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Abstract

We consider the following resource constrained scheduling problem. Given m iden-
tical processors, s resources with upper bounds, n independent tasks of unit length,
where each task has a start time and requires one processor and a task-dependent
amount of every resource. The optimization problem js to schedule all tasks at dis:
crete {imes in TN, minimizing the latest completion time Cp, 4z subject to the processor,
resource and start-time constraints. Multidimensional bin packing is a special case of
this problem. The problem is NP-hard even under much simpler assumptions. In casec
:bff,\z‘ero start times Rock and Schmidt (1983) showed an (m/2)-facior approximation
\?\ngorithm and de la Vega and Lueker (1981), improving a classical result of Garey,
Graham, Johnson and Yao (1976), gave for every ¢ > 0 a linear time algorithm with
an asymptotic approximation guarantee of s + €. The contribution of this paper is to
break Lhe O(m) resp. O(s) barrier, even in the case of zero start times, at least for
problems where the number of processors and the resource bounds are in Q(log |1}),
|Z] being the input size of the problem. The main results are constant factor approxi-
mation algorithms for such problems and the proof of the optimality of the achieved

approximation under the hypothesis P # NP,

Keywords: resource constrained scheduling, multidimensional bin packing, randomized

*Institut fir Informatik, Freie Universitat Berlin, Takustr. 9,

14195 Berlin, Germany; e-mail: srivasta@inf.fu-berlin.de
**Institut fir Informatik, Universitit zu Koln, Pohligstr. 1, 50969 Koln,

Germany; e-mail: stangier@informatik.uni-koeln.de.



algorithms, derandomization, approximation algorithms, chromatic index.
AMS Classification: 60C05, 60E15, 68Q25, 90C10, 90B35.

Note: Parts of this paper appeared as an extended abstract in: J. van Leeuwen (ed.),
Proceedings of the Second Annual European Symposium on Algorithms (ESA’94), pages
307 — 318, Lecture Notes in Computer Science, Vol 855, Springer Verlag, 1994.

1 Introduction

Problem Definition and Complexity
Resource constrained scheduling with start times is the following problem: The input is

e aset 7 = {Ty,...,T,} of independent tasks. Each task 7} needs one time unit for its
completion and cannot be scheduled before its start time r;, r; € IN.

e aset P={P,..., P} of identical processors. Each task needs one processor.

s aset R = {Ry,...,Rs} of limited resources. This means that at any time all resources
are available, but the available amount of each resource I2; is bounded by b; € IN.

e For 1 <i<s,1<7<nlet Ri(j) € [0, 1] be rational resource requirements, indicating
that every task T; needs R;(j) amount of resource R; in order o be processed.

\ o . . .
The combinatorial optimization problem is:

Definition 1.1 (Resource Constrained Scheduling) Find a schedule (or assignment) o :
7 — IN of minimal time length subject to the start times, processor and resource con-
straints.

a

According to the standard notation of scheduling problems the unweighted version of our

problem (R;(7) = 0,1) can be formalized as
Plres -+ 1,75,p; = 1| Crax-

This notation means that the number of identical processors is part of the input ( P| )
that resources are involved ( res ) that the number of resources and the amount of every

resource are part of the input, too ( res -+ ), that every task needs at most 1 unit of a



resource ( res --1), that start times are involved ( r; ) and that the processing time of all
tasks is equal (p; = 1) and that the optimization problem is to schedule the tasks as soon
as possible ( |Cinaz )-

The problem is N P-hard in the strong sense, evenif r; =0 forall j=1,...,n,s=1
and m = 3 [GalJo79).

An interesting special case of resource constrained scheduling is the following general-

ized version of the multidimensional bin packing problem.

Definition 1.2 ( Bin Packing Problem BIN(l,d)) Let d,i,n be non negative integers.
Given vectors ¥y, . .., I, € [0,1]%, pack all vectors in a minimum number of bins such that

in each bin B and for each coordinate i, 1 = 1,...,d,

5;€B Vij <l

O

Observe that BIN(1,d) is the multidimensional bin packing problem, and BIN(1,1)is
the classical bin packing problem. The intention behind the formulation with a parameter
[ > 1is to analyse the relationship between bin sizes and polynomial-time approximability

of the problem.

Previous Work

The known approximation algorithms for the problem class Pfres -+, 7; = 0,p; = 1{Crax
are due to Garey, Graham, Johnson, Yao [GGJY76] and Rock and Schmidt [RS83). Garey
et al. constructed with the First-Fit-Decreasing heuristic a schedule of length Crpp which
asymptotically is a (s + %)—factor approximation, i.e. there is an non negative integer N
such that for all Cppy > N

Crrp < Cols 1 3).

de la Vega and Lueker [VeLu81] improved this result presenting for every € > 0 a linear-time
algorithm with asymptotic approximation factor d+ ¢. Rock and Schmidt showed, employ-
ing the polynomial-time solvability of the simpler problem P2|res - --,r; = 0,p; = 1|Cmax
with 2 processors, a [ %] factor approximation algorithm. Thus for problems with small op-

timal schedules or many resource constraints resp. processors these algorithms have a weak



performance. Note that all these results are based on the assumption that no start-times
are given, i.e. 7; = 0 for all tasks T; € 7. For example, Rock and Schmidt’s algorithm can-
not be used, when start-times are given, because the problem P2|res --1,7;,p; = 1|Ciax
is also N P-complete, so their basis solution cannot be constructed in polynomial time.

In [SrSt94] we showed a 2-factor approximation algorithm for resource constrained
scheduling problems, when the resource bounds and the number of processors are in
Qlog(C's)), where C is the length of an optimal fractional schedule, and proved that
even for this class a polynomial-time p-approximation algorithm for p < 1.5 cannot exist,
unless P = N P. Since this non-approximability result was derived with a reduction to
the NP-complete problem of deciding if a schedule of length 2 does exist or not, it was
conjectured that for other instances - exept this pathological one - better approximations
might be possible.

We will show that this conjecture is true in a comprechensive sense:

The Results

et Cop; be the minimum schedule length and let the integer C denote the minimum‘length
of a schedule, if we consider the LP relaxation, where fractional assignments of the tasks
to scheduling times are allowed. We briefly call solutions to the LP relaxation “fractional
schedules” and solutions to the original integer problem “integral schedules™ . As the one
main result we will present a polynomial-time approximation algorithm for the problem

class Pjres - 1,7;,p; = 1|Cmax , including its rational weighted version (0 < R;(7) < 1):

(a) For every € > 0, (1/€) € IN, we can find in strongly polynomial time an integral
schedule of size al most [(1 + €)Copi|, provided thal all resource bounds b; are al least

QL%Ezillog(tl(j's) and the number of processors is at least i(lejillog(tlc).

