An Introduction to Form Storyboarding
Technical Report B-02-06

Dirk Draheim and Gerald Weber
Institute of Computer Science
Free University Berlin
email: {draheim,weber}@inf.fu-berlin.de

March 2002

Abstract

We introduce form storyboarding, a method for eliciting, specifying and communicating
functional requirements for applications with form based interfaces. The method encompasses
a visual language for the documents which have to be created, and a set of proposals for ac-
tivities. The visual language is based on bipartite state transition diagrams.

Contents

1

2

Introduction 3
Form Based Interfaces 3
2.1 Two Staged Interaction Paradigm, 4
2.2 Cognitive Advantages e 4
2.3 Interaction in Form Based Interfaces 4
2.4 Ultra-thin Client Forms vs. Other Forms 4
Form Storyboards for Interface Specification 5
3.1 Modeling User Interfaces with State Transition Diagrams 5
3.2 PageDiagrams)
3.3 Form Storyboards L 6
3.4 Signatures for Server States L 7
3.5 Feature Driven Approach L 7
3.6 Use Cases Reconsidered 8
Requirements Elicitation 8
4.1 Form Storyboarding Activities 8
Related Work 9
Further Directions 9
6.1 Textual Format for Form Storyboards 9
6.2 Advanced Topics e 9
6.3 Generalization of Form Storyboarding 9
Conclusion 10

1 Introduction

In this paper we introduce form storyboarding, a method that is an amalgamation of requirement
elicitation, specification, and high-level UI prototyping. Form storyboarding is applicable to sys-
tems with form based interfaces, and addresses requirements on business functionality. We do not
consider non-functional requirements. Form storyboarding, the requirements gathering method,
is seamlessly integrated with form oriented analysis [2], an analysis method. Form storyboarding
yields an artifact, the form storyboard, which is a complete description of the system interface.
Form storyboarding encourages the requirement engineer to create the basic structure for the
functional requirement specification according to the elements of the form storyboard.

The form based interface is the poor cousin of the human-computer interface community.
This did not reduce the practical importance and ubiquity of this kind of interfaces. Time has
come to state precisely the abstract concept behind form based interfaces, which has its subtle
non-trivialities, and sum up the experience with them. We first give an in depth analysis of the
considered class of interfaces and its implications for the requirement specification process. Then
we develop the notation of form storyboards and explain the proposed modeling activities.

2 Form Based Interfaces

Many applications like today’s enterprise applications use an interface type which can be charac-
terized as form based, submit/response style interfaces.

e form based refers to the fact that these user interfaces collect user input in the style of input
forms. Input forms can be understood as a metaphor, namely as a direct translation of
paper forms into human-computer interfaces. Input forms are composite structures of input
elements.

e submit/response style refers to the screen update policy, namely that all screen updates
have to be triggered by a dedicated user action. The user actively submits data or a query,
instead of passively watching a constantly updated view.

This type of interface is not tight to any specific technology. On the contrary, the same
characteristics can be found in many technologies, e.g. HTML-based clients, main frame terminals,
even certain parts of GUI based dialogues: the secondary dialogues in document applications, like
the print dialogue, follow this paradigm. An important class of systems of this type are systems
with ultra-thin clients. Ultra-thin clients are interface tiers that do not contain business logic
themselves. Ultra-thin clients cache the user interaction on one page in the client layer. In
this respect they differ from certain terminals, which forward each user interaction and can be
considered completely stateless. Systems with ultra-thin clients are typically multi user systems.
Ultra-thin clients fit neatly into transactional system architectures. Later we will argue that the
caching of data is not solely a solution domain concept, but an interface feature. In the following
we will use form based interface as the shorthand notion for the described class of interfaces.
Form based interfaces show at each point in time one page, which offers the user a collection of
interaction options. Interaction options are input fields of forms and such buttons that trigger a
page change. These buttons will be called submit buttons. Many concepts in concrete technologies
can be subsumed under these concepts. For example in HTML, links can be seen as submit buttons
in textual style. If a page contains a list of submit buttons, then the choice of one of these buttons
for submission must be seen as an additional input value: a list of submit buttons is equivalent
to one submit button combined with a choice list. In the following we argue that form based
interfaces are not only a technical legacy or architectural necessity due to scalability issues, but
a valuable general interface metaphor. The concept of form based interfaces is here to stay, since
they present the optimal solution in a number of areas, where they are used.

