SERIE B — INFORMATIK

Labeling Points with Circles*

Tycho Strijk°® Alexander Wolff*

B 99-08
April 1999

Abstract

We present a new algorithm for labeling points with circles of equal size. Our al-
gorithm maximizes the label size. It improves the approximation factor of the only
known algorithm for this problem by more than 50 % to about 1/20. At the same
time, our algorithm keeps the O(nlogn) time bound of its predecessor. In addition,
we show that the decision problem is NP-hard and that it is NP-hard to approximate
the maximum label size beyond a certain constant factor.

* This work was done in summer 1998 during a visit of Tycho Strijk to the Institut fiir Informatik, Fachbere-
ich Mathematik und Informatik, Freie Universitdt Berlin, Takustrale 9, 14195 Berlin-Dahlem, Germany.
It was supported by the Dutch Organization for Scientific Research (N.W.0O.), the ESPRIT IV LTR Project
No. 21957 (CGAL), and by the Deutsche Forschungsgemeinschaft (DFG) under grant Wa 1066/3-1.

° Department of Computer Science, Utrecht University, tycho@cs.uu.nl

¢ Institut fir Informatik, Freie Universitat Berlin, awolff@inf.fu-berlin.de

Introduction

An important task in the process of information visualization is to annotate objects on
display. Objects like points, lines, and polygons in maps, diagrams, and graphs must
be labeled to convey information. The interest in algorithms that automate this task
has increased with the amount of information to be visualized. Cartographers, graph
drawers, and computational geometers have suggested solutions. The ACM Computational
Geometry Impact Task Force report [C196] lists label placement as an important research
area. In computational geometry, especially the problem of point labeling has become the
focus of considerable attention in recent years. This may be due to the fact that there
are obvious models and objective functions for this problem. Usually labels are restricted
to axis-parallel rectangles which (a) have to touch the point they label, and (b) must not
intersect any other label. Condition (a) has often been restricted further in that one of
a label’s corners must coincide with the point to be labeled. To deal with this problem,
which is NP-hard in general, approximation algorithms have been suggested maximizing
either the label size, the number of points with labels, or both criteria simultaneously
[FW91, AvKS98, vKSW98, DMM*97].

In this article we restrict ourselves to a different label shape, namely circles of uniform
size, while keeping conditions (a) and (b). We label a point by attaching a circle to it such
that the circle’s boundary contains the point. Points are not allowed to lie in the interior
of a circle. Our objective is to find the largest real d,; that still allows us to label all
given points with non-overlapping circles of diameter dyp;. We consider our labels to be
open circles, thus they may touch other points or labels.

In considering a set of three points in general position, it is clear that approximating
the maximum size of circular labels cannot be reduced to the same problem for square
labels. While the solution in the former case is bounded (linearly in the diameter of the
point set), it is unbounded in the latter.

We show that even deciding whether a set of points can be labeled with unit circles is
NP-hard, see Section 5. The same proof implies that there is a constant § < 1 such that
it is NP-hard to label points with circles of diameter greater 0 - dop;. Nevertheless, the
maximization problem has already been approximated. Doddi et al. suggested a simple
algorithm which places circles with a diameter of at least 1/(4(2 + v/3)) ~ 1/14.93 times
the optimum and takes O(nlogn) time [DMM™97]. However, a careful revision of their
proof shows that their algorithm is actually worse by a factor of 2; i.e. the label diameter is
only 1/(8(2 +v/3)) ~ 1/29.86 times the optimum. In this paper, we present an algorithm
with an approximation factor of (15 — v/33)/(48(2 + v/3)) ~ 1/19.35. While the analysis
that yields this factor becomes more involved, the algorithm remains simple.

Both algorithms first determine the smallest diameter D3 of any three-point subset
of the input points. This can be done in O(nlogn) time [EE94, DLSS95]. D is needed
to compute the diameter of the labels, which in both cases is a constant fraction of Dj.
The observation that no point set of more than two points can be labeled with circles of
diameter greater than 2(2 + v/3) D3 then yields the corresponding approximation factors.