As a surprising consequence a schedule of length C,,; 4 1 can be constructed in
polynomial-time, ? whenever b; > 3C(C + 1)log(Cs)) for all resource bounds b; and

m > 3C(C + 1)logC. This approximation guarantce is independent of the number of

1 his should not cause any confusion: C is always an integer, only the assignments of tasks to times in

the discrete interval {1,...,C} are fractional numbers.
2Note that C is at most the sum of n and the maximal start time, hence the factor log(C's) is within

the size of the problem input.



processors or resources and can be used also for small schedules, for example Cpax = 2,3
or 4. The results can be extended to the case of integer resource requirements ( R;(j) € IN
) by scaling and exploiting the fact that we can handle rational weights, thus we ob-
tain polynomial-time approximation algorithm for problems of the form P|res - - -, 7;,p; =
1|Crmax -

One might wonder, if under the assumptions b; € Q(e~2log(Cs)) for all i and m ¢
Q(e~21og C') the scheduling problem is interesting enough. In other words, can it be that
such problems are easily solvable in polynomial time ? The answer is that under the

hypothesis P # N P our approximation is best possible:

(b) For the simpler problem with zero siart-times and C > 3 it is N P-complete * to

decide the question “Is Cop = C 77, even if
¢ a fractional schedule of size C is known,
o an integral schedule of size C + 1 is known,
o b; € Q(C?log(Cs)) for all resource bounds b;.
e m e QC?logC).

It conclusion, both results together precisely determine the border of approximability
of resource constrained scheduling and sheed light on its complexity.
An interesting special case of resource constrained scheduling is the multidimensional

bin packing problem and the above results imply

(c) Let ¢ > 0, (1/€) € IV. If 1 > 2EF(1og (4nd))], then we can find in O(dn®log(nd))
time a bin packing with L bins such that L < [(1+€)L,pt|. But even if | = Q(L%log(nd)),
then it is N P-complete to decide whether L,y = Lp or Loy = L+ 1.

Furthermore, extending the method of log® n-wise independence from the case of 0 — 1

to multivalued random variables, we can parallelize our algorithm in special cases.

Let 7 > lo]gn and suppose that m,b; > 2n%+T\/log2n(s+1) for all ©. Then
there is a NC-algorithms that runs on O(nz(ns)H%) parallel processors and finds in

O(log nlog®(ns)) time a schedule of size at most 2Cp;.

3For C = 2 see [SrSt94]



Observe that there is a gap of a n3tT factor between the lower bounds of the resource
bounds and number of processors in the sequential and in the parallel algorithm. This
factor comes into picture due to the estimation of higher moments required by the method
of log® n-wise independence. We leave open the question, if there is a parallel 2-factor
approximation algorithm for problems with m, b; € Q(log(C's)).

The paper is organized as follows. In section 2 we study a general system of integer
inequalities related to resource constrained scheduling, show under which circumstances an
integer solution can be constructed via derandomization and apply the results to resource
constrained scheduling. In section 3 it is proved that the achieved approximation is optimal,
unless P = N P. In section 4, as an example, the multidimensional bin packing problem
is discussed and in section 5 we give for some special cases parallel counterparts of our
scheduling and bin packing algorithms based on an extension of the method of log® n-wise

independence to multivalued random variables (appendix section 6).

2 Integer Inequalities

Resource constrained scheduling can be modelled as a special case of a system of integral
inequalities with equality constraints:

Let I, n, N be non negative integers. For £ = 1,..., N let A®) be rational I x n matrices
with 0 < a.g-c) <1land b ¢ Qﬂ_ For a vector y; € {0, 1}V let yji be its k-th component,
k=1,...,N.Let y*) be the vector of all the k-th components, i.e. ¥ = (yig,.. .\ Ynr)-

Consider the following system of linear inequalities
Inequality System (IS)

AByR) < pR v =1,... N

lyilli = 1V¥i=1,...,n
y; € {0,1}V
y(k) = (ylkw")ynk)-

Resource constrained scheduling fits in this scheme as follows: consider the processors as a
resource Rsyq with requirement R,41(j) = 1 for all j and bound m. Let R = (R;(7))s; be

the resource constraint matrix, set A®) = R and () = (by,m)forall k =1,...,N. Then,



the problem of finding a minimum N such that a so defined inequality system (IS) has a
solution is equivalent to the problem of finding a schedule of minimal length.

In general, one cannot expect to solve (IS) in polynomial time, even if a fractional solu-
tion exists, because then we would be able to decide the solvability of resource constrained
scheduling.

The key observation is that (IS) can be solved, if the same system with a tighter right
hand side, say (14 ¢)~15() instead of b(%), is fractionally solvable.

Define the e-version of (IS) for 0 < e < 1 as

e-Inequality System (I5(¢))

ABY® < (14 BB VE=1,...,N
lyilli = 1Vi=1,...,n

yi € {01}V

v 8 = (ks e e Ynk)-

We need the following parameters. Let [; be an integer with Iy </ and define

3(L+¢)

3(1+¢)

ber = Y Jog(4(l - L)N). (1)

log(4l(N) and bejy =

€ €
Theorem 2.1 (Rounding Theorem) Lei 0 < € < 1, Iy and b.; as in (1). Supposc thai
bgk) > bey foralll < i<l and bl(‘k) > beo for all i > 1. Suppose that v = (uy,...,Uy)
with w; € [0,1]N is a fractional solution for the e-scaled system IS(e). Then a wvector

z = (21,...,%q) with z; € {0,1}Y satisfying the inequalities of system IS, i.c.
AF B < b0 vk and ||zl =1V

can be constructed in O(NIn?log(NIn)) time.

O

For ihe proof we need the following derandomization result which is an algorithmic version
of the Angluin-Valiant inequality for multi-valued random variables. Let I,n, N be non-
negative integers. We arc given n mutually independent random variables X; with values
in {1,...,N} and probability distribution Prob(X; = k) = &, forall j =1,...,n, k =
1,...,N and Z]L,V:I &;x = 1. Suppose that the Z;; are rational numbers with 0 < & < 1.

Let X, denote the random variable which is 1, if X; = & and is 0 else. For 1 < & < N,



1<:1<1<j7< nlet wg.“) be rational weights with 0 < wg-c) <1l.Fori=1,...,1and
k=1,...,N define the sums 1;; by

Yik = ngc)ij (2)
J=1

Let 0 < B;; < 1 be rational numbers.

Denote by FE;i the event

Pir < B(ix)(1 + Bik)- (3)
Let (Eix) be a collection of IN such events. Define

2 (i
f(Bix) = eXP(—M)‘
By the Angluin-Valiant inequality ([McD89], Theorem 5.7) we have for all &

Proposition 2.2 P[E5] < f(Bir).