2.1 Two Staged Interaction Paradigm

The difference between input fields and submit buttons lead to a strict two level interaction
paradigm. User interaction is separated into interactions on one page and interactions that result
in a page change. Interaction on one page, called page interaction, consists of filling out input
elements, changing the focus between input elements, resetting the form and other interactions.
These user interactions are only temporal and do not change the system state. This allows to
abstract from page interactions when modeling the complete interface. Only the other kind of
interaction does affect the system, namely page changes. Page changes are either submitting a
form or clicking a link, whereby submitting a form is the more general concept: a link can be seen
as a form consisting solely in the submit button. If the user triggers a page change, the result of
her interactions with the respective form is processed by the system, her interaction with other
forms on the page is lost. The recognition of the two staged interaction paradigm leads to the
following key insight about requirements specification for form based interfaces: there is no need
to specify the fine grained interface behavior on one page. Page interactions are well understood
and can be offered by a general browser, which is able to interpret a declarative page description
and provide a sufficiently powerful standard page interaction paradigm. This explains the success
story of concrete technologies like the HTML form concept together with the web browser as a
standard ultra-thin client. Hence specifying form based interfaces is reduced to specifying page
changes.

2.2 Cognitive Advantages

Form based interfaces have clear advantages for the self explanatory character of a system. The
usage of the system is intuitive, since it is guided by the paper form metaphor. The difference
between temporary input and submission, or ”sending”, is intuitive and fosters the user’s under-
standing of the system. The form based metaphor has a client tier structure in its own, without
fixing an implementation. The two classes of interactions structure the work of the user into the
work intensive frequent page interactions and the punctual and atomic interactions of the ”serious”
kind, namely the page changes which also happen to be the conclusion and separation of logically
disjoint bunches of work. The submit/response style character brings the user in command of the
timing of her system usage. It protects her from irritating disruption of her work by incoming
information, as will be explained in section 2.5.

2.3 Interaction in Form Based Interfaces

In form based interfaces the submission of a form is an operation that has exactly the semantics
indicated by the metaphor. In computer science terms the submission can be modeled as a
method call [1], namely the submission of an actual parameter list with a method name. The
actual parameter list is given by the contents of the input elements, the method name is best
represented by the form title. The form itself can therefore be seen as an editable method call. As
a result of a page change, a new page will be presented to the user. This page contains information
and new interaction options for the user, namely new forms.

2.4 Ultra-thin Client Forms vs. Other Forms

Form-like interface layout can be found not only for ultra-thin clients but also in other systems, like
desktop databases typically found in office suites. However, such systems follow a fundamentally
different paradigm. In desktop databases a form-like input mask is an editable view of persistent
data. Once a field is edited, the corresponding field in the persistent data is changed immediately.
In general therefore there is no need for a submit procedure, instead there is a concept of buttons,
where a button is a parameter free command. These kind of dialogues perform screen updates
in a push style, meaning that the system pushes the new content on the screen continuously. An
early presentation of such a paradigm can be found in [5]. In this kind of user interfaces forms

could also be called views. Concerning multi user systems on the other hand, the push style is not
applicable to conflict resolution between different users. Updates by other users must not interfere
with the current work of a single user.

3 Form Storyboards for Interface Specification

We propose form storyboards, a bipartite extended class of state transition diagrams, tailored for
the modeling of form based interfaces. A state transition diagram is a directed labeled graph. The
nodes are states of the system, the edges are transitions between the system states. Between two
states there can be several edges distinguished by different labels.