Like the algorithm of Doddi et al., when labeling a point our algorithm only needs
to know the location of the point’s closest neighbor in the set of input points. However,
while Doddi et al. maximize the distance between the labels of a pair of closest neighbors,
we minimize it in order to use space more efficiently. This implies that they only need
to know the direction of the closest neighbor while we also need its distance. Another

Labeling Points with Circles 3

difference is that while they label the points in arbitrary order, we exploit this order and
process the points in pairs of increasing distance. In order to build and access the data
structure that supplies us with this order we need no more than O(nlogn) time in total.
Thus our algorithm runs in O(nlogn) time. It requires linear storage.

This paper is structured as follows. In Section 1, we sketch the algorithm of Doddi
et alii. In Section 2 we formalize our main ideas. Then, in Section 3 we present our
algorithm, analyze it in Section 4, and finally present our NP-hardness proof in Section 5.

1 Previous Work

For a (finite) set S of points in the plane, Doddi et al. define the diameter diam(S) the
usual way as the maximum distance of any two points in S. They define the k-diameter
Dy (S) to be the minimum diameter over all k-element subsets of S. Then they make the
following two observations. We use D3 as shorthand for D3(S).

Figure 1: label placement according to the Figure 2: optimal label placement for three
algorithm of Doddi et al. points

1. The open circle centered at a point p € S with radius D3/2 contains at most one
other point ¢ € S — {p}. Due to symmetry, an open circle of the same diameter
centered at ¢ only contains p and ¢. This allows p and ¢ to be labeled with labels of
diameter d' = D3/4 as in Figure 1. Given the distance of p and ¢ to other points in
S, it is obvious that labels of other points cannot overlap those of p and q.

2. The maximum label diameter dyp(S) of any set S of more than two points cannot
exceed the maximum label diameter dsmax of three points at pairwise distance D3(S),
see Figure 2. Doddi et al. compute dspax to be (2 + v/3) D3, but this is incorrect:
we have dsmax = 22z + D3, where z = (d3max/2) - cos /6 since the triangles are
equilateral. Thus we obtain dsmax = 2(2 + v/3)D3 ~ 7.46 D3 as an upper bound for

dop -

Combining these observations yields the approximation factor d’/dopt > 1/(8(2++/3)) =
1/29.86 of their algorithm.

2 Preliminaries

We formalize the idea of the free space around a point as follows.

Figure 3: the point-free zone Zgee of p and ¢ Figure 4: the label zone Zj,0 of p and ¢

Definition 1 Let Cy,, be an open circle with radius v centered at m. We say that two
points are o pair of closest neighbors if each is a closest neighbor of the other. Given two
points p,q € S, we denote the point-free zone of p and q by

Zfree(pa Q) = (Cp,Ds N Cq,D3) U Cp,d U C(I,d - R’
where d = d(p, q) is the Euclidean distance of p and q.

The definition is illustrated in Figure 3. We show that the point-free zone of a pair of
closest neighbors {p, ¢} does not contain any other point of S. This will enable us to use
part of the zone for labeling p and q.

Lemma 2 Let {p,q} be a pair of closest neighbors in S. Then Zxee(p,q) NS = {p,q}.

Proof. Suppose Zgee(p,q) contains a point ¢ € S\ {p,q}. Then t € C, p, N Cy p, or
t € CpqUC,q. In the first case the diameter of {p,q,t} would be less than D3; a con-
tradiction to the definition of D3. The second case would contradict {p,q} being closest
neighbors. Q

Note that Doddi et al. implicitly also used the concept of a point-free zone, namely
the union of the dashed circles C), p, /5 and Cy p, /o depicted in Figure 1. However, their
zone is always contained in our point-free zone Zpee, independently of d. This helps us to
place larger labels. Let d,g, be the diameter of the labels our algorithm is going to place.

Definition 3 Given two points p,q € S and a real number dag, < D3. Then we denote
the label zone of p and q by

Zlabel(paQ§ dalgo) = Zfree(pa Q) - U Cx,dalgo = Zfree(pa Q) o C'O,dalgo
T E RQ_Zfree(p;Q)

where © is the Minkovski subtraction operator and 0 is the origin.