O

=1

Thus the probability that there is some (2, £) so that E, holds is at most ) ;- Zi];v:I F(Bix).
Let us assume that this is bounded away from one, i.e. '

m N
NS fBay <16 (4)

=1 k=1

for some 0 < é§ < 1. The following theorem is a special case of the algorithmic version of the

Angluin-Valiant inequality for multivalued random variables (Theorem 2.13 in [StSt94]).

Theorem 2.3 ([Sr5t94] Let 0 < § < 1 and Fi be as above satisfying (4). Then
PV NV Eg) > 6 and a vector & € (N, Ny Eg can be constructed in

0 (Nln2 Jog Min )«time.

We are ready to prove Theorem 2.1.

Proof of Theorem 2.1: Set [N]={1,...,N}. Let Xy,...,X, be mutually independent
random variables with values in {N] defined by IP[X; = k] = ujx, & € [N]. For 7,k let
Xk be the 0 — 1 random variable which is 1 if X; = k and 0 else. Furthermore, for each
k € [N]let X(®) be the vector (Xiz,..., Xnz). For i = 1,...,1 define sums ;; by
n
Yar = (ABXE); =37 al) X

i=1



Let F;; be the event
Pix < (14 )1+ 67,

By the Angluin-Valiant inequality and the assumption bgk) > bey for 1 <1 < [ and
B > by forh+1<i<l

R e2p{P 1

where g = [y or p =1 — l; resp.. Hence

Pl E5] <
IS

Nl g

With § = % we can invoke the algorithmic Angluin-Valiant inequality for multi-valued
random vaviables (Theorem 2.3) and can construct vectors zy,...,a, with z; € {0,1}
and ||z;}l; = 1 such that

AE) L) < k) v

in O(NIn?log(Nin)) time.

0
In order to show the claimed approximation guarantec for resource constrained scheduling
we proceed as follows. In the first step we solve the linear programming relaxation of the
integer program associated to resource constrained scheduling. Now an integer schedule can
be generated in principle with our rounding theorem (Theorem 2.1). Since the rounding
theorem can be applied only if a fractional solution within the smaller resource bound
vector (1 + ¢)7!b is available, in the second step we must show the existence of such a

solution.
Fractional Solutions

Let 7z i= max;=1, n7; and D = T4y + n. Thus
C S C’opt S D.

The following integer linear program is equivalent to resource constrained scheduling with



start times.

min S
i Ri(d)zi. < b VR, €R,
z€{l,...,D}
22T = 1 VI;€T
tj; = 0 VI;€T,z<r;and
VI, eT,z> S5
z;, € {0,1}.

The fractional optimal schedule C can be found in a standard way (see for example

[LST90]): Start with an overall integer deadline C < D and check whether the LP

Yifi(izi: < b VR ER,
ze{l,...,D}
Y., = 1 VT,€¢T
z;, = 0 VT;€T,z<r; and
VT;€T,2>C
z;, € [0,1]
has a solution. Using binary search we can find C along with fractional assignments (&;)
solving at most log D such LPs. W.l.o.g we can assume that D = O(n). Hence this proce-
dure is a polynomial-time algorithm, if we use standard polynomial-time LP algorithms.
Our goal is to find an integer solution using the rounding theorem (Theorem 2.1). But
at this moment we cannot apply it, because the rounding theorem requires a fractional
solution within the tighter resource bound quLe’ while C' and the assignments (Z;;) are
feasible only within the bound b. It should be intuitively clear that given a fractional
solution within the resource bound b and a fractional schedule of length €, a new fractional
solution within ll’? might be coustructable enlarging the length of the schedule to some
Ce>C.
But how can we choose an appropriate Cc ? Let € > 0 with (1/¢) € IN. Consider
the time interval {1,...,[(1+ €)C]}. Define a new fractional solution as follows. Call
{C+1,...,[(1 + €)C1} the e compressed image of {1,...,C} and put § = -

14+e’
Set

I={1,...,[(1+C},

10



.[0:{1,...,0},
E={C+1,...,C+ |C|}

and

@, if eCeN
I;:

{[(1 + €)C1} else
Then I = Iy U I{ U I3. For integers I let g, f be functions defined by

I-C - 1
fl)= . andg(l):TC-l-l—j.

€

The new fractional assignments Z; are

( 0z for le€ly
0 1-8)7z,;, for el
sy oo o te .
C
Y (1—6)z; for lels.
\ t:g(l)

It is instructive to state the randomized rounding algorithm behind the rounding theorem

(Theorem 2.1) for resource constrained scheduling explicitly. Here is the algorithm:

Algorithm RANDOM-SCHEDULE

Schedule the tasks at times selected by the following randomized procedure:

(a) Cast n mutually independent dice each having N = [(1 + €)' faces where the z-th
face of the j-th die corresponding to task j appears with probability &;,. (The faces

stand for the scheduling times)

(b) Schedule task 7} at the time selected in (a).

The following examples illustrate this algorithm.

For € = 1 we double the interval 7y and get {1,...,C,C + 1,...,2C}. Then each task
T; is randomly scheduled at time z € I, with probability %55 ;> and is scheduled at time
2+ C with the same probability. While this is quite clear, the idea of e-compressed image
1

becomes more transparent looking at ¢ = 5

11



For ¢ = % we have the enlarged interval {1,...,C,C+1,..., [%C]} Given a task T we
randomly assign it to a time z € {1,...,C’} with probability %—EEJ-Z, assign it to 2 = C + 1
with probability %1 + 5%;2, to z = C + 2 with probability $Z;3 + 1&;4 and so on up to
the assignment to z = |3C]. Now there are two cases: |

If 3C is even, we assign T; to | 3C| with probability £2;c_1 + %;¢ and since [3C] =
[%CJ, we are done. If 3C is odd, then we assign T; to [%CJ with probability 1Z;c_2 +
+Z;0-1 and to [3C| + 1 with probability 1Z;c.

The following figures illustrate this schedule enlargment. Given a fractional schedule

as indicated in figure 1 we generate the schedule as shown in figure 2.

zl 72

Figure 1: A fractional schedule

z1 72 73

P1

P2

Figure 2: The new fractional schedule

The following lemma shows that the new fractional schedule is indecd fcasible.

12



Lemma 2.4 The vectors ; = (Zj1,...,Z;n), J = 1,...,n form a fractional solution
for resource constrained scheduling with (1 + €)~1m processors and resource bound vector
(1+¢€)tb.

9]

Proof: Let § = ﬁ and consider an arbitrary resource R;. (We can regard the proces-
. sor constraint as an additional resource, thus the following arguments also apply to the
processor constraint)
The resource constraints are satisfied, because for | € Iy we have
n
> Ri(5)E5 < bbs,
=1
. : 1

for I € If (using f(I) = (g(l)—-1) = ¢)

n

n S
ZRi(j)fﬂ = Z Z (1= 6)Ri(5)T5
=11

i=1 =51

~(1 - 6)b: = ab,
€

IA

and for [ € I (using C' — (g(/)— 1) < 1)

n C
3% (1- O)R(7)Es

7=1t=g(1)

< %(1 — 6)b; = 6b,.

> Ri()Exn
7=1

Furthermore for all tasks 7},

(1) c
SiEp = D 6Faty, Y (1-0Fu+ Y. Y, (1- 8T
1e7 lelo IE1f 1=g(I) IEIE t=g(1)
C C
= > 8Fu+ )y (1-68)E,
=1 =1

= 1.

)

Using the rounding theorem (Theorem 2.1) the derandomized version of the algorithm

RANDOM SCHEDULE simply is:

Algorithm SCHEDULE

13



Determine by the rounding theorem for each task its scheduling time.

O

Theorem 2.5 For every ¢ > 0 with (1/€) € IN, the algorithm SCHEDULE finds a
feasible integral schedule of size at most [(1 + €)C| in polynomial time, provided that
m > 3(%;"—Q[log; (4C))] and b; > §%§"—Ezﬂog (4Cs))] foralli=1,...,s.

o

Proof: As above let N = [(1+4 €)C|. Let A = (Ri(4))s; be the extended (s + 1) x n
resource constraint matrix where the resource R,,; represents the processor requirements
and thus is defined by Rs31(j) = 1 for all 4. For k = 1,..., N let b() := (b, m) be the
resource bound vector. The theorem is equivalent to the problem of finding a solution to

the following inequality system

Ay < b VYE=1,... N

N = 1¥ji=1....,n

Iy;llx ] (©)
y; € {0,1}"

yB) = Yk s Unk)-

(The vector y; and the condition ||y;[|y = 1 stand for the assignment of task 75 to
cxactly one time in {1,...,N}.)
By Lemma 2.4 the assignment vectors %1,...,%, with Z; € [0,1]¥ and 330, % = 1

are a fractional solution to the e-scaled system

Ay < 1+ R ve=1,...,N

ly;lli = 1Vi=1,...,n
Yy; € {Oal}N
¥ = (yiks - Ynk)

We invoke the rounding theorem (Theorem 2.1) with /3 = s: the assumplions of the
theorem in the new notation rcad as
3(1+¢)

€2

b > llog (4Ch))| Vi=1,...,4

and

31+ ¢
6, > 2 nog (o)),

14



thus the conditions required by the rounding theorem are satisfied. With the rounding

theorem we can find in deterministic polynomial time a solution to the inequaﬁty system

(6)-

With € = 1 we get our result of [SrSt94]

Corollary 2.6 If m > 6[log(4C))] and b; > 6[log(4C(s + 1))] for all i, then a schedule
of size at most 2C can be found in deterministic polynomial time.

O

And with € = 21'7' we infer the - as it will be shown in the next section - optimal approxi-

mation.

Corollary 2.7 If m > 3C(C + 1){log(1C))] and b; > 3C(C + 1)[log(4C(s + 1))}, for all
i, then a schedule of size at most C + 1 can be found in deterministic polynomial time.

O

Note that in case of 0-1 weights (l.e. R;(j) € {0,1}) we have a strongly polynomial
approximtion algorithm, because then the strongly polynomial LP algorithm of Tardos
[Ta86] can be uscd to find the optimal fractional schedule. In any case the running time
of the LP algorithm dominates clearly the running time of derandomization.

Finally, suppose that the resource requirements R;(j) are integers with bounds b;,
whereas in the problems above we assumed 0 < R;(j) < 1. Scaling the resource bounds
reduces the problem to the 01 case with rational resource requirements and we may
apply the results above. Scaling goes as follows: compute for every resource R; the number
Rmax (%) = maxrer Ri(j), set Ri(j) = %;g} and b = ﬁff;:. Identifying the processors

with resource R.4q1 we have

Corollary 2.8 Consider the resource constrained scheduling problem with integer resource
requirments, i.e. Ri(j) € IN for all i = 1,...,n and 1 = 1,...,s + 1. For every ¢ > 0,
(1/€) € IN an integral schedule of size at most [(1 + €)Copt| can be found in polynomial
time, provided that b, > 22 log (4C(s+ 1))] fori=1,...,s+ 1.



Proof: The proof is based on the observation that if a schedule for the scaled problem
using b} and R;(7)' is feasible, then the rescaled schedule is feasible for the original problem.
Now construct an integer schedule for the scaled problem with Theorem 2.5.

O
Furthermore, the choice of € = 1 yields a 2-factor approximation for problems of the general
form Plres - - -,p; = 1,7;|Cinax, and setting ¢ = % the optimum of an arbitrary resource
constrained scheduling problem-can be approximated up to one time-unit, provided the
bi’s are as large as required above. Note that for any constant R,,.. this gives a tight

approximation, since then b; still grows logarithmically in the input size.

Remark 2.9 For scheduling of unrelated parallel machines results of similar flavour have
been achieved by Lenstra, Shmoys and Tardos [LST90] and Lin and Vitter [LiVi92].
Lenstra, Shmoys and Tardos [LST90] gave a 2-factor approximation algorithm for the
problem of scheduling independent jobs with different processing times on unrelated pro-
cessors and also proved that there is no p-approximation algorithm for p < 1.5 , unless
P = NP. Lin and Vitter [LiVi92] considered the generalized assignment problem and
the problem of scheduling of unrelated parallel machines. For the gencralized assignment
problem with resource constraint vector b they could show for every ¢ > 0 an 1 4+ ¢ approx-
imation of the minimum assignment cost, which if feasible within the enlarged packing

constraint (2 + 1)b.

3 Non-Approximability

In this section we do not distinguish between the processor and the other resource con-
straints, but consider the processor requirement as an additional resource constraint.

Under the assumption b; = Q(C*log(Cs)) we have constructed an integral schedule
of size at most €' 4 1. This is very close to the truth, because now C,p is cither C or
C + 1. We will show for all fix C > 3 that even under the assumption b; = Q(C*log(C's))
it is N P-complete to decide whether Copy = C' 4+ 1 or Cppr = C. (Tor C' = 2 we refer to
[SrSt94])

In the remainder of this section we consider the “simpler” problem with zero start

times. Then C < n and the N P-completeness of scheduling problems with b; = Q(log(ns))

16



implies the N P-completeness of problems with b; = Q(log(Cs)). The following results
show the N P-completeness of resource constrained scheduling under different conditions.
" In Theorem 3.1 we consider b; = 1 and 0-1 resource requirements R;(j) € {0,1}: Theorem
3.2 covers the case of b; = Q(log(ns)) (and still R;(5) € {0,1}).In Theorem 3.3 we include
the case of some R;(j) being fractional, i.e R;(5) € {0,1,2}, and Theorem 3.4 covers the
case b; = Q(C?1og(Cs)). In particular, this shows that resource constrained scheduling is

N P-complete, even if we ask for small schedules, i.e. “Is Cppy = 3 77.

Theorem 3.1 Under the assumptions that there exist a fractional schedule of size C > 3
and an integral schedule of size C+1, and b; = 1 for all resource bounds, it is N P-complete

to decide whether or not there exists an integral schedule of size C.

Proof: We give a reduction to the chromatic index problem which is N P-complete
[Hol81]. The following is known about the chromatic index x'(G) of a graph G. Let A(G)
be the maximal vertex degree in G. Then by Vizing’s theorem [Viz64] A(G) < x'(G) <
A{G)+ 1 and an edge coloring with A(G) + 1 colors can be constructed in polynomial
time. But it is N P-complete to decide whether there exists a colouring that uses A(G)
colours, even for cubic graphs, i.e. A(G) = 3 [Hol81]. Therefore the edge colouring problem
is N P-complete for any fized A > 3. This is an important fact which will be used iﬁ the
proofs of Theorem 3.3 and Theorem 3.4.

Now to the reduction. Let G = (V, E) be a graph with |V| = v, |E

= and deg(v) < A
for all » € V. We construct a resource constrained scheduling problem asssociated to G as
follows.

Introduce for every edge ¢ € F exactly one task T. and consider p = |E| identical
processors. We will freely call the edges tasks and vice versa. For every node v € V define

a resource I, with bound 1 and resource/task requirements

1 if vee
0 if vée.

R,(e) =

Claim 1: There exists a colouring that uses A colours if and only if there is a feasible

integral schedule of size A.
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" Suppose there is an integral schedule of size A: colour each edge with the “colour” equal
to its scheduling time. Now all edges incident to the same node have different colours. If
this is not true, then there would be a node v € V covered by two edges e, e’ € F of the
same colour, which means that the tasks corresponding to the edges are scheduled at the
same time z. So

Tery = Bez = 1

and
Ry(e)ae, + Ry(€)ze, =141 =2,

contradicting our assumption of a feasible schedule.
Suppose there is an edge colouring x' : £ — {1,..., A}. Then schedule task T, at the
time x'(e). It is easily verified that this is an feasible integral schedule.

Furthermore, there is a fractional schedule of size C' = A: Simply sct

V1i<z<A.

Tex =

1
A
This schedule has size A and we have

A

Yz =1 VYT,

z=1

and

ZRv(e)xcz <l=b, V=

a
In Corollary 2.6 we assumed that b; > 6[log(4C(s+ 1)] which we did not respect in the

reduction above. In the next two theorems we show how this assumption can be included.

Theorem 3.2 Under the assumption that there ecist a fractional schedule of size C > 3
and an integral schedule of size C' + 1, b; = Q(log(ns)) for all resource bounds, and C is

fized, it is N P-complete to decide whether or not there evists an integral schedule of size

C.

Proof: We follow the proof of Theorem 3.1. But instead of respresenting each edge of
the graph G = (V, E) by one task, we consider 2K A tasks where K = [log p] and p = |E].
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For each e € E let us introduce 2K red tasks

T{(e)a SRR T{K(e)

and 2K (A — 1) blue tasks.
Tp(e)s - > Thxera—n)e)-

We get rid of the processor constraint considering p2'A identical processors, hence there
are enough processors to schedule every task at any time. For every node v € V we define a
resource R, with bound 2K and introduce for every edge e € F a resource R, also having
bound 2. The requirements are: every red task 77(e) needs one unit of resource R, if
¢ is incident with v. All the other tasks including the blue tasks T?(e) do not need any
unit of the resource R,. Every red or blue task needs one unit of its corresponding edge
resource R.. Hence a feasible schedule of size A has to schedule all tasks corresponding to

an edge in packings of size at most 2K . The crucial observation is:

If we can ensure that all red lasks corresponding lo the same edge are scheduled at the
same time, then we can define a scheduling time for this edge and can conclude arguing as
in the proof of Theorem 3.1, where we showed that it is as hard to find a schedule of size

A as to determine the ezistence of an edge colouring with A colors.

Figure 3 shows such a feasible schedule. To ensure that all red tasks corresponding to
the same edge are scheduled at the same time we introduce a new resource type:

For every edge e, every red task T7(e) and every I -element subset S of blue tasks
corresponding to e, define a resource Rj:r(e)'_g with bound K whose requirements are
defined as follows. Each task in 5 U {T(e)} needs one unit of Ry, s and all the other

tasks do not need any unit of the resource Rgr() . Observe that the number of such

N (m (2}— 1)) _

resources is

We are ready to show:

Claim 1: The edges of G can be colored with A colors, if and only if the above defined

scheduling problem has a schedule of length A.

Here is a proof.
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yA z+1 7+2

blue
tasks

Figure 3: A part of a feasible schedule with tasks corresponding to one edge.

Suppose that the edges of G can be colored with A colors. Let Z be the time set
Z = {1,...,A}. For each e € E schedule all red tasks T7(e) at the time corresponding
to the color of e, say z. € Z and schedule the blue tasks Tf’(e) in packets of 2K at the
remaining times z # z., z € Z. It is easily verificd that this is a feasible schedule.

Suppose we are given a schedule of length A. Due to the bound K for the resources
Rrie),s it is not hard to show that in such a schedule all red tasks 77 (e) corres;fonding
to the same edge e must be scheduled at the same time. This scheduling time defines a.
unique color for every edge and the proof of Theorem 3.1 shows that this is a desired
coloring.

We are done, if we can show b; = Q(log(ns)). Let v = |V| and let us assume that

v < u. In total we introduced

s = v+ M+2#10g“(2(A—1)10g,u)

log 1
< 2u+ 2ulog p2?tlosn
< #322A
< uss

resources and we have n = 2Alog i tasks. It is straightforward to show the existence of a

constant o < 7 with ns < p®2, hence

log(ns) < aAlog p = aAK,
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which together with the assumption that C', and consequently A is fix, imply
b; = Q(K) = Q(log(ns)).

. It remains to show that there is a fractional schedule of size A and an integral schedule
of size A + 1. Since the chromatic index of G is A + 1, we can define an integral schedule
of this size as in the proof of Claim 1. Furthermore, it is easily checked that the setting
T, = % for all tasks T and times z defines a fractional schedule of size A. a

Finally, if we allow that some resource requirements are fractional numbers, we have:

Theorem 8.8 Under the assumptions that there exist a fractional schedule of size C > 3
and an integral schedule of size C + 1, b; > 6[log(4C (s + 1))] for all resource bounds, C
is fized and Ri(j) € {0,%,1}, it is N P-complete to decide whether or not there ezists an
integral schedule of size C.

