UNIVERSAL SYNCHRONIZATION OBJECTS

CHRISTIAN MAURER

Fachbereich Mathematik und Informatik
Freie Universitat Berlin

24.4.2000

ABSTRACT. Certain asymmetries in the solutions of several classical concurrency
problems can be remedied by adding redundant code that does not affect the efficiency
of the algorithms. On this way a common pattern emerges which allows for the
development of an abstraction of different applications in form of a single class that
completely encapsulates the essence of the orresponding synchronization paradigm.

We specify and implement two such universal synchronization objects (a general
monitor and a general semaphor technique of passing the baton) and show their
universality by applying these concepts to other classical examples.

There is strong evidence that central aspects of other synchronization mechanisms
such as message passing could be condensed in similar objects; in case this conjecture
turns out to be true, the client server paradigm will be examined in a subsequent

paper.

INTRODUCTION

As a motivation for our generalization we consider the wellknown classical first
problem of the readers and writers (readers preference), which uses the following
entry- and exit-protocols (we use Modula-2 for our code examples, since blackbox
reuse of abstract data objects and types is an appropriate tool to express our ideas):

DEFINITION MODULE RW1; (* first readers and writers problem *)
TYPE criticalSections;

PROCEDURE initialize (VAR cs: criticalSections);
(* pre: cs is not initialized.
post: cs is initialized. *)

PROCEDURE readerIn (cs: criticalSectioms);
(* pre: cs is initialized. The calling process is neither an active reader
nor an active writer in cs.
post: The calling process is blocked as reader in cs, iff there is
an active writer in cs; otherwise it is an active reader in cs. *)

1994 CR Classification Scheme. D.1.3, D.3.2., D.3.3., F.1.2, H.2.4.

Key words and phrases. process, concurrency, critical section, condition synchronization, mo-
nitor, condition variable, signal semantics, semaphore, passing the baton, readers and writers,
bounded buffer.

Typeset by ApS-TEX



CHRISTIAN MAURER

PROCEDURE readerOut (cs: criticalSections);

(* pre:
post:

cs is initialized. The calling process is an active reader in cs.
The calling process is no more an active reader in cs. If there
are any blocked writers in cs, exactly one of them is unblocked
and is an active writer in cs. *)

PROCEDURE writerIn (cs: criticalSectioms);

(* pre:

post:

cs is initialized. The calling process is neither an active reader
nor an active writer in cs.

The calling process is blocked as writer in cs, iff there is an
active reader or another active writer in cs; otherwise it is an
active writer in cs. *)

PROCEDURE writerOut (cs: criticalSections);

(* pre:
post:

END RW1.

cs is initialized. The calling process is an active writer in cs.
The calling process is no more an active writer in cs. If there
are any blocked readers or writers in cs, exactly one of them
(preferably a writer) is unblocked and is an active reader or
writer resp. in cs. *)

The standard monitor solution of this problem requires the existence of an abstract
data type conditions with with operations delay and resume to block respectively
unblock the calling processes:

IMPLEMENTATION MODULE RW1 [ModulePriorityl;

FROM Storage IMPORT ALLOCATE;

TYPE criticalSections = POINTER TO csrec;
csrec = RECORD

activeReaders, activeWriters: CARDINAL;

readerMayEnter, readerMayLeave,

writerMayEnter, writerMayLeave: conditions
END;

PROCEDURE initialize (VAR criticalSection: criticalSections);

BEGIN

NEW (criticalSection);
WITH criticalSection”™ DO activeReaders:= 0; activeWriters:= 0 END
END initialize;

PROCEDURE readerIn (cs: criticalSections);

BEGIN

WITH cs~ DO
WHILE activeWriters > O DO delay (readerMayEnter) END;
INC (activeReaders); resume (readerMayEnter)

END

END readerln;

PROCEDURE readerOut (cs: criticalSectioms);

BEGIN

WITH cs™ DO
DEC (activeReaders);
IF activeReaders = O THEN resume (writerMayEnter) END

END

END readerQut;



UNIVERSAL SYNCHRONIZATION OBJECTS 3

PROCEDURE writerIn (cs: criticalSectioms);
BEGIN
WITH cs™ DO
WHILE (activeReaders > 0)
OR (activeWriters > 0) DO delay (writerMayEnter) END;
activeWriters:= 1
END
END writerln;

PROCEDURE writerOut (cs: criticalSections);
BEGIN
WITH cs~ DO
activeWriters:= 0;
resume (writerMayEnter); resume (readerMayEnter)
END
END writerOut;

END RW1.