In other words, the label zone is the erosion of the point-free zone with a disk of radius
dalgo- The definition is illustrated in Figure 4.

Labeling Points with Circles)

Lemma 4 If we label a pair of closest neighbors {p,q} with circles of diameter dag, that
are contained in the label zone Zianel(p, ¢; dalgo), then these labels cannot overlap the label
of any other point t € S — {p,q}.

Proof. Suppose the label of ¢ overlaps that of p. Lemma 2 tells us that ¢ € Zgee(p, q).
Then the definition of the label zone ensures that Ct 4,, , does not intersect Ziapel (p, ¢; daigo)-
Observing that ¢’s label is contained in Ct,da1go and p’s label in Zjape1 (P, ¢; dalgo) contradicts
our assumption. Q

The question is, of course, how large we can choose d4, so that the labels of any
pair of closest neighbors fit into their label zone — independently of their distance. This
question is dealt with in Section 4. Let us suppose for the moment that d,g, can be
expressed as a fraction of D3. The next section answers two other important questions,
namely how do we place the labels, and in which order.

3 Algorithm

Our algorithm proceeds as described in Figure 5.

LABEL_POINTS_WITH_CIRCLES(.S)

compute D3(S)
daigo 1= (15 — v/33)/(48(2 + V/3)) D3(S) daigo
while |S| > 1 K="
choose {p,q} C S with d(p,q) minimal
if d(p, q) > 2da1go then exit while-loop endif
label p and ¢ as in Figure 6
S:=8\{p,q}
end
for all z € S do label z arbitrarily end
return all label positions

Figure 5: our algorithm Figure 6: labeling a pair of points

In contrast to Doddi et al. who place the labels of two neighboring points as far apart
from each other as possible, we label p and ¢ such that their labels are as close as possible.
This means that they will touch each other as in Figure 6 if d(p, q) < 2d,140. The vectors
p and ¢ denote the coordinates of p and ¢ in the plane. We place the center n7y of ¢’s label
at my = p/4+3¢/4+d. The vector d@ is perpendicular to pg and oriented so that it points

to the left of (5 — ¢). The length of @ is ||@|| = \/d§1g0/4 — d?*(p,q)/16. Correspondingly,
the center of p’s label is placed at m3, = ¢/4 + 3p/4 — d@. We call the union of these two
(open) labels the label space of p and q. If there are unlabeled points left after executing

the while-loop, we label them arbitrarily.

Lemma 5 Given a set S of n points and a label diameter dag, such that the label space
is contained by the label zone for any pair of points in S. Then the labels our algorithm
places do not intersect.

Proof. The fact that no two labels overlap follows from the order in which we process the
points. It is clear that the first pair {p, ¢} is a pair of closest neighbors. Due to Lemma 4,
we know that we do not constrain the labeling of any other point in S when we label such
a pair within its label zone. In other words, if we remove {p, ¢} from S, then we can ignore
p and q as well as their labels for solving the remaining problem. The next pair of points
will be a pair of closest neighbors in the reduced set S. Thus Lemma 4 applies to this pair
as well.

After we leave the while-loop, there might be unlabeled points left. For each such
point x there are two possibilities. Either its closest neighbor in the original set is at least
2d,15, away. Or all points y with d(x,y) < 2d,4, have been labeled before, since each had
a closer neighbor z. In either case the labeling of z is not constrained by any previous
label placement. Hence we can label x arbitrarily. Q

Lemma 6 The algorithm can be implemented such that it labels a set S of n points in
O(nlogn) time with linear space.

Proof. Our algorithm labels S in three phases. In the first phase, we compute D3 in
O(nlogn) time with one of the algorithms suggested in [EE94, DLSS95]. We need D3 to
compute the diameter dyg, = (15 — \/ﬁ)/24 D3 = 0.39 D3 of the labels we are going to
place, see Section 4.