0

Proof: Once again we reduce the problem the the chromatic index problem and argue as
in the proof of theorem 3.1. Let G = (V, E) be a graph. Put I = 100log(x) and p = |E|.
Vor every edge ¢ € F we consider 2K red and 2K (A — 1) blue tasks

T{(e), - '>T2TR'(6) and le(e)’ M) TZb{A—l)K(e)'

Consider 2p K A identical processors. For every node » € V let R, be a resource with

bound 2K. Its resource requirement is

Ru(j )= and e contains v

0 else.

We follow the argumentation of Theorem 3.2 and define one more resource type to

enforce that all red task corresponding to the same edge are scheduled at the same time.

Furthermore, we have to introduce some resource requirements of value %

First we forbid that more than 2K tasks corresponding to the same edge e can be

scheduled at the same time: Let R, be a resource with bound 2K and resource requirement

1 T =T (e)or T; = TPe
Rc(j) — J 1,( ) 2 Z( )
0 else.
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Let 7 denote the set of all tasks, 7, the blue tasks, 7, the blue task, 7,(e) the red tasks
corresponding to an edge e, and 7;(e) the red tasks corresponding to an edge e.

The resource with fractional requirements is:

For every red task 77 (e), choose exactly one other red task g(77(e)) corresponding to

e as follows.
g(TI(e)) = T7q(e) fori< 2K

and

9(Tix(e)) = Ti(e).
Let us call g(77(e)) the buddy of T} (e). For every red task 77(e) let R;. be a resource of

bound K. The requirements are

’

1 if T7(e) = TI(e)

it T; is a red task,

N

Rie(j) =< corresponding to the edge e,
but is not the buddy of 77 (e)

0 else

Claim: G has an edge coloring with A colors, if and only if the above defined scheduling
problem has a schedule of length A.

Suppose that the edges of G can be colored with A colors. Let Z be the time set Z =
{1,...,A}. For each e € F schedule all red tasks 77 (e) at the tirne corresponding to the
color of e, say z. € Z and schédule the blue tasks T!-b(e) in packets of 2K at the remaining
times z # 2., 2z € Z. (See figure 4)
The resource requirments are satisfied: set z;, = 1, if the task 73, 7; € 7 is scheduled

at time 2, and 0 else. For the resources of type K. we have

> Re(j)zj. = 2K.

T,eT

Now fix an arbitrary e € K. For every resource R; . corresponding to a red task ’_l‘jro(e) we

22



Z 7+1
2K red tasks 2K blue tasks

Figure 4: A way to schedule the red and blue tasks

have for the scheduling time 2,

. ) 1, .
Z Rie(5)2 2. = Z Rio(5)je. = 1+ 5(2[" -2)=1K.

TieT T; €T (e)—{9(T], (e))}
and for all other 2 # 2., z€ 2
Y, Rie(zi= D) Rie(i)ej= %(‘U() = K.
T,eT T;€Ty(e)
This proves the first part of the claim.

Suppose that we have a {easible schedule of length A. We show that it is impossible
to schedule the red tasks ¢orresponding to the same edge at different times. Then we can
again argue as in the proof of Theorem 3.1 taking the scheduling time of the red tasks
corresponding to an edge as its color and are done.

Assume for a moment that there is an edge ep € E and a time 2 in a schedule of size
A at which only I < K red tasks corresponding to eq. Then there must be exactly 2K — I
blue tasks being scheduled at time 2y in order not to violate the constraint of resource R,
at any time. Since there are strictly less than K red tasks in 7;(e) scheduled at time 2o,
there is a task 77 (¢), whose buddy is not scheduled at time z;. In fact there are at least
two such tasks! Then we have for resource Ry ¢, at time zq:

Z Rio.eo(j)wjza = Z Rigeo(3)2j20

T;eTe T, €Tr-(e)uTp(e)
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= l+%((21(—1)+(]~1))

I

1
I(+§>I{',

and the schedule requires more than K units of resource Ry, in contradiction to the
feasibility assumption. Hence the red tasks corresponding to the edge must be scheduled
at the same time.

We must show b; > 6[log(4C (s+1))] for all resource bounds. We introduced n = 21 puA
tasks and s = v 4 p + K resources. Using K = 48log(p) the estimate s + 1 < p® holds

and with C = A we continue

6[log(4C(s+1))] < 6log(4Au®)
< ﬁlog(,“'s)
= K =b.

Finally, one may check as in the proof of Theorem 3.2 that there is a fractional schedule

of size A and an integral schedule of size A + 1.
0O
With K = A€ for a constant ¢ satisfying A > 3A(A + 1)[log(4A(s + 1))] the proof

of Theorem 3.3 implies

Theorem 3.4 Under the assumptions that there is a fractional schedule of size C > 3
and an integral schedule of size C + 1, b; > 3C(C + 1)[log(4C(s + 1))| for all resource
bounds, C is fized and R;(j) € {0,%,1}, it is N P-complete to decide whether or not there

exists an integral schedule of size C.

4 Multidimensional Bin Packing

Consider the general multidimensional bin packing problem BIN(l,d) as defined in the
introduction. Since BIN(l,d) is nothing else than the rcsource constrained scheduling
problem with d rcsources, resource bounds b; = [ for all ¢ and zcro start times, all the ap-

proximation and non-approximability results proved for scheduling are valid for BIN (I, d),
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too. To get a feeling for good approximations we briefly recall the known asymptotic ap-
proximation results. Let Loy be the optimal bin number. The First-Fit heuristic gives a
9-factor a,pproxirhation for BIN(1,1), and using this result one can construct a solution
for BIN(1,d) within 2dL,p¢ in polynomial time [VeLu81]. A similar argumentation shows
a(l+ %)d factor approximation for BIN (I, d). Thus, good approximations must beat these
factors. The results of Garey, Graham, Johnson and Yao [GaJoT79] for resource constrained
scheduling (which we have already discussed in the introduction) applied to bin packing

show the existence of an integer Ny such that
1
Lrrp < (d+ ) Lont

for all instances with L,,; > Ng. By de la Vega and Luecker [VeLu81] forall 0 < ¢ < 1

there is a linear time algorithm A, and an integer N, > 1 such that
LAC < (d+ f)l'opt

for all instances with L,y > Ne. Our results imply for BIN(l, d) an approximation within
a factor independent of d and [: Let Lp be the minimum number of bins, il fractional

packing is allowed, i.e.
1 T
Lp = X - i .
n= ey 2]

Theorem 2.5 implies

Theorem 4.1 Let ¢ > 0 with (1/¢) € IN. If | > g(lcj—e)[log (4nd))], then we can find in
O(dn®log(nd)) time a bin packing with L bins such that L < [(1 4 €)Lopt].