3.1 Modeling User Interfaces with State Transition Diagrams

Due to the fact that page interaction is well understood, the main task in modeling the dynamic
behavior of a user interface is the modeling of page changes. From this perspective, the user
interface remains in the same state as long as the same page is presented to the user. The state
changes whenever the user triggers a page change. This full abstraction from page interactions
is the key advance of the proposed method beyond other state transition diagram approaches.
The system can in principle show an indefinite set of pages. In order to model the interface as
a finite state diagram, one has to identify a finite set of page sets, each representing one page.
Take for example a catalogue of an online bookstore. The number of categories is likely to change
over time. The favorite model would have only one state in the state transition diagram which
represents all categories. The information which precise category is shown, is not modeled in the
diagram. It may be allowed to mention that the states chosen for the diagram will often match
more or less the finite set of different page implementations.

Before we explain form storyboards we introduce a more coarse grained kind of diagram, called
page diagrams, which follows the choice of states as explained above. Page diagrams only represent
the visible states of the system. They provide a valuable shorthand notation for the corresponding
form storyboard.

3.2 Page Diagrams

Page diagrams take a natural finite set of states, as explained above. Naive page diagrams without
precise semantics are often found in practice. The user interface is in one particular state of the
page diagram, as long as the user performs page interactions. The edges from this state in the
page diagram represent the possible page changes that the user can trigger. Our running example
is a seminar registration. On the homepage the current participants are listed. A new participant
can register herself, as long as she is not already registered (Fig.1).

places are
still available

homepage with
participant list

deletion registration

a customer with

the password | _ 1 same name and phone
is not correct RRCETOUREY B B (N (PP already participates

already registered
error message

invalid password
error message

Figure 1: Page diagram

The example page diagram shows one of the important new features of our proposed page
diagram formalism: branching edges. They are necessary, because the target page of a page
transition may depend on the server action in response to the user input. Error pages are the
most ubiquitous example, as is shown in the example: depending on the user input, either the
regular subsequent page or an error page is presented, like in the case of an invalid password.
In the page diagram this must be indicated as a branching edge, since both pages, error page as
well as ordinary response page, are triggered by the same user command. Page diagrams give an
intuitive notion, but do not offer a self explaining semantics. A precise semantics for branching
edges is gained by form storyboards.

3.3 Form Storyboards

We introduce our new diagram concept called form storyboards (Fig.2). They pay tribute to the
intuitive notion that the system usage is an interplay of alternating user action and system action.
The states of the diagram are partitioned into page states or user input states and server states.
The system state alternates between page states and server states. Hence these diagrams are
bipartite graphs. The set of page states is identical to the set of states of the page diagram. The
page nodes are denoted as rounded rectangles, the server states are denoted as square rectangles.
However, the server states are only temporal: the user action triggers a state transition into a
server state, but after processing the system automatically leaves the server state and returns into
some page state. In the register action of the running example, the system leads over either to an
error state or to the ordinary page state.

The page diagram is the result of collapsing all server nodes to little squares and eliminating
those with only one outgoing edge, i.e. uniting them with the unique target page node.

get participants
places are
still available
homepage with -

participant list to
registration

remove yourself
* listnumber

register
* name
+ phone
* password

delete participant

- password

a customer with
same name and phone
already participates

invalid password

error message — already registered
J the password error message
is not correct

Figure 2: Form storyboard

3.4 Signatures for Server States

Server states are entered by page changes, which we have identified as method calls. We want
to include the signature of the method into the diagram. The method signature is written into
the square representing the server state. The parameter list is written in the style of a form,
so that stakeholders that are not computer scientist have an immediate intuition of the diagram
semantics. At the same time the notation fosters the understanding of the developer that a form
submission is a method call and that the form is an editable method call. Consider the server state
“remove yourself” in the example form storyboard. This server state demonstrates the unification
of forms and links. The server state represents a set of links on the page, namely one link for each
participant. As explained earlier, this set of links is equivalent to a choice list with all participant
numbers and a single submit button. Therefore the server state has one parameter, namely the
chosen participant number.