Now, in this solution of this problem there are certain obvious asymmetries: no
resume-operation in the writers entry protocol writerIn, no delay-operations in
the exit protocols readerOut and writerQut and an explicit boolean condition for
the resume-operation only in the readers entry protocol readerIn.

By adding two superfluous condition variables (. ..MayLeave) in the exit protocols
and several redundant signal operations—making use of the fact that, by the very
definition of a monitor due to HOARE [H|—a signal operation on a condition variable
does not have any effect if there are no processes delayed on the condition—these
asymmetries can be avoided and one finds the common pattern in the four protocols:

IMPLEMENTATION MODULE RW1 [MonitorPriority];

FROM SYSTEM IMPORT ADDRESS;
FROM Storage IMPORT ALLOCATE;

TYPE criticalSections = POINTER TO csrec;
csrec = RECORD
activeReaders, activeWriters: CARDINAL;
readerMayEnter, readerMayLeave,
writerMayEnter, writerMayLeave: conditions
END;

PROCEDURE initialize (VAR criticalSection: criticalSections);
BEGIN

NEW (criticalSection);

WITH criticalSection”™ DO activeReaders:= 0; activeWriters:= 0 END
END initialize;

PROCEDURE resumeAll (cs: criticalSections);
BEGIN
WITH cs™ DO
IF activeWriters = O THEN resume (readerMayEnter) END;
IF TRUE THEN resume (readerMayLeave) END;
IF (activeReaders = 0)
& (activeWriters = 0) THEN resume (writerMayEnter) END;
IF TRUE THEN resume (writerMayLeave) END
END
END resumeAll;



4 CHRISTIAN MAURER

PROCEDURE readerIn (cs: criticalSectioms);
BEGIN
WITH cs™ DO
WHILE NOT (activeWriters = 0) DO delay (readerMayEnter) END;
INC (activeReaders)
END;
resumelAll (cs)
END readerln;

PROCEDURE readerOut (cs: criticalSectioms);
BEGIN
WITH cs™ DO
WHILE NOT (TRUE) DO delay (readerMayLeave) END;
DEC (activeReaders)
END;
resumelAll (cs)
END readerQut;

PROCEDURE writerIn (cs: criticalSections);
BEGIN
WITH cs™ DO
WHILE NOT ((activeReaders = 0) & (activeWriters = 0)) DO
delay (writerMayEnter)
END;
activeWriters:= 1
END;
resumeAll (cs)
END writerln;

PROCEDURE writerOut (cs: criticalSections);
BEGIN
WITH cs™ DO
WHILE NOT (TRUE) DO delay (writerMayLeave) END;
activeWriters:= 0
END;
resumeAll (cs)
END writerQut;

END RW1.

In fact, the synchronization can be completely formulated in the following table:

operation condition action
readerIn activeWriters = 0 INC (activeReaders)
readerOut TRUE DEC (activeReaders)
writerIn (activeReaders = 0)

& (activeWriters = 0) activeWriters:= 1
writerQOut TRUE activeWriters:=

Our orthogonal redundant implementation is nothing but the realization of this
table with the initial values activeReaders = 0 and activeWriters:= 0.



UNIVERSAL SYNCHRONIZATION OBJECTS 5

A UNIVERSAL MONITOR

From all said above follows a universal specification of this concept.