(]
Proof: Since we get the optimal fractional solution for free, we can apply Theorem 2.5
without using LP-algorithms. So, only the time for derandomization counts.
For ¢ = 1 Theorem 4.1 implies

Corollary 4.2 If1 > 6[log(4nd)], then we can find in O(dn3log(nd)) time a bin packing
with L bins such that L < 2L,p.
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and for € = Lﬁz we get

Corollary 4.3 If! > 3Lgr(Lr + 1)[log (4nd))], then we can find in O(dn®lognd) time a
bin packing with L bins such that L < L,y + 1.

O

Since we allow really laige bin sizes, one might wonder if the class of problems is interesting
enough. The following negative result, which is follows from the proof of Theorem 3.4, gives

the answer.

Theorem 4.4 Even if | = Q(L%log(nd)), then it is N P-complete to decide whether
Lopt = LR or Lopt = LR + 1.

5 Parallel Scheduling and Bin Packing

There is no obvious way to achieve the approximation guarantee of Theorem 2.5 in NC'.
In this section we will show that at least in some special cases therc is a NC approxima-
tion algorithm. The algorithm is based on the method of log® n-wise independence. The

important steps are:

1. Fractional Scheduling in Parallel. We wish to apply randomized rounding using
log®(n)-wise independence and therefore first have to gencrate an appropriate probability
distribution in NC. Sequentially this is easy: solve the linear programming relaxation ol the
integer programming formulation of our scheduling problem and the fractional assignments
of tasks to times will define the right distribution. Unfortunately, linear programming is
P-complete ! But fortunately, due to the fact that the start times are zero, we have (as

for the bin packing problem) a formula for the optimal fractional schedule.

2. Schedule Enlargement. Having found the fractional optimal schedule of length say

C, we enlarge the makespan to 2C and define fractional assignments as in Lemma 2.4.

3. Rounding in N( is performed with the parallel conditional probability method for

multivalued random variables (Theorem 6.2).
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First we generate a fractional, optimal schedule in NC'. Let z;, be a 0-1 variable which

is 1if 7} is scheduled at time ¢, and is 0 else { z € {1,...,n}).*

Lemma 5.1 Define

Cl 1<t<s+1 { Z i (J)}

and C = [C"]. Then C is the length of an optimal fractional schedule and the corresponding

task-time assignments T, are

. ) & YTjeT,1<t<C
0

else.

Proof: Straightforward.

O

Proposition 5.2 There is a NC -algorithm computing an optimal fractional schedule on
O(n+ 3) EREW — PRAM -processors in O(log sloglog s + log n) time.

a

Proof: Using O(n) EREW — PRAM-processors for each resource R; we can compute
l:—‘ > 5=1 Ri(4) in O(log n) time. With standard sorting algorithms ([JaJa92], Remark 4.4
and Corollary 4.2) we can find

, 1
¢ _1<1<a;xm{ JS—: ‘(])}

in O(log sloglog s) time on O(s) EREW — PRAM -processors.

O
The next step is the enlargement of the fractional makespan to {1,. .,2C} as in Lemma,
2.4. The fractional assignments are defined as follows. For every time 2 € {1,...,C}

introduce a second time 2z’ = C + 2’ and set:

- 1 .
a:jzzé—c— for1<j<n,1<2<2C.

1Note that it suffice to deal with the time intervall {1,...,n], since any one-to-one assignment of the n

tasks to the n times is feasible.
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Clearly this new fractional schedule has size 2C and by Lemma 2.4 we have for every

z € {1,...,2C} and every resource R; € R

&

imm%sﬂ (7)

The main result of this section is

Theorem 5.3 Let T > @ and suppose that b; > 2n%+7\/log 2n(s + 1) for all i. Then
there is a NC-algorithms that runs on O(nz(ns)l'*'%) parallel processors and finds in
O(log nlog3(ns)) time a schedule of size at most 2C .

0

Proof: For the moment let & be an arbitrary integer. We will fix & in the proof. In
order to apply Theorem 6.2 (the NC version of the conditional probability method for
multivalued random variables), put M = 541, ¢;; := R;(j) and d = 2C. Then N = dMnF.
Define k-wise independent, uniformly distributed random variables X, ..., X, with values
in {1,...,d} as in Theorem 6.2 and with the notation there ° we define for a resource R;

and a time z € {1,...,d} the function f;, by
i 1
fiz(XI; v >Xn) = Z Rt(J)(X]z - 8)
i=1

and

F(Xl, NN ,,Xn) = Zfiz(Xla .. .,Xn).
By Theorem 6.2 we can construct z1,...,z,, where z; € {1,...,d} for all j such that
F(CL},,.”C-,L)S ]E(ﬁx(Xl,,Xn)) (8)

holds, using
O(N) = O(dMnF) = O(n*(ns)t*7)

parallel processors in

O(klognlog N) = O(log nlog>(ns))

5In Theorem 6.2 the X,’s take on values in the set {0,...,d — 1} But this is only a convention.
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time. To complete the proof we must show that the assignment of task 7 to time z; for
all 7 indeed is a feasible schedule. By definition of the function F' we have for all R; and
z€d{l,...,d}
S Ri)ese = 2) < (Flon, vzl < (B X)E. (9)
j=1
Utilizing the fact that the random variables X;, are binomially distributed and putting
k = [2%822(41)) the proof of Corollary 2.6 in [BeRo91] shows

7logn
(B(F(X1,..., X)) <227 /log 2n(s + 1). (10)

(9), (10) and (7) imply for all R; and z € {1,...,d}

n

> Rii)ess — )+ D Rililg

(l

> Ri(G)z ;e
j=1

j=1

, b;

< a2t /log2n(s + 1)+ Y
< by

and the theorem is proved.

For multidimensional bin packing we get

Corollary 5.4 Let T > ﬁ and suppose that | > Qn%““\/log(Qnd). Then there is a NC-
algorithms for the problem BIN(1,d) that runs on O(n2(nd)1+%) parallel processors and
finds in O(log nlog®(nd)) time a packing with L bins such that L < 2Ly.

O

Remark 5.5 The reason why we have to assume b; = Q('n%""rw/log ns) is due to the
estimation of the k-th moments. Improvements of this method with the goal to show a
2-factor (or even better) N C-algorithm under the weaker assumption b; = Q(log ns) would

be interesting. This would match the presently best sequential approximation guarantees.