In the second phase, we set up a simple data structure, which will answer a limited
closest pair query; limited in the sense that we only need to know pairs of points closer
than Zdalgo-

Since daigo is a fraction of Ds, an axis-parallel square of edge length 2d,4, centered
at a point p € S can contain at most a constant number of points in S. We call these
points the relevant neighbors of p. If p had more than a constant number of relevant
neighbors, then the square centered at p would contain three points with diameter less
than D3 — a contradiction to the definition of D3. This observation enables us to collect
the relevant neighbors for every point in S with a sweep-line algorithm that detects the
k nearest neighbors according to the maximum norm for each of the n input points in
O(kn+nlogn) total time using linear space [For92]. After the sweep, we put the set of all
pairs of relevant neighbors {{p, ¢} | p is relevant neighbor of ¢} into a priority queue, each
pair {p, q} according to the Euclidean distance of p and ¢. This takes O(nlogn) time.

In the third phase, we repeatedly extract the minimum {p,q} of the priority queue
and check whether d(p,q) < 2dag,. If this is the case, we label p and ¢ with circles of
diameter dyig, as in Figure 6, and delete all pairs containing either p or ¢ from the queue.
The points remaining in S after this process can be labeled in constant time per point.
Phase 3 can also be done in O(nlogn) steps.

Summing up the running times of the three phases gives a time bound of O(nlogn).
The necessary data structures can all be implemented such that they do not need more
than linear space. Q

Labeling Points with Circles 7

Figure 7: Point-free zone Zpee and label zone Zjape of p and ¢ for d < D3 /2.

4 Analysis

Given a pair {p, q} of closest neighbors in S, our objective now is to compute the max-
imum radius r of their labels so that the label space is still contained in the label zone
Ziabel (P, q; 27r) of p and ¢. Since this radius will only depend on the distance d of p and
¢, we want to find the minimum rp;, of r(d), set dajgo to 27yin and run our algorithm.
Lemma 5 guarantees that no two labels will intersect then.

Since we place the labels of p and ¢ symmetrically, it is enough to analyze the placement
of ¢’s label. We have to consider two cases depending on p and ¢’s distance.

In case d < D3/2, the point-free zone Zg.ee(p,) is the intersection of Cy p, and Cy p,.
The corresponding label zone Zj,pel(p, ¢; 2r) is the intersection of Cy p,—2, and Cy p,—2r.
As described in the previous section, the label has its center point m, on a line £, normal
to the line connecting p and ¢. This normal line has distance d/4 to q. The distance of
my to the line pg is \/7? — d? /16 using Pythagoras’ rule.

The radius of ¢’s label is maximized when the label touches the boundary of the label
zone, i.e. the circle C}, p,_2,. We use the property that the touching point of two circles
always lies on the line through their centers, see Figure 7.

This observation yields the equality

d(p,mg) +r = D3 —2r. (1)

We use that d(p,mg) = \/(%d)2 + (r? —d?/16) = +/d?/2 + r?. The resulting equation
Vd?/2 + 1?2 = D3 — 3r is quadratic and has two solutions. The solution valid for our

problem is
3D3 — /D3 + 4d?
p— 3Ds D AP (2)

8

7[Ds]
0.3
0.25 g

0.2

Te

0.05

0 0.2 0.4 4= 06 0.8 T d[Ds]

Figure 8: The graph of r(d) is determined by the functions f and g. For d < d* = 0.53,
the value of r is determined by f, otherwise by g.

The graph f of this function is depicted in Figure 8 with both d and r scaled proportionally
to D3.

The case d > D3/2 is more difficult. In this case, the point-free zone Zpee(p,) is the
union of three areas, namely C), p, N Cy p,, Cp 4, and C, 4, see Figure 9.

Accordingly, the boundary of Zjapei(p, ¢;27) consists of arc segments that are part of
the circles C) p,—2r, Cq,p3—2rs Cp.a—2r, Cy,d—2r and four circles with radius 2r centered at
the intersections of C) p, with C; 4 and at the intersections of Cy p, with C} 4. One of
these last four circles is Cy,, 2, whose center m lies at an intersection of C), p, and Cy 4,
see Figure 9.

It turns out that a label with maximum radius inside the label zone always touches ei-

ther C), p,—op or Cy,, 2r. This depends on the value of d. There is a real d* = 7%@D3 ~
0.53D3 such that for d < d* the label touches C}, p,_2, and for d > d* it touches Cy,, o,

The values of r for which the label touches Cy p,_2, have already been computed, see
Equation (2). The values, for which the label touches C,,, 2., are computed similarly as
follows. The line connecting the center points m, and my intersects the touching point of
the two circles. This gives rise to the equation

d(mg, myx) = 3r, (3)

see Figure 9. In the following we assume that D3 = 1. The point set can always be scaled
so that this is true.
If we put the origin of our coordinate system at ¢ and let the negative z-axis contain

p, then
1—2d> —/4—d?2 1
g 2 g2
my = (57 5) and m, = (4d, r2 —d?/16). (4)

The equation d(mgy,my) = 3r has the following solution for our problem:

_ V1-16d2+48d4
T:\/S—d 2 1 g2 — YI=I6 Qi dt
8v2

Labeling Points with Circles 9

Figure 9: The point-free zone Zgee and the label zone Zj,he of p and ¢ for the case
d > Ds3/2. The bold dotted label touches the circle centered at m.

The graph ¢ of this function is depicted in Figure 8. The graph of r(d) equals f(d)
for d < d* and g(d) otherwise. The minimum 7y, of r(d) is reached at d* since f
decreases and ¢ increases strongly monotonically on the corresponding interval. We obtain
Pmin = (15 — v/33) /48 ~ 0.19.

Theorem 7 Our algorithm labels a point set S with circles of diameter dygo = 2rmin =
(15 —\/33)/24 =~ 0.39 D3(S).
The approzimation factor y is (15 —\/33)/(48(2 + v/3)) ~ 1/19.35.

Proof. Since the minimum 7y, of r(d) occurs when d = d*, we know that the label
space of any pair of closest neighbors will be contained by its label zone. Then Lemma 5
ensures that for a label diameter d,1go = 27min, our algorithm will label all points with non-
overlapping labels. The approximation factor is the ratio of the upper bound 2(2++/3) D3
(see Figure 2) and the diameter dyy, of the labels we place. Q

It is clear that any set of congruent equilateral triangles will force our algorithm to
produce a labeling with circles of diameter «y-dyp; if the triangles are spaced appropriately.
However, there are also examples with a smaller optimum labeling where the algorithm
performs better. The triangular lattice formed by the centers of a densest disk packing, for
example, has an optimal labeling with circles of diameter d,,; = D3. Here our algorithm
yields a ratio of daigo/dopts = 0.39.

5 NP-Hardness

Theorem 8 [t is NP-hard to decide whether a set of points can be labeled with unit circles.

10

Proof. Our proof is by reduction from planar 3-SAT. Lichtenstein showed that this
restriction of 3-SAT is NP-hard [Lic82]. Our proof follows Knuth and Raghunathan’s proof
of the NP-hardness of the metafont labeling problem [KR92]. We encode the variables and
clauses of a boolean formula ¢ of planar 3-SAT type by a set of points such that all points
can only be labeled if ¢ is satisfiable, i.e. if there is a variable assignment such that all
clauses evaluate to true. The advantage of a planar 3-SAT formula is that there is always
a way to arrange nodes corresponding to the variables on a straight line in the plane and
connect these nodes by non-intersecting three-legged clauses, see [KR92, Figure 5].

% o‘l\ L

Figure 10: Label placements en- Figure 11: Rows of three-point clusters model a vari-

coding true and false. able; the label positions of the leftmost cluster de-

termine the variable’s Boolean value.

The main observation leading to our proof is the following. Given three equidistant!
points on a line, there are exactly two ways to label these points optimally, see Figure 10.
This gives us a means to encode the Boolean values of a variable in the planar 3-SAT
formula ¢ that we want to reduce to a set of points.