We furthermore introduce the four standard signal semantics [AO, A] “signal and
exit”, “signal and continue”, “signal and wait” and “signal and urgent wait” for
the resume-operations in monitors and consider the following abstract data type:

DEFINITION MODULE Monitors;
FROM SYSTEM IMPORT ADDRESS;

CONST max = 10;

TYPE conditions = PROCEDURE (ADDRESS, CARDINAL): BOOLEAN;
actions = PROCEDURE (ADDRESS, CARDINAL, ADDRESS);
semantics = (exit, continue, wait, urgentWait);
monitors;

PROCEDURE initialize (VAR m: monitors; s: semantics; x: ADDRESS;
n: CARDINAL; c: conditions; a: actions);
(* pre: m is not initialized. n < max.
post: m is initialized. m has the object x, the semantics s, the
number of operations n, the condition c and the action a. *)

PROCEDURE operate (m: monitors; op: CARDINAL; b: ADDRESS);

(* pre: m is initialized. op < number of operations of m. b is a
reserved buffer address to hold data streams that are moved
by the operation or NIL in case no data are to be transported.

post: The calling process is delayed, until the condition of m for
operation op has become true. Then the action of m for op is
(under the semantics of m) executed, if necessary by moving
a data stream starting at b into/out of the buffer. *)

END Monitors.

We prove that this concept can be implied by constructing an implementation
on the basis of general semaphores as defined by DIJKSTRA [D], where I is the
initialization of a semaphore with a given non negative integer value and P and V
are the blocking resp. unblocking semaphore operations.

IMPLEMENTATION MODULE Momitors;

FROM SYSTEM IMPORT ADDRESS; FROM Storage IMPORT ALLOCATE;
FROM Semaphores IMPORT semaphores, I, P, V;

TYPE

operations = [0..max-1];

monitors = POINTER TO RECORD
semantic: semantics;
object: ADDRESS;
numberops: CARDINAL;
monitorEntry: semaphores;
conditionSemaphor: ARRAY operations OF semaphores;
waitingForCondition: ARRAY operations OF CARDINAL;
urgentSemaphor: semaphores;
urgentWaiting: CARDINAL;
isTrue: conditions;
execute: actions

END;



6 CHRISTIAN MAURER

PROCEDURE initialize (VAR monitor: monitors; s: semantics; x: ADDRESS;
n: CARDINAL; c: conditions; a: actions);
VAR op: operations;
BEGIN
IF n >= max THEN RETURN END;
NEW (monitor);
WITH monitor~ DO
semantic:= s;
object:= x;
numberops:= n;
I (monitorEntry, 1);
FOR op:= 0 TO numberops - 1 DO
waitingForCondition [op]:= 0;
I (conditionSemaphor [op], 0)
END;
IF semantic = urgentWait
THEN I (urgentSemaphor, 0);
urgentWaiting:= 0
END;
isTrue:= c;
execute:= a
END
END initialize;

PROCEDURE operate (monitor: monitors; operation: CARDINAL; buffer: ADDRESS);
VAR op: operations;
BEGIN
WITH monitor™ DO
IF operation >= numberops THEN RETURN END;
P (monitorEntry);
WHILE NOT isTrue (object, operation) DO
CASE semantic OF
exit:
INC (waitingForCondition [operation]);
V (monitorEntry) ;
P (conditionSemaphor [operation]);
DEC (waitingForCondition [operation]) |
continue:
INC (waitingForCondition [operation]);
V (monitorEntry) ;
P (conditionSemaphor [operation]);
P (monitorEntry);
DEC (waitingForCondition [operation]) |
wait:
INC (waitingForCondition [operation]);
V (monitorEntry) ;
P (conditionSemaphor [operatiomn]);
DEC (waitingForCondition [operation]) |
urgentWait:
INC (waitingForCondition [operation]);
IF urgentWaiting > O
THEN V (urgentSemaphor)
ELSE V (monitorEntry)
END;
P (conditionSemaphor [operatiomn]);
DEC (waitingForCondition [operation])
END
END;



UNIVERSAL SYNCHRONIZATION OBJECTS 7

execute (object, operation, buffer);
FOR op:= O TO numberops - 1 DO
IF isTrue (object, op)
THEN CASE semantic OF
exit:
IF waitingForCondition [op] > 0
THEN V (conditionSemaphor [op]);
RETURN
END |
continue:
IF waitingForCondition [op] > O
THEN V (conditionSemaphor [opl)
END |
wait:
IF waitingForCondition [op] > O
THEN V (conditionSemaphor [opl);
P (monitorEntry)
END |
urgentWait:
IF waitingForCondition [op]l > O
THEN INC (urgentWaiting);
V (conditionSemaphor [opl);
P (urgentSemaphor) ;
DEC (urgentWaiting)
END
END
END
END;
CASE semantic OF
exit, continue, wait:
V (monitorEntry) |
urgentWait:
IF urgentWaiting > O
THEN V (urgentSemaphor)
ELSE V (monitorEntry)
END
END
END
END operate;

END Monitors.

The details of the implementation—particularly with respect to the different signal
semantics—are described in [A] or [M].

APPLICATIONS OF THE UNIVERSAL MONITOR

We now give some examples as applications for the universal monitor in order to
demonstrate the universality of this concept.

First of all, there is the simple solution of our introductory example, the first readers
and writers problem. The implementor just has to write code to realize the table
and to determine the semantics and then can leave all synchronizing details to the
universal monitor:

IMPLEMENTATION MODULE RW1;

FROM SYSTEM IMPORT ADDRESS; FROM Storage IMPORT ALLOCATE;
IMPORT Momnitors;



8 CHRISTIAN MAURER

TYPE
operations = (RIN, ROUT, WIN, WOUT);
criticalSections = POINTER TO RECORD
activeReaders, activeWriters: CARDINAL;
monitor: Monitors.monitors
END;

PROCEDURE c (x: ADDRESS; op: CARDINAL): BOOLEAN;
VAR cs: criticalSections;

BEGIN
Ccs:= X;
WITH cs~ DO

CASE VAL (operations, op) OF
RIN: RETURN activeWriters = 0 |
WIN: RETURN (activeReaders = 0) & (activeWriters = 0) |
ROUT, WOUT: RETURN TRUE
END
END
END c;

PROCEDURE a (x: ADDRESS; op: CARDINAL; adr: ADDRESS);
VAR cs: criticalSections;

BEGIN
cs:= X;
WITH cs™ DO

CASE VAL (operations, op) OF
RIN: INC (activeReaders) |
ROUT: DEC (activeReaders) |
WIN: activeWriters:= 1 |
WOUT: activeWriters:= 0
END
END
END a;

PROCEDURE initialize (VAR criticalSection: criticalSections);
BEGIN
NEW (criticalSection);
WITH criticalSection™ DO
activeReaders:= 0; activeWriters:= 0;
Monitors.initialize (monitor, Monitors.urgentWait,
criticalSection, 4, c, a)
END
END initialize;

PROCEDURE readerIn (cs: criticalSectioms);
BEGIN

Monitors.operate (cs”.monitor, ORD (RIN), NIL)
END readerln;

PROCEDURE readerOut (cs: criticalSections);
BEGIN

Monitors.operate (cs”.monitor, ORD (ROUT), NIL)
END readerQut;

PROCEDURE writerIn (cs: criticalSectioms);
BEGIN

Monitors.operate (cs”.monitor, ORD (WIN), NIL)
END writerln;



UNIVERSAL SYNCHRONIZATION OBJECTS 9

PROCEDURE writerOut (cs: criticalSections);
BEGIN

Monitors.operate (cs”.monitor, ORD (WOUT), NIL)
END writerQut;

END RW1.

Second, we apply the universal monitor to another classical example, the concurrent
bounded buffer problem. This example is conceptually different from our introduc-
tory problem, since there are data into and out of the buffer. Hence we make use
of the third parameter in the procedure Monitors.operate. Bounded buffers are
an abstract data type, generically specified by

DEFINITION MODULE Buffers;
FROM SYSTEM IMPORT ADDRESS;
CONST max = ...;

TYPE buffers; (* bounded multiprocessible buffers
of byte streams of length <= max. *)

PROCEDURE initialize (VAR b: buffers; k, n: CARDINAL);
(* pre: b is not initialized. k <= max.
post: b is initialized. b has capacity k and stream length n. *)

PROCEDURE insert (b: buffers; a: ADDRESS);
(* pre: b is initialized.
post: The stream starting at a of the stream length of b is inserted
into b as last stream in b. *)

PROCEDURE remove (b: buffers; a: ADDRESS);
(* pre: b is initialized.
post: Starting at a there is the first stream of b of the stream length
of b. This stream is removed from b. *)

END Buffers.

Here is the implementation using a universal monitor for each buffer:

IMPLEMENTATION MODULE Buffers;

FROM SYSTEM IMPORT ADDRESS;

FROM Storage IMPORT ALLOCATE;

FROM Streams IMPORT memcpy;
IMPORT Monitors;

CONST
INSERT
REMOVE

TYPE
places = [0..max-1];
buffers = POINTER TO RECORD

capacity, streamlength: CARDINAL;
array: ARRAY places OF ADDRESS;
in, out: places;
buffered: [0..max];
monitor: Monitors.monitors

END;

o
= O



10 CHRISTIAN MAURER

PROCEDURE c (x: ADDRESS; op: CARDINAL): BOOLEAN;
VAR buffer: buffers;
BEGIN
buffer:= x;
WITH buffer™ DO
CASE op OF
INSERT: RETURN buffered < capacity |
REMOVE: RETURN buffered > 0
END
END
END c;

PROCEDURE a (x: ADDRESS; op: CARDINAL; address: ADDRESS);
VAR buffer: buffers;
BEGIN
buffer:= x;
WITH buffer™ DO
CASE op OF
INSERT: memcpy (address, array [in], streamlength);
in:= (in + 1) MOD capacity;
INC (buffered) |
REMOVE: memcpy (array [out], address, streamlength);
out:= (out + 1) MOD capacity;
DEC (buffered)
END
END
END a;

PROCEDURE initialize (VAR buffer: buffers; k, n: CARDINAL);
VAR p: places;
BEGIN
NEW (buffer);
WITH buffer” DO
IF k > max THEN HALT END;
capacity:= k;
streamlength:= n;
FOR p:= 0 TO capacity - 1 DO ALLOCATE (array [p], streamlength) END;
in:= 0; out:= 0; buffered:= 0;
Monitors.initialize (monitor, Monitors.continue, buffer, 2, c, a)
END
END initialize;

PROCEDURE insert (buffer: buffers; address: ADDRESS);
BEGIN

Monitors.operate (buffer”.monitor, INSERT, address)
END insert;

PROCEDURE remove (buffer: buffers; address: ADDRESS);
BEGIN

Monitors.operate (buffer”.monitor, REMOVE, address)
END remove;

END Buffers.



UNIVERSAL SYNCHRONIZATION OBJECTS 11

The problem of the sleeping barber can be solved by this method as well. One
simply has to implement the table

operation condition action

getNextCustomer numberClients > 0 DEC (numberClients);
barberAvailable:= FALSE

finishedCut TRUE barberAvailable:= TRUE

getHaircut barberAvailable INC (numberClients)

with the initial values numberClients = 0 and barberAvailable = TRUE.
Of course we are also able to reconstruct semaphores along this line, although that
might be only of academic interest:

IMPLEMENTATION MODULE Semaphores;

FROM SYSTEM IMPORT ADDRESS; FROM Storage IMPORT ALLOCATE;
IMPORT Monitors;

TYPE semaphores = POINTER TO RECORD
value: CARDINAL;
monitor: Monitors.monitors
END;

PROCEDURE c (x: ADDRESS; op: CARDINAL): BOOLEAN;
VAR semaphor: semaphores;
BEGIN
semaphor:= x;
WITH semaphor~ DO
IF op = O THEN RETURN value > 0 ELSE RETURN TRUE END
END
END c;

PROCEDURE a (x: ADDRESS; op: CARDINAL; adr: ADDRESS);
VAR semaphor: semaphores;
BEGIN
semaphor:= x;
WITH semaphor” DO
IF op = O THEN DEC (value) ELSE INC (value) END
END
END a;

PROCEDURE I (VAR semaphor: semaphores; n: CARDINAL);
BEGIN
NEW (semaphor);
WITH semaphor” DO
value:= n;
Monitors.initialize (monitor, Monitors.urgentWait, semaphor, 2, c, a)
END
END I;

PROCEDURE P (semaphor: semaphores);
BEGIN Monitors.operate (semaphor”.monitor, O, NIL) END P;

PROCEDURE V (semaphor: semaphores);
BEGIN Monitors.operate (semaphor”.monitor, 1, NIL) END V;

END Semaphores.



12 CHRISTIAN MAURER

A UNIVERSAL SEMAPHORE BATON

In a similar way, the technique of passing the baton with semaphores can be con-
structed and universally implemented. The details of this concept are explained in
[A]. Here is the specification:

DEFINITION MODULE Batons;
FROM SYSTEM IMPORT ADDRESS;

CONST max = ...;

TYPE conditions = PROCEDURE (ADDRESS, CARDINAL, ARRAY OF CARDINAL): BOOLEAN;
actions = PROCEDURE (ADDRESS, CARDINAL);
batons;

PROCEDURE initialize (VAR b: batons; x: ADDRESS; n: CARDINAL;
c: conditions; e, 1l: actions);
(* pre: b is not initialized.
post: b is initialized. b has the object x, the number of operations n,
the condition c and the actions e on enter and 1 on leave. *)

PROCEDURE enter (b: batons; op: CARDINAL);
(* pre: b is initialized. op < number of operations of b.
The calling process is not active in operation op in cs.
post: The calling process is blocked on operation op in cs, iff its con-
dition is not true, otherwise it is active in operation op in cs. *)

PROCEDURE leave (b: batons; op: CARDINAL);
(* pre: b is initialized. op < number of operations of b.
The calling process is active in operation op in cs.
post: The calling process is no more active in operation op in cs.
If there are blocked processes on any operation in cs, whose
condition is true, one of them is unblocked and is active
in operation op in cs. *)

END Batons.

And here comes the implementation:

IMPLEMENTATION MODULE Batomns;

FROM SYSTEM IMPORT ADDRESS; FROM Storage IMPORT ALLOCATE;
FROM Semaphores IMPORT semaphores, I, P, V;

TYPE

operations = [0..max-1];

batons = POINTER TO RECORD
object: ADDRESS;
numberOps: CARDINAL;
mutex: semaphores;
semaphor: ARRAY operations OF semaphores;
waiting: ARRAY operations OF CARDINAL;
isTrue: conditions;
executeOnEntry, executeOnLeave: actions

END;

PROCEDURE initialize (VAR baton: batons; x: ADDRESS; n: CARDINAL;
c: conditions; e, 1l: actions);
VAR op: operations;



UNIVERSAL SYNCHRONIZATION OBJECTS

BEGIN
IF n >= max THEN RETURN END;
NEW (baton);
WITH baton™ DO
object:= x;
numberOps:= n;
I (mutex, 1);
FOR op:= 0 TO n - 1 DO
I (semaphor [op]l, 0);
waiting [op]l:= O
END;
isTrue:= c;
executeOnEntry:= e;
executeOnLeave:
END
END initialize;

1]
=

PROCEDURE Vall (baton: batons);
VAR op: operations;
BEGIN
WITH baton™ DO
FOR op:= O TO numberOps - 1 DO

IF isTrue (object, op, waiting) & (waiting [op]l > 0)

THEN DEC (waiting [opl);
V (semaphor [opl);
RETURN
END
END;
V (mutex)
END
END Vall;

PROCEDURE enter (baton: batons; op: CARDINAL);
BEGIN
WITH baton™ DO
IF op >= numberOps THEN RETURN END;
P (mutex);
IF NOT isTrue (object, op, waiting)
THEN INC (waiting [opl);
V (mutex);
P (semaphor [op]l)
END;
executeOnEntry (object, op)
END;
Vall (baton)
END enter;

PROCEDURE leave (baton: batons; op: CARDINAL);
BEGIN
WITH baton” DO
IF op >= numberOps THEN RETURN END;
P (mutex);
executeOnLeave (object, op)
END;
Vall (baton)
END leave;

END Batomns.

13



14 CHRISTIAN MAURER

APPLICATIONS OF THE UNIVERSAL BATON

Let us show how to solve the first readers and writers problem with the help of the
universal baton:

IMPLEMENTATION MODULE RW1;
FROM SYSTEM IMPORT ADDRESS; FROM Storage IMPORT ALLOCATE;
IMPORT Batons;

TYPE operations = (READ, WRITE);
criticalSections = POINTER TO RECORD
active: ARRAY operations OF CARDINAL;
baton: Batons.batons
END;

PROCEDURE c (x: ADDRESS; op: CARDINAL; dummy: ARRAY OF CARDINAL): BOOLEAN;
VAR cs: criticalSections;
BEGIN
cs:= X;
WITH cs™ DO
CASE VAL (operations, op) OF
READ: RETURN (active [WRITE] = 0) |
WRITE: RETURN (active [READ] = 0) & (active [WRITE] = 0)
END
END
END c;

