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Abstract. Let C be an arbitrary planar convex body. We prove that C' contains an axially
symmetric convex body of area at least §|C’| Also approximation by some specific axially
symmetric bodies is considered. In particular, we can inscribe a rhombus of area at least
2|C| in C, and we can circumscribe a homothetic rhombus of area at most 2|C| about C.
The homothety ratio is at most 2. Those coefficients % and 2 and also the homothety ratio
2 cannot be improved.
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Our aim is to approximate convex bodies of Euclidean plane E? by arbitrary axially sym-
metric bodies. We are interested in three kinds of such approximation. For a given convex
body C C E? we are looking for an axially symmetric convex body A of possibly large area
contained in C, for an axially symmetric convex body B of possibly small area containing
C, and for an axially symmetric convex body D such that D C C C h(D), where h is a
homothety with possibly small positive homothety ratio. We are also looking for some spe-
cific axially symmetric bodies like rhombi, isosceles triangles and some axially symmetric
hexagons which well approximate C'.

The area of a convex body C C E? is denoted by |C| and the length of the segment
ab by |ab|. Nohl [19] proves that every centrally symmetric convex body C' C E? contains
an axially symmetric convex body of area at least 2(v/2 — 1)|C| and that the coefficient
2(v/2 — 1) cannot be enlarged. Krakowski [16] shows that every convex body C C E?
contains an axially symmetric body of area at least g|C’ |. We improve this coefficient up
to % We also show that C' is contained in an axially symmetric convex body of area at
most 31|C|.

In the survey article about measures of symmetry of convex bodies, Griinbaum sug-
gests to consider also measures of axiality of convex bodies (see [13] p. 263). A few such
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measures of axiality are proposed by deValcourt [6], who lists a number of related esti-
mates without proofs. In next two papers [7] and [8] he presents detailed considerations.
In particular, deValcourt considers approximation of any convex body C' C E? by isosce-
les triangles, by axially symmetric octagons, and by some axially symmetric quadrangles
called kits.

He also recalls the result of Radziszewski [20] that every convex body C' C E? contains
a rectangle of area at least $|C| and observes that C' is contained in a rectangle of area
at most 2|C|. Of course, the classic theorem of John [15] about ellipses containing and
contained in C' is of a similar nature. DeValcourt [7] pays attention that nothing is known
about a rhombus of possibly large area contained in C' and about a rhombus of possibly
small area containing C'. Our aim is to give the answers: every convex body C' contains a
rhombus of area at least 3|C| and it is contained in a rhombus of area at most 2|C|. Both
the coefficients cannot be improved which follows from the example of a triangle in the
part of C.

A regular convex body in the plane is a convex body such that only one supporting
line can be provided through every its boundary point, and such that every supporting
line meets this body only at one point (see [9], p. 31).

1. Approximation by rhombi

There exists a rectangle R inscribed in C' such that its homothetic copy of positive ratio at
most 2 is circumscribed about C' (see [21], [18] and [22]). This fact about approximation
by a pair of homothetic rectangles is analogical to the planar version of the classic theorem
of John [15] on a pair of homothetic ellipses with positive ratio at most 2 approximating
C. Our aim is to give one more theorem of this kind.

THEOREM. Let C C E? be a convex body. There exists a rhombus R inscribed in C
such that a homothetic copy R’ of R is circumscribed about C. The ratio of homothety is
at most 2.

Proof. First we consider a regular convex body C. For every direction 6§ we can
inscribe exactly one rhombus R(#) in C' with a diagonal of direction #. This follows from
[5], [10] and [23].

Denote by a(f), b(6), c(0) and d(f) the consecutive vertices of R(f); assume that the
vector ab is parallel to # and oriented as 6.

As we rotate 6, the vertices of R(6) change continuously. This easily follows from the
Bolzano-Weierstrass theorem (comp. [5], where the continuity of the position of the angles
of the rhombus R(f) is shown).

For every R(f) we construct the circumscribed parallelogram R’() of C' with sides
parallel to the sides of R(). It is clear that R’(f) exists and is unique for every 0.
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Denote by a’(0), b'(0), ¢'(6), d’(0) the corresponding vertices of R'(f) (we mean that the
vectors a(0)b(f) are a’'(6)b'(0) are parallel and have a common orientation). Consider
four strips, each determined by pair of parallel segments contained in the bounding lines
of the strip: the strip S(f) determined by the segments a(6)b(0) and ¢(0)d(0), the strip
S’(0) determined by the segments a’(0)b'(6) and ¢/ (0)d’(0), the strip T'(§) determined by
the segments b(0)c(0) and d(0)a(f), the strip T'(#) determined by the segments b'(0)c’(6)
and d'(0)a’(0). Denote by f(#) the ratio of the width of S’(0) to the width of S(#). Let
g(0) mean the ratio of the width of 77(f) to the width of T'(f). From the continuity of
the position of the vertices of R(6) we see that f(f) and g(f) are continuous functions.
Since f(01) = g(#2) for perpendicular directions #; and 3, we conclude that there exists
a direction 0y such that f(0y) = g(6p). Thus R'(0y) is a homothetic copy of R(fy). Hence
our Theorem is shown in the case of a regular convex body C.

Arbitrary convