence of an integer No such that

for an instances with Lopt ~ No. By de la Vega and Luecker (VeLu81] for a11 0 < [ < 1

there 18 a linear time algorithm Af and an integer Ne ~ 1 such th at

far all ins1.ances with Lopt ~ N f • Our resnlts inlply for BTN(l,d) an approxirnation within

a. factoT independent üf d and I: Let Ln be the minilnurIl number of bhlS, if fra.ctional

packing is allowed, i.e.
1 11.

L R = rffi?X -z L 1.Jij1·
l~t~d . j=l

Theorem 2.5 irnplies

Theorem 4.1 Let f > 0 with (1/[) E IN. 1f I 2': 3(::- f) flog (4nd) )1, then we can find in

O(dn3 1og(nd)) time a bin packing with L bins such that L S; f(1 + f)LoPtl.

o

Proof: Since we get the optünal fractiollal solution for free, we can apply Theorem 2.5

without using LP-algorithnls. So, only the time for derandomizatioll counts.

o

For (; = 1 Theorelll 4.1 ilnplies

Corollary 4.2 11 1~ 6 flüg(4nd)1 J then we can find in O(dn3 log(nd)) ti'me a bin packing

with L bins such that L S; 2Lopt '

o
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and for f =: L F/ we get

Corollary 4.3 1f I ~ 3LR(LR +1) flog (4nd))lJ then we ean find in O(dn3 log nd) time a

bin packing with L bins such that L ~ L opt + 1.

o

Since we aUow really latge bin sizes) one might wondel' if the class of problelus i8 interesting

enough. The following negative result, which is follows frOln the proof oi Theorem 3.4, gives

the answer.

Theorem 4.4 Even ij l = n(Lhlog(nd))J then it is N P-complete to decide whether

L opt =: LR or L opt = LR + 1.

o

5 Parallel Scheduling and Bin Packing

There is no obvious way to achieve the approxilllation guarantee of Theorem 2.5 in 1V C.

In this section we will show that at least in some special cases therc 18 a Ne approxilna­

tiOll algorithm. Thc algorithlll is based on the method of loge n-wise independencc. The

important steps are:

1. Fractional Scheduling In Parallel. We wish to apply randornized roullding using

logC( n )-wise indcpcndcnce and therefore first have to generate an appropriate probability

distribution in Ne. Sequentially this is easy: solve the linear pl'ograluming relaxation of the

integer progralnming formulation of our scheduling problem and the fractional assiglllnents

of tasks to times will dctine the right distribution. Unfortunately, linear programming i8

P-complete ! But fortunately) due to the fact that the start times aTe zero, we have (as

for the bin packing problem) a formula for thc optimal fractional schcdule.

2. Schedule Enlargement. Havlng found the fractional optilllal schcdule of length say

C, we enlarge the makespan to 2C and define fractional assignments as in Lelllnla 2.4.

3. Rounding in Ne i8 performed with the parallel conditional probability method for

multivalued randolll variables (Theorem 6.2).
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First we generate a fractional, optimal schedule in NC. Let Xjz be a 0-1 variable which

is 1 if Tj 18 scheduled at time t, and is 0 else ( z E {I, ... , n}). 4

Lemlna 5.1 Define

c'- max {~~R'(·)}- l$i$s+l bi ~ t J

and C = reil. Then C is the length of an optimal fractionalschedule and the corresponding

task-time assignments Xjt are

Xjt = { ob V Tj E T,l S; t ::; C
else.

o

Proof: Straightforwal'd.

o

Proposition 5.2 There is a IVC -algorithm compub:ng an optimal fractional sche4ulc on

o(n + s) E REW - PRAM -processors in 0 (log s log log s +log n) time.

o

Proof: Using 0(11,) ERElV - PRAM-pl'ocessors fOT each resource & we can compute

t Lj=l Ri(j) in OOog n) time. With standard sorting algorithms ([JaJa92], Remark 4.4

and Corollary 4.2) we can find

in O(log s log log s) time on O( s) EREVV - PRAM-processors.

o

The next step is the enlargement of the fracLionallnakespan to {I, ... , 2C} as in Lemma

2.4. The fraetional assignments are defined a.s folIows. For every time Zl E {l, ... ~ C}

introduce a second time Zll = C + z' and set:

Xjz = 2~ for 1 ::; j ::; n, 1 ~ z S; 2C.

4Nate tha.t it suffice ta deal with the time intervall (1, ... ,n], since any one-ta-one assignment of thc n

tasks to the n times is feasible.
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Clearly this new fractional schedule has size 2C and by Lemma 2.4 we have for every

Z E {I, ... , 2C} and every re80urce Ri E 1l

The main result of this section 18

~R (')~ biL..J i J Xjz ::; -.
j~l 2

(7)

Theoreln 5.3 Let T ~ lo~n and suppose that bi ~ 2n~+7" jlog2n(s +1) fo1' alt i. Then

the1'e is a Ne -algorithms that ?'uns on D(n Z( ns)1+~) parallel processors and jinds in

D(log nlüg3 (ns)) time a schedule oJ size at most 2Copt '

o

Proof: For the moment let k be an arbitrary integer. We will fix k in the proof. In

oTder to a.pply TheaTern 6.2 (the Ne version of the conditional prübability method für

m1tltivaluedrandom variables), put Al;= 8+1, Cij := Ri(j) and cl = 2C. Then N = dlt/fn k .

Define k-wise independent, unifonnly distributed random variables Xl, ... ,Xn with values

in {I, ... , ll} as in Theorem 6.2 and with the notation there 5 we define fOT a reSOUTce Bi

and a tin1c z E {I, ... , cl} the funetion fiz by

n 1
!iz(X1, ... , X n ) := L: Ri(j)(Xjz - d)

j=l

and

By Theoreln 6.2 we can cOllstruct Xl,".' X n > where Xj E {1, ... , d} for all j such that

(8)

holds, using

pa.rallel processors in

O(klognlogN) = O(lognlog3 (ns))

SIn Theorem 6.2 the X/s take on values in the set {O l ••• J d - I} But this is ollly a convention.
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time. Ta c01nplete the proof we must show that the assignment of task Tj to time Xj for

an j indeed is a feasible schedule. By definition oi the functian F we have for a11 Ri and

Z E {I, .. . ,d}

n 1 1 1

~ Ri(j)(Xjz - d) ~ (F(x1l' .. l xn))k" ~ (JE(F(X1, .. . l Xn))k".
)=1

(9)

Utilizing the fact that the random variables X jz are binomially distributed and putting

k = r21ogT2~~q~1)1 the pfoof of COIollary 2.6 in [BeRo91] shows

(IE(F(-LY1,' .. , X n ))! ~ nt+r jIog 2n(s +1).

(9), (10) alld (7) imply for all Ri and Z E {I, ... , d}

(10)

n

L; Ri(j)Xjz
j=l

and tlle theoTern is proved.

n 1 n 1
L: Ri(j)(Xjz - d) +L Ri(j)d
j=l j=1

1 . I b·< 112"+-r ylog2n(s + 1) + ;

< bi ,

D

For IDultidimensional bin packing we get

Corollary 5.4 Let r ~ lo~n and s'uppose that 1 2: 2n t+T -V1og(2nd). Then there is a lVC­

algorithm,s fo1' lhe p7'oblc1n BIN(l, d) thal runs on 0 (n2 ( nd)l+~) parallel processors und

.fi:n:ds in 0 (log n log3(nd)) time a packing with L bins such that L ~ 2Lopt .

D

Remark 5.5 The reason why we have to aSSUlne bi = n(nt+T V10g ns) is due to the

estilnation of thc k-th moments. Improvements oi this method with the goal to show a

2-factor (or even hetter) NC-algorithm under thc wcaker assumption bi = n(log ns) would

he interesting. This would match the presently best seql1ential approximation guarantees.

Conclusion

• We proved that there are polynomial-time algorithms approximating the optimum of a

resource constrained scheduling problem, where the ma.kespan is to be minimized. On the
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other hand we showed that it is N P-complete to guarantee bettel' approximations. We

showed that the problem of finding the chromatic index of a graph is a special case of a

resource constrained scheduling problem.

e We hope that our rounding techllique can be applied to other problenIs of similar fiavour.

Acknowledgement

The first author thanks Professor Lasz16 Lovasz for helpful discussions during a research

stay at Yale University in Spring 1994, where apart of this paper has been written. We

would also like to thallk Andreas Krämer for helpful discussions.

References

[ABI86] N.Alon, L Babai, A. Itai; A fast and simple randomized algoy'ithm jor the ma3;imal

independent set problem. J. Algo., 7 (1987),567 - 583.

[ASE92] N. Alon, J. Spencer, P. Erdös; The probabilistic method, John \Viley & So~s, Ine.

1992.

[AnVa79] D. Angluin, L.G. Vaüant: Fast probabilistic algorithrns for Hamillonion r-ü'c1lits

and 1nalchings. J. COlllp. Sys. Sei., Val. 18, (1979), 155-193.

[BESW93] J. Blazewkz, K. Ecker, G. Schmi.dt, J. WEjglarzj Schcduling in cornpu.ter and

maufacturing systems. Springer-Verlag, Berlin (1993).

(BeRo91] B. nerger, J. Rampel; Simulating (logCn)-wisc independence in NG. JACM, 38

(4), (1991), 1026 - 1016.

[Li82] J. H. van Lintj Introduetion to Coding Theory. Springer Verlag New York, Heidcl­

berg, Berlin (1982).

[VeLu81] W. F. dc la Vega, C. S. Luecker; Bin packing can be solved in within 1 - E in

linear time. Combinatorica, 1 (1981), 349 - 355.

[GaJo79] M. R. Garey, D. S. Johnson; Computers and Intractability. W. H. Freeman alld

Company, New York (1979).

30



[GGJY76] M. R. Garey, R. L. Graharn, D. S. Johnson, A.C.-C. Yao; Resource constrained

scheduling as generalized bin packing. JCT SeI'. A, 21 (1976), 257 - 298.

[GLS88] M. Grätschel, L. Lovasz, A. Schrijverj Geometrie algorithms and combinatorial

optimization. Sprillger-Verlag (1988).

[HalB1] I. Holyer; The N P-cpmpleteness of edge coloring. SIAM J.Comp., 10 (4), (1981),

718 - 720.

[JaJa92] J . .Taja; An Introduction to Parallel Algorithms. Addison-Wesley Publislling

Company, Readillg, Massachusetts, 1992.

[Kr75] 1(. L. Kra.use, V. Y. Shen, H .D. Schwetmallllj AnalyS1:s of several job-scheduling

algorithn/'s for a rrwdel of multipl'ogramming computer systems. JACM 22 (1975) 522­

550. Erratum: JAClv[ 24, (1977), p. 527.

[LST90] J. TC. Lenstra, D. B. Shn10Ys, E. Tardos; Approximating algorithrns fOT scherluling

nnrelated para.llel machines. Nlath. Progralnmillg, 46, (1990), 259 - 271.

[LiVi92] J .-H. Lin, J. S. Vitter; E-apPToxirnations with minimU1n packing constTClint vio­

lation. Proceedings 24th Annual ACM Symposium on the Theory of Computation

(1992), Vietoria, B.C., Canada, 771 - 782.

[MeSo77] F.J. MacWillialns) N.J.A. Sloancj The theory 0/ erroT correcting codes. North

Holland, Amsterda,m, (1977).

[M·cD89] C. McDiarmid; On the method 01 bo'l.tnded differences. Surveys in Combinatorics,

1989. J. Siemons, Ed.: London 1vIath. Soc. Lectures Notes, Series 141, Cambridge

University Press, Cambridge, England 1989.