The form storyboard yields a convenient and structured representation of the interaction pos-
sibilities on one page. A page state together with its accessible server states represents the in-
teraction options the user can choose. Therefore the evolving form storyboard can be seen as
high-level, non-executable prototype, which abstracts from interface layout details, but provides a
solid basis for discussion, and form storyboarding turns out to be especially well suited for team
work, too. Consider now the form storyboard for the running example, the seminar registration
system. Each state can have multiple ingoing edges from different states of the other kind. This
means that a server method can be called from different pages, and on the other hand the same
page can be produced from different server methods. Furthermore, two states can be connected
by more than one edge, if these edges are labeled or annotated differently. Edges from a page
node to a server node are called page/server edges, edges from a server node to a page node are
called server/page edges. Only page/server edges can be labeled, labels are depicted as hexagonal
boxes on the edge. Server/page edges can be annotated with conditions, under which the respec-
tive transition will be chosen by the system. These conditions can be annotated in a language of
choice. Page/server edges can be annotated with conditions, under which they are enabled, like
the link from the homepage to the registration page in the example. In form oriented analysis
[2] the informal constraints from the form storyboard can be translated into a formal dialogue
constraint language, an extension of OCL.

In form storyboards, exceptions which are caused by exceptional multi-user interference should
not be modelled. An example is the case that the user enters the registration procedure at a time
where places are still available, but at the time of his submit the last place is occupied. Such
a multi-user-exception should be included into the form storyboard only if there is an increased
importance to discuss such a case with the domain expert. Multi-user-exceptions have to be dealt
with in depth in form oriented analysis.

3.5 Feature Driven Approach

Form storyboarding uses only one kind of formal artifacts. All documents are form storyboards
that are understood as subdiagrams of the complete diagram. The completeness of the diagram
can be declared locally for each node. Local completeness is given if a diagram shows for one
node already exactly those outgoing edges which will be present in the final diagram. Local
completeness is depicted by a tickmark in the node. An important artifact is a single feature. A
feature contains a small subset of the form storyboard relating to a special aspect of the system.
Feature artifacts have a tag containing the annotation ”feature”.

The domain expert or requirements engineer can denote every subset of the system interface
that appears as a single feature in a separate diagram, even not connected parts of the form
storyboard can be placed in the same diagram, if they are received as expressing the same feature.
An important feature in the running example is the ”already registered participant” topic (Fig.3).
Form storyboarding is first and foremost a feature driven approach. The whole form storyboard
can be gained by collecting single features. Crucial for the simplicity of the form storyboarding
method is the fact that diagrams can be combined in an easy operation, by building the union of

both diagrams and identifying nodes and edges with the same name.

a customer with
same name and phone

already participates
g
i .
register g ’
* hame N already registered ¢ participant
- phone error message get participants
+ password

-

Figure 3: Feature artifact

3.6 Use Cases Reconsidered

Use cases are defined as typical usages of the system. In form storyboards, the basic flow and the
alternative flows of a use case correspond to paths in the diagram. The complete diagram can be
considered as the compact notation of the set of all use cases. In the form storyboarding approach
every use case is a feature.