PROCEDURE e (x: ADDRESS; op: CARDINAL);
VAR cs: criticalSections;
BEGIN
cs:= X;
WITH cs™ DO
CASE VAL (operations, op) OF
READ: INC (active [READ]) |
WRITE: active [WRITE]:= 1
END
END
END e;

PROCEDURE 1 (x: ADDRESS; op: CARDINAL);
VAR cs: criticalSections;
BEGIN
cs:= X;
WITH cs™ DO
CASE VAL (operations, op) OF
READ: DEC (active [READ]) |
WRITE: active [WRITE]:= 0
END
END
END 1;

PROCEDURE initialize (VAR criticalSection: criticalSections);
BEGIN
NEW (criticalSection);
WITH criticalSection™ DO
active [READ]:= 0; active [WRITE]:= O;
Batons.initialize (baton, criticalSectiomn, 2, c, e, 1)
END
END initialize;



UNIVERSAL SYNCHRONIZATION OBJECTS 15

PROCEDURE readerIn (cs: criticalSectioms);
BEGIN Batons.enter (cs”.baton, ORD (READ)) END readerln;

PROCEDURE readerOut (cs: criticalSections);
BEGIN Batons.leave (cs”.baton, ORD (READ)) END readerQut;

PROCEDURE writerIn (cs: criticalSections);
BEGIN Batons.enter (cs”.baton, ORD (WRITE)) END writerlIn;

PROCEDURE writerOut (cs: criticalSections);
BEGIN Batons.leave (cs”.baton, ORD (WRITE)) END writerOut;

END RW1.

This can easily be modified to a solution of the second readers and writers problem

(writers preference), which shows the idea behind the introduction of the third

parameter in the type conditions; one simply has to replace the procedure c by
PROCEDURE c (x: ADDRESS; op: CARDINAL;

waiting: ARRAY OF CARDINAL): BOOLEAN;
VAR cs: criticalSections;

BEGIN
cs:= X;
WITH cs™ DO

CASE VAL (operations, op) OF
READ: RETURN (active [WRITE] = 0) & (waiting [ORD (WRITE)] = 0)
WRITE: RETURN (active [READ] = 0) & (active [WRITE] = 0)
END
END
END c;

The comparison of this very clearly understandable solution with the original solu-
tion of CourTo1S, HEYMANS and PARNAS [CHP] certainly shows the strength of
the concept.

It is simple to generalize this to even more fair variants of the readers and writers
problem. As a more general example we show the solution of the left-right-problem
(e.g. traffic over a one track road or use of a single sex bathroom by females and
males), where either members of one of the two involved classes or of the other
may use the resource. Members of either class are granted access to the resource,
because members of one class can use the resource only a certain amount of times.
This maximum is defined by the client:

IMPLEMENTATION MODULE LR;

FROM SYSTEM IMPORT ADDRESS; FROM Storage IMPORT ALLOCATE;
IMPORT Batons;

TYPE
operations = (LEFT, RIGHT);
criticalSections = POINTER TO RECORD
maximum, active, done: ARRAY operations OF CARDINAL;
baton: Batons.batons
END;

PROCEDURE c (x: ADDRESS; op: CARDINAL;
waiting: ARRAY OF CARDINAL): BOOLEAN;
VAR cs: criticalSections;



16 CHRISTIAN MAURER

BEGIN
CsS:= X;
WITH cs~ DO
CASE VAL (operations, op) OF
LEFT: RETURN (active [RIGHT] = 0)
& ((waiting [ORD (RIGHT)] = 0) OR
(done [LEFT] < maximum [LEFT])) |
RIGHT: RETURN (active [LEFT] = 0)
& ((waiting [ORD (LEFT)] = 0) OR
(done [RIGHT] < maximum [RIGHT]))
END
END
END c;

PROCEDURE e (x: ADDRESS; op: CARDINAL);
VAR cs: criticalSections;
BEGIN
cs:= X;
WITH cs~ DO
CASE VAL (operations, op) OF
LEFT: INC (active [LEFT]);
INC (done [LEFT]);
done [RIGHT]:= O |
RIGHT: INC (active [RIGHT]);
INC (done [RIGHT]);
done [LEFT]:= O
END
END
END e;