[NINN89] R. M.otwani, J. NaoT, M. Naol'j The probabilistic method yields deterministic

parallel algorithms. Proceedings 30the IEEE Conference on Foandation of Computel'

Science (FOCS'89); (1989),8 - 13.

[RS83] H. Röck, G. Schmidtj Machine aggregation heuristics in shop scheduling. Math.

Oper. Res. 45(1983) 303-314.

31



[Sp87] J. Spencer; Ten lectures on the probabilistic method. SIAM, Philadelphia (1987).

[SrSt94] A. Srivastav, P. Stangierj Algorithmic Chernoff-Hoeffding inequalties in integer

progra'lnming. to appear in Random Structures & Algorithms, January 1996.

(preliminary version in: Du, Zhang (eds.), Proccedings ofthe 5th Annual Ine1'national

Symposium on Algorithrns and Computation (ISAAC'94), pages 264 - 234, Lecture

Notes in Computer Science, Vol834) Springer Verlag.)

[Ta86] E. Tardos; A strongly polynomial algorithm to solve combinatoriallinear prograrns.

Oper. Res. 34 (1986), 250 - 256.

[Viz64] V. G. Vizingj On an estimate of the chromatic dass 01 a p-graph. (Russian),

Diskret. Analiz. 3 (1964),25 - 30.

6 Appendix: Multivalued Random Variables and loge n­

wise Independence

In this section we extend the well-knowIl derandomization technique of loge n-wise duc to

Berger, Rampe! [BeRo91] and Motwani, Naor, Naor [MNN89] from the case ofunifonnly

distributed 0 - 1 to uniform.ly distributed fi1ultivalued randOln variables.

~et n = 2n' - 1 for same n' E lN. A representation of GF(2nl
) as a n'-dimensional al­

gebra aver GF(2) can be explicitly constructed using irreducible pülynomials, for example

the polYllomials given in [Li82], Theore!n 1.1.28. Let bl , . .. , bn be the n non-zero elements

of GF(2nJ
) in such an irreducible representatian and let A = (ai.i) the following n X rk-;11

matrix over GF(2nl
)

1 bl br bk - 1
1

1 bz 63 bk- 1
2 '2

A= 1 b3 b~ bk - l
3

1 bn b3 bk - 1
n n

A can be viewed as an X f matrix aver GF(2) with e= 1+rk;l -\ flüg(n +1)1 = O( k log n).

The matrix A is well-known in coding theory. It is the parity check rnatrix of binary BeH
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codes and every set of k row vectors of A i8 linear independent over GF(2) [McSo77].

Alon, Itai and Babai [ABI86] showed that k-wise independent 0 - 1 randorn variables can

be constructed from rnutually independent 0 - 1 randorn variables using a BeIl-matrix.

The extension to lllultivalued randorn variables goes as follows.

Let Y1 , ... , Yi be independent and uniformly distributed randorn variables with values

in ~ = {O" .. 1 d-l}, d E lN. Let Y be the vector Y = (Y1 , , Yi). Defillc Q-valued random

variables ...Y1 , ... , .Xn by Xi = (BY)i mod d for all i = 1, , n. With .X = (Xl,"" -"Yd

we briefly write X = BY mod d.

Theorem 6.1 The random variables XI,. ,., X n are k-wise independent and v.niforrnly

distributed.

o

Praof: We modify the proof af TheaTern [BeRo91]. Choose J ~ {1, .. "n} with IJI = k.