The building blocks (or “gadgets”) of our reduction are the clusters for variables and
three-legged “combs” for clauses. In order to be able to connect a variable to all clauses in
which it occurs, we model it not by one but by several variable clusters on a horizontal line

as in Figure 11. Note that the cluster-cluster distance of 14-1/2v/3 — 3 (from mid-point to
mid-point) is chosen such that every second cluster must be labeled the same way. Let the
label position of the leftmost cluster represent a variable’s value according to Figure 10.

The central idea for modeling the clauses is that we restrict the possible label positions
of all points (except one) to a maximum of two. To achieve this, we use immobilizing
clusters that can only be labeled in one specific way. They consist of three points at
pairwise distance 1/(4 4+ 2v/3), see Figure 2. In order to distinguish these auxiliary points
from the others, we use the term active points for all clause points with at least two
possible label positions.

We model the clauses by point sets which resemble large combs, see Figure 12. Such a
comb consists of a horizontal part and three legs. The horizontal part is formed by points
like b in Figure 12. These points lie on a horizontal line. The immobile dotted labels of
the immobilizing clusters above and below restrict the label of b to two possible positions.

The legs consist of points like a in Figures 12 and 13. These points lie on a vertical
line and are also forced into one of two possible positions. At the junctions where the
legs are joined to the horizontal part of a clause lack of space prevents us from using
the immobilizing clusters as elsewhere. Instead, we simply attach points like z, y, and 2
in Figure 12 to cluster labels in the vicinity such that the labels of z, y, and z are also

!Since all labels have diameter 1 here, some basic geometry shows that this distance must be (1 —

V2V3 —3)/2

Labeling Points with Circles 11

Figure 12: Clause with pressure from two variables. The current label positions are marked
by shaded labels, alternatives are indicated by solid or dashed circles, and immobile labels
are dotted.

immobile and at the same time restrict the label positions of points close to the junction
(like I, 7, s, t, and q) as desired.

Both the horizontal part and the legs of a comb can be extended as far as needed
to reach the three variables belonging to the clause. This is done by repeating — at a
distance of /3 — patterns of seven points like those contained in the boxes A and B in
Figures 12.

Each leg is connected to a variable v. The connection depends on the literal; i.e. on
whether or not v is negated in the clause. Let g be the vertical, on which all points of the
leg lie. If v is negated, we connect the leg to v such that g contains a point of type d. The
distance of v/3 between the lowest leg point ¢ and d is chosen to assure that the label of
a can only intersect the label of d among the points modeling v. Note that the labels of
a and d only intersect if the label of a is placed right below a and that of d right above
d. d is the mid-point of a variable cluster that is labeled the same way as the leftmost
cluster of v, see Figure 13. Hence d is labeled upwards if v is set to true and is negated
in the clause. Then a and all other points on g must also be labeled upwards. To put
it graphically, pressure is transmitted upwards. If v is negated and set to false, d can be
labeled downwards, and no pressure is transmitted.

On the other hand, if v is not negated in the clause under consideration, we connect
the clause’s leg to v so that g contains a point of type d’. Such points belong to clusters
labeled the opposite way as the leftmost cluster. Then pressure is transmitted if and only
if v is set to false.

If all literals of a clause evaluate to false, then pressure is transmitted through all
three legs into the clause. In this case there is a point (like p) that cannot be labeled, see
Figure 12. In case there is at least one leg without pressure, it is obvious that all points
belonging to a clause can be labeled.

Hence the question whether ¢ can be satisfied is equivalent to asking whether all points
in the set, to which ¢ is reduced, can be labeled with unit circles.

12

Figure 13: We connect the leg of a clause to a variable above points of type d or d’. This
depends on whether the variable is negated in the clause (as in this case) or not.