PROCEDURE 1 (x: ADDRESS; op: CARDINAL);
VAR cs: criticalSections;
BEGIN
cs:= Xx;
WITH cs™ DO
CASE VAL (operations, op) OF
LEFT: DEC (active [LEFT]) |
RIGHT: DEC (active [RIGHT])
END
END
END 1;

PROCEDURE initialize (VAR criticalSection: criticalSections;
max: ARRAY OF CARDINAL);
BEGIN
NEW (criticalSection);
WITH criticalSection™ DO
maximum [LEFT]:= max [ORD (LEFT)]; maximum [RIGHT]:= max [ORD (RIGHT)];
active [LEFT]:= 0; active [RIGHT]:= O;
done [LEFT]:= 0; done [RIGHT]:= 0;
Batons.initialize (baton, criticalSectiomn, 2, c, e, 1)
END
END initialize;

PROCEDURE leftIn (cs: criticalSectioms);
BEGIN

Batons.enter (cs”.baton, ORD (LEFT))
END leftln;



UNIVERSAL SYNCHRONIZATION OBJECTS 17

PROCEDURE leftOut (cs: criticalSections);
BEGIN

Batons.leave (cs”.baton, ORD (LEFT))
END leftOut;

PROCEDURE rightIn (cs: criticalSections);
BEGIN

Batons.enter (cs”.baton, ORD (RIGHT))
END rightIn;

PROCEDURE rightOut (cs: criticalSections);
BEGIN

Batons.leave (cs”.baton, ORD (RIGHT))
END rightOut;

END LR.

APPENDIX

Semaphores are fundamental for our implementations. They can be implemented
using POSIX 1003.1b semaphores as follows (man 3 sem_init for details):

IMPLEMENTATION MODULE Semaphores;

FROM Storage IMPORT ALLOCATE;
FROM libpthreads IMPORT sem_init, sem_wait, sem_post;

TYPE semaphores = POINTER TO CHAR;

PROCEDURE I (VAR semaphor: semaphores; n: CARDINAL);
BEGIN

ALLOCATE (semaphor, 16);

sem_init (semaphor, 0, n)
END I;

PROCEDURE P (semaphor: semaphores);
BEGIN

sem_wait (semaphor)
END P;

PROCEDURE V (semaphor: semaphores);
BEGIN

sem_post (semaphor)
END V;

END Semaphores.

With this module, all given examples can be tested using the Modula-2-Compiler
of the GMD, Karlsruhe (URL: i44www.info.uni-karlsruhe.de/ modula/).
Please note, that you have to inform that compiler about the stack organization
for calls of C-routines and to use the pthread-library in the link process; for that
you have to add the undocumented option -CcallsMocka in the shell script mocka
and the option -1pthreads in the shell script 1ink of that compiler (both in the
subdirectory sys).



18 CHRISTIAN MAURER

REFERENCES

[A0] Andrews, G. R., Synchronizing Resources, reprinted in [GM], ACM Trans. Prog. Lang.
Syst. 3 (1981), 405-430.

[A] Andrews, G. R., Concurrent Programming, Principles and Practice, Addison-Wesley Pu-
blishing Company, 1991.

[CHP] Courtois, P. J., Heymans, F., Parnas, D. L., Concurrent Control with “Readers” and
“Writers”, Commun. ACM 14 (1971), 667-668.

D] Dijkstra, E. W., Co-operating Sequential Processes, reprinted in [G], 1965, pp. 43-112.

[G] Genuys, F. (ed.), Programming Languages, Academic Press, 1968.

[GM] Gehani, N., McGattrick, A. D. (eds.), Concurrent Programming, Addison-Wesley Publis-
hing Company, 1988.

[H] Hoare, C. A. R., Monitors: An Operating Systems Structuring Concept, reprinted in [GM],
Commun. ACM 17 (1974), 549-557.

M] Maurer, Ch., Grundzige der Nichtsequentiellen Programmierung, Springer, 1999.

INSTITUT FUR INFORMATIK, FREIE UNIVERSITAT BERLIN, TAKUSTR. 9, D-14195 BERLIN
E-mail address: maurer@inf.fu-berlin.de
URL: www.inf.fu-berlin.de/ maurer/