Let x E nk be an arbitrarily choosen but fixed vector. Set XJ = (Xj )jE.!' We Inust show

. (11)

Let A J be the sublnatrix of A with row indices from J and set ßJ = (AT)J' B,l i8 a

l X k ma.trix aver GF(2). As in the proof of Theorem 6.1 we extend BJ to an invertible

1 X 1 ma.trix C aver GF(2). Define

nx = {Xl E nl;:z< = Xi for i = 1, ... , k},

then lf2x l = dl - k , and we have

(12)

JP[XJ = x] lP[BY mod d = x]

JP[GY fiod d E f2x]

l: lP[CY - x' = 0 fiod d]
x'EOx

I: IP[Y = C-1 x' fiod d]
x'EOx

(the Yi '8 are independent t)
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o

For the following dass of functi6ns F, arising in the analysis of resource eon­

strained scheduling, a Ne algorithm finding points below or above the expectation

lE(F(Xr, , X n )) can be derived. We keep the notation, i.e. let k, d be as above. 1 1

Let VI, ,vn be vec.tors in {O, l}d and let Vjz denote the z- th component of Vj. For

x jEn = {O, ... , d - I} let Xj be the vector tllat has a 1 in its xj-th coordinate and 0

elsewhere. Let (Cij) be M x n matrix with rational 0 ~ Cij :s; 1. For i = 1, ... , NI and

zEn define the functions

and

F(Xl, ... , x n ) = I:giz(Xt, ... , x n ).

tZ

(13)

(14)

Theorem 6.2 Lel d, k, M, n E .IN and lV = dkIn k • Let LY1 , ... , LYn be k-wise inrlc7)Cnrlcn.t

mndom variables with values in n = {O 1 ••• , d - J.} dcfined as in Theorem 6.1 and let

F as in (14). Then with O(N) parallel pTocessors we ean constrnct XI, .•• , :C n E n and

Yl ... , Yn E n in O(k log n log IV)-time such thal

(i) F(XI'''''Xn) > 1E(F(X1, ... ,Xn ))

(ii) F(y!, ... ,Yn) < 1E(F(X1l .. ·, X n )).

o

Proof: It suffices to pTove (i). Let I be the set of all k tupels ((Xl, .. " CXk) with er.? E

{I, .. . ,n}. Set

g (iz)(X X ) - c"(x' 1)j • 1,· .. , n - tJ' JZ - d

and define for a k-tupel a E I,
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Then

F(Xl,' .. , Xn ) = ~ I: g~Z)(Xl" .• , Xn ).

iz O!EI

The random variables Xl, . .. , X n by definition have the form

Xi = (BY)i fiod d,

where the Yi's are uniformly distributed n valued random variables, B = AT and A i8

the n X f parity check matrix of ReH codes dcfined in Theorelll 6.1. Therefol'c we may

restrict us to the assignments of the 1'/8. The conditional probability method then goes

as follows:

Suppose that for some 1 ~ -l ::; ewe have computed the values

thCll choose for yt the value Yl E n that maximjzes thc fUllction

(15)

After R steps we have Y = y [or sorne yEn and the vector x = (Xl, ... , xn ) with

Xj = (BY)j fiod d i8 the desired solution. Let Yt = (Y1 , .. . ,yt) and Yt = (Yl,.' .,Yt). Wc

are done, if we can compute the canditional expcctations

within the daimed time. By linearity of cxpectation, it is sufficient to compute far each

tripel (i, z, a), 1 ::; i ::; rn, zEn, Q E r tbc conditional expectations

(16)

Because the Xj's are k-wise independent, thc problem reduces to thc com.putation of terms

fo the form

for j E {I, ... , n}. Now
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It i8 straightforward to verify that JflXj = Z I Yt = Yi)] can be computed in canstant

time, because the only possible values it attains are 0, 1 ar ~. The same holds for lP [.Xj f.

Z I~ = yt)]. In ather wards, for fixed t, i, z 1 a and given Yl, ... ,Yt-l we can campute

in O(k) time. Thus, for every possible value Yt E n we can compute

in 0 (log N) time using 0 (N) parallel processors. That value of Yt w hieh Inaxin1izes (15)

can be computed finding the maximum of the d conditional expectations with standard

sorting algorithms (see [JaJa92], Remark 4.4 and Corollary 4.5) in O(log d lag log d) time.

The total running time aver all f steps then i8

O(f(logN + log dloglog d)) = O(k log nlog lV)

and thc theorem i8 proved.

D
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