4 Requirements Elicitation

The ultra-thin client form based metaphor is fundamentally different from other well known UI
metaphors, like the desktop metaphor. Namely, the form based metaphor implies a precise se-
mantics of user interaction as outlined before: page interaction is volatile, page change is data
transmission and changes the system state. On the other hand, desktop a.k.a. direct manipu-
lation metaphors give only a vague analogy and no precise semantics, e.g.: does drag and drop
mean ”copy” or "move”’? Domain experts understand completely the concept of paper forms.
Since paper forms can be translated precisely into system functionality, domain experts can give
precise semantics for ultra-thin clients. Therefore form storyboarding encourages that domain
experts and requirements engineers discuss system features along the form based metaphor, and
the properties are depicted as form storyboard feature artifacts by the requirements engineer. In
form storyboarding the requirements engineer does not have the task to translate the semantic
concepts of the domain expert into semantics of form storyboarding. Instead, she only has to
mediate the notational questions. Therefore form storyboarding has no mismatch between the
domain experts view and the specification documents.

4.1 Form Storyboarding Activities

Form storyboarding is not tightly coupled to a specific process for requirement elicitation. Instead
form storyboarding offers proposals for activities which in themselves increase the quality of the
requirement specification. Form storyboarding is a feature driven approach, not a use case drive
approach. The complete form storyboard is gained by collecting all features of the system. Use
cases may be used as heuristics for finding features, but are not required. The activities relate to
the validation of found features, and to the local systematic search for features. Form storyboard-
ing starts with the development of a number of feature artifacts. The features to be depicted can
be gained by various ways, e.g. during brainstorming or by reverse engineering of legacy systems.
Each feature can be discussed in its formal notation. If informal search for new features is com-
pleted, the systematic search for features is started. The single activity is local search on a single
node in the form storyboard. The participants of the requirement process check for a single node,
whether the outgoing edges represent exactly the desired interaction options, and check the server

response to these options. If the completeness of the description is assured, the node may receive
a tickmark. By traversing the form storyboard global completeness is assured.

The form storyboard cannot only be included as a document and diagram into the software
requirement specification SRS. From a form storyboard a structure for section 3 of the SRS can
be generated. This structure can best be matched with the organizing style "response”, as it is
given in [6].

5 Related Work

State transition diagrams have early been used in requirements engineering with respect to user
interface modeling [3] [7] [11] [12]. An extension of the state transition diagrams are statecharts
[4]. Our approach is distinguished from these approaches through:

e The identification of the two-staged interaction paradigm: page interaction and page change.

e The identification of the bipartite structure and the fundamental differences between server
states and page states.

The two staged interaction paradigm allows the abstraction from the fine grained page inter-
actions, which are well understood and can be offered by a standard tool, the browser. Hence
for form based dialogues, the named other state transition diagram approaches are identified as
being too fine grained. Furthermore the system view and dialogue style of these approaches is
out of date. User interface modeling is dominated by the discussion of model based user interface
development environments (MB-UIDE) [10]. However, again these approaches, when applied to
form based dialogues, work on the level of page interactions, which is inadequately fine grained. A
current school in requirements engineering is the use case driven approach. HCI specifications as
defined in the several versions of this approach [8][9] specifically target the modeling of GUI-based
dialogues. The approach does not yield a clear layering of user interfaces into page interactions
and page changes.

6 Further Directions

6.1 Textual Format for Form Storyboards

For form storyboards there exists a human readable textual format, called Angie. This language
is the completely redesigned successor to the language Gently, which was an early textual specifi-
cation language for form based interfaces [1]. In Angie the graphical information is incorporated
as a special comment. Based on Angie an automatic prototype generator and interpreter is under
development. Formal consistency can be defined on Angie and formal semantics can be given to
form storyboarding conveniently, even for sophisticated concepts like history or menu techniques
found in today’s web dialogues.

6.2 Advanced Topics

Functions reserved for certain user classes can be denoted as annotations on page/server edges.
The variable actor represents the actor’s set of roles, the roles are constants (e.g. ”admin actor”).

For layout reasons, edges can be split. The edge is represented by two stubs that end in dotted
lines. The stub at the source of the edge is called source stub and is annotated with ”To: <state>".
The stub at the target of the edge is called target stub and is annotated with ”From: <state>".