Conclusion

e We proved that there are polynomial-time algorithms approximating the optimum of a

resource constrained scheduling problem, where the makespan is to be minimized. On the
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other hand we showed that it is N P-complete to guarantee better approximations. We
showed that the problem of finding the chromatic index of a graph is a special case of a

resource constrained scheduling problem.
e We hope that our rounding technique can be applied to other problems of similar flavour.
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6 Appendix: Multivalued Random Variables and log‘n-

wise Independence

In this section we extend the well-known derandomization technique of Jog® n-wise due to
Berger, Rompel [BcRo81] and Motwani, Naor, Naor [MNN89] from the case of uniformly
distributed 0 — 1 to uniformly distributed multivalued random variables.

Let n = 2% — 1 for some n’ € IN. A representation of GF(2") as a n’-dimensional al
gebra over GI'(2) can be explicitly constructed using irrcducible polynomials, for example
the polynomials given in [Li82], Theorem 1.1.28. Let by, ..., b, be the n non-zero elements
of GF(2™) in such an irreducible representation and let A = (a;;) the following n x [£52]

matrix over GF(2™)

1 by b3 .. b1
L by 63 b=
A=1\1 by 03 pE—1
1 b, b b1

A can be viewed as a n X £ matrix over GF(2) with £ =1+ [%\ [log(n+1)] = O(klogn).

The matrix A is well-known in coding theory. It is the parity check matrix of binary BCH
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codes and every set of k row vectors of A is linear independent over GF(2) [McSo77].
Alon, Ttai and Babai [ABI86] showed that k-wise independent 0 — 1 random variables can
be constructed from mutually independent 0 — 1 random variables using a BCH-matrix.
The extension to multivalued random variables goes as follows.

Let Yy, ...,Y) be independent and uniformly distributed random variables with values
in{d =40,...,d-1},d € N. Let Y be the vector Y = (¥1,...,¥}). Define Q-valued random
variables X3,..., X, by X; = (BY); mod dforall i = 1,...,n. With X = (X4,..., X))
we briefly write X = BY mod d.

Theorem 6.1 The random variables X1,..., X, are k-wise independent and uniformly

distributed.

a

Proof: We modify the proof of Theorem [BeRo91]. Choose J C {1,...,n} with |J| = k.

Let = € F be an arbitrarily choosen but fixed vector. Set X = (X;)jes. We must show
P[X;=z]=d* - (11)

Let A be the submatrix of A with row indices from J and set By = (AT)J. Bjisa
I'x k matrix over GF(2). As in the proof of Theorem 6.1 we extend By to an invertible

I x I matrix C over GF(2). Define
Q= {z' € Qsal =, fori=1,...,k}. (12)
then |Q] = d'~*, and we have

P[X;=2] = P[BY modd= z]
= P[CY mod d € Q,]
= > P[CY ~2'=0modd

WIEQ:E
= > P[Y =C"' modd
ﬂ’enz
= Z d-! (the ¥i’s are independent !)
' €Qx
]Qa:| B dl—k

—k
@ ==
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For the following class of functions F, arising in the analysis of resource con-

strained scheduling, a NC' algorithm finding points below or above the expectation
E(F(X1,...,X5)) can be derived. We keep the notation, i.e. let k,d be as above. 1 1

Let #,..., %, be vectors in {0, 1}d and let v;, denote the 2-th component of #;. For

z; € Q= {0,...,d— 1} let &; be the vector that has a 1 in its 2,-th coordinate and 0

elsewhere. Let (¢;;) be M x n matrix with rational 0 < ¢;; < 1. For 1 = 1,..., M and

z € ) define the functions

Giz(T1, -5 20) = Z cij(:vjz - 'L_l)’ (13)
=1
and
F(zy,...,2,) :Zg;z(ml,...,mn). (14)
iz

Theorem 6.2 Leld, k,M,n € IV and N = dMn*. Let Xi,..., X, be k-wise independent
random variables with values in Q@ = {0,...,d — 1} defined as in Theorem 6.1 and let
F as in (14). Then with O(N) parallel processors we can construct x1,...,%, € Q and

Yoy Un € Q in O(klognlog N)-time such that

(3) F(z1,...,2,) > B(F(X1,...,X5))
(i) F(yi,..yun) < E(F(Xy,..., X))

Proof: It suffices to prove (i). Let I be the set of all k tupels (a1,...,0z) with a; €

{1,...,n}. Set
1

g;'u)(zb' oy Tn) = €50 — E)

and define for a k-tupel & € 1,

k
.Z 2 l
98 @1,y 20) = [ cio, (32 = 3).
j=1
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Then

F(z1,...,2,) = Z Zg&iz)(zl, ey Tp )

iz a€l

The random variables X, ..., X, by definition have the form
X; = (BY); mod d,

where the Y;’s are uniformly distributed € valued random variables, B = A7 and A is
the n x £ parity check matrix of BCH codes defined in Theorem 6.1. Therefore we may
restrict us to the assignments of the Y;’s. The conditional probability method then goes
as follows:

Suppose that for some 1 < ¢ < £ we have computed the values
i=wy,- Y1 = g1y
then choose for Y; the vahie y; € Q that maximizes the function
w— EBFX, . X)) vy -1, Y = w). i (15)

After £ steps we have Y = y for some y € Q and the vector z = (21,...,2,) with
z; = (By); mod d is the desired solution. Let Y, = (Y1,...,Ys) and & = (y1,..., %) We

are done, if we can compute the conditional expectations
E(Xy,. ., Xa) | Yo = G2)

within the claimed time. By linearity of expectation, it is sufficient to compute for each

tripel (#,2,a),1 <1< m, 2 € Q, o € I the conditional expectations
E(g$? (X1, -, Xn) (Vi = G0). (16)

Because the X;’s are k-wise independent, the problem reduces to the computation of terms

fo the form
E(g4(X1,. .. Xa) | Vs = )

for j € {1,...,n}. Now
< iz hyd N 1 = . 1 > "
]}'J(-q;' )(X1>---=Xn) | Ye=94))=(1- E)]P[Xj =z |Yi= ) - (—Z]P[Xj #2|Y, = )]
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It is straightforward to verify that P(X; = # | Y, = ;)] can be computed in constant
time, because the only possible values it attains are 0, 1 or 5 The same holds for P[X; #

2| ¥, = 4,)]. In other words, for fixed t,1,z, @ and given y,...,%_; we can compute
E(g{(Xy, .., Xn) | Vi = )
in O(k) time. Thus, for every possible value 3 € € we can compute
E(F(X1,.... Xa) | Yo = G0)

in O(log N) time using O(N) parallel processors. That value of y; which maximizes (15)
can be computed finding the maximum of the d conditional expectations with standard
sorting algorithms (see [JaJa92), Remark 4.4 and Corollary 4.5) in O(log dloglog d) time.

The total running time over all £ steps then is
O(L(Jog N +logdloglog d)) = O(klog nlog V)

and the theorem is proved.
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