To show that we can in fact connect a variable to several different clauses (below and
above), we use a grid of width v/3 and move all active points to grid points — except
points of type [, r, and p, see Figure 12. In order to accommodate also the mid-points of
the variable clusters on the grid, we slightly increase the distance of neighboring variable

clusters to that of immobilizing clusters, i.e. from 1 + \/2v/3 =3 ~ 1.68 to V3 ~ 1.73.
Then the label positions in every second cluster must still be combinatorically equivalent,
although labels can slightly wiggle now, see Figure 13. Given such a grid embedding of
our instance, it is clear that we can connect all variables to the clauses according to ¢.
We still have to ensure that the reduction is polynomial: if ¢ consists of m clauses
and n < 3m variables, the instance has O(m?) points. Their position can be computed in
polynomial time if we round the grid-cell size and the distance between the three points
of the immobilizing clusters to slightly greater rational numbers. The resulting instance
is combinatorically equivalent to the one described before. Q

It is not clear whether the problem is in NP. We do not know whether there is always
a polynomial encoding of a solution, even if the input points have rational coordinates.

Corollary 9 There is a constant § < 1 such that it is NP-hard to label points with uniform
circles of diameter greater 0 - dopy.

Proof. The proof of Theorem 8 still holds if the diameter of all labels is slightly reduced
to a d < 1. The reason for this is that though labels have a certain degree of freedom now,
every new label position is combinatorically equivalent to exactly one former position. ¢
must be chosen close enough to 1 to prevent a label from being moved continuously from
one old position to another.

If there was a polynomial-time algorithm that could label the point set of the reduc-
tion with labels of size d, we would have P = N'P. Formann and Wagner used a similar

Labeling Points with Circles 13

argument to show that maximizing the size of axis-parallel square labels cannot be ap-
proximated beyond 1/2 [FW91]. Q

The bottleneck that determines the minimum value of § seems to be the encoding of
a variable, see Figure 11. When the labels (and thus §) are scaled down gradually, there
is a point when two neighboring clusters can have identical instead of alternating label
positions, see Figure 10. Then the variable’s Boolean value is no longer well defined, and
the proof collapses.

Conclusions

This paper has proved the NP-completeness of the circle labeling problem and also the NP-
hardness of approximating it beyond a constant § < 1. We have presented an algorithm
to approximate the circle labeling problem. This algorithm improves the approximation
factor of the existing algorithm by more than 50 per cent.

References

[AvKS98] Pankaj K. Agarwal, Marc van Kreveld, and Subhash Suri. Label placement by
maximum independent set in rectangles. Computational Geometry: Theory
and Applications, 11:209-218, 1998.

[CT96] Bernard Chazelle et al. Application challenges to computational geometry:
CG impact task force report. Technical Report TR-521-96, Princeton Uni-
versity, April 1996. http://www.cs.princeton.edu/"chazelle/taskforce/
CGreport.ps.

[DLSS95] Amitava Datta, Hans-Peter Lenhof, Christian Schwarz, and Michiel H. M.
Smid. Static and dynamic algorithms for k-point clustering problems. J.
Algorithms, 19:474-503, 1995.

[DMM™*97] Srinivas Doddi, Madhav V. Marathe, Andy Mirzaian, Bernard M.E. Moret,
and Binhai Zhu. Map labeling and its generalizations. In Proceedings of the
8th ACM-SIAM Symposium on Discrete Algorithms, pages 148-157, 1997.

[EE94] David Eppstein and Jeff Erickson. Iterated nearest neighbors and finding
minimal polytopes. Discrete Comput. Geom., 11:321-350, 1994.

[For92] Michael Formann. Algorithms for Geometric Packing and Scaling Problems.
PhD thesis, Fachbereich Mathematik und Informatik, Freie Universitit Berlin,
1992.

[FW91] Michael Formann and Frank Wagner. A packing problem with applications to
lettering of maps. In Proc. 7th Annu. ACM Sympos. Comput. Geom., pages
281-288, 1991.

[KR92] Donald E. Knuth and Arvind Raghunathan. The problem of compatible rep-
resentatives. SIAM J. Discr. Math., 5(3):422-427, 1992.

14

[Lic82] David Lichtenstein. Planar formulae and their uses. SIAM Journal on Com-
puting, 11(2):329-343, 1982.

[VKSW98] Marc van Kreveld, Tycho Strijk, and Alexander Wolff. Point set labeling with
sliding labels. In Proc. 14th Annu. ACM Sympos. Comput. Geom., pages
337-346, June 1998.