6.3 Generalization of Form Storyboarding

Form storyboards has been designed to fit the needs of modeling form based interfaces. It then
turned out that the form based system metaphor has its own justification. In further work we

will discuss to what extent the approach is valuable for modeling other kinds of systems, too. For
example, system interfaces may be form based just up to some graphically presented information
or up to some system pushed data. It is even possible to generalize the notion of form, guided by
the two stage interaction paradigm. Then a form is a bunch of data that is gathered interactively
and submitted atomically, but there is no insistence on the resemblance of a form’s input capability
to a paper form, i.e. it is abstracted from a form’s visual presentation. Even in systems which have
an overall logic that doesn’t adhere to the submit/response paradigm, for example systems that
are dominated by an event notification mechanism, insulated use case bundles may be identified
which are amenable to be specified by form storyboarding. The models of all these systems will
benefit from a separation in form based parts and auxiliary parts.

7 Conclusion

The form based interface paradigm is here to stay. Often ultra-thin clients are the interface of
choice. We have introduced form storyboarding, a method for eliciting and specifying requirements
on interfaces.

e Form storyboarding offers an adequate abstraction from page interactions.

e The method has a single type of artifacts, namely form storyboards, which are bipartite
state transition diagrams.

e Form storyboards can describe features of every desired complexity, they allow simple inte-
gration of partial artifacts into the complete form storyboard.

e Form storyboards may serve as a high level, non-executable prototype.

The main contribution of this work is to translate the results about the abstract form based
interface into a requirements specification approach.

References

[1] Draheim, D., Weber, G.: Specification and Generation of JSP Dialogues with Gently. In:
Proceedings of NetObjectDays 2001, tranSIT, ISBN 3-00-008419-3, September 2001.

[2] Draheim, D., Weber, G.: Form Charts and Dialogue Constraints. Technical Report B-
02-08. Institute of Computer Science, Free University Berlin, March 2002.

[3] Mark Green. A Survey of Three Dialogue Models. ACM Transactions on Graphics, vol.
5, no. 3, ACM, 1987, pp. 244-275.

[4] D.Harel, ”Statecharts: a Visual Formalism for Complex Systems”, Science of Computer
Programming, Elsevier Science Publishers B.V., 1987, pp. 231-274.

[5] P.J. Hayes, ”Executable Interface Definitions Using Form-Based Interface Abstractions”,
Advances in Human-Computer Interaction, vol. 1, Ablex Publishing Corporation, New
Jersey, 1985, pp.161-189.

[6] IEEE Std 830-1993, Recommended Practice for Software Requirements Specifications,
Software Engineering Standards Committee of the IEEE Computer Society, New York,
1993.

[7] R.J.K Jacob, ”Using Formal Specifications in the Design of a Human-Computer Inter-
face”, Communications of the ACM, vol.26, no. 4, ACM, 1983, pp.259-264.

[8] I. Jacobson, ”Object-Oriented Software Engineering: A Use Case Driven Approach”,
Addison-Wesley, 1992.

10

[9]

[10]

[11]

[12]

I. Jacobson, G. Booch, J. Rumbaugh, ”The Unified Software Development Process”,
Addison-Wesley, 1999.

P. Pinheiro da Silva, ” User Interface Declarative Models and Development Environments:
A Survey”, Proceedings of 7th International Workshop on Design, Specification and
Verification of Interactive Systems, LNCS Vol.1946, Springer-Verlag, Limerick, Ireland,
June 2000, pp. 207-226.

A.I Wasserman, ”A Specification Method for Interactive Information Systems”, Pro-
ceedings SRS - Specification of Reliable Software, IEEE Catalog No. 79 CHI1401-9C,
IEEE, 1979, pp. 68-79.

A.I. Wasserman, ”Extending State Transition Diagrams for the Specification of Human-
Computer Interaction”, IEEE Transaction on Software Engineering, vol. SE-11, no. 8§,
IEEE, 1985, pp. 699-713.

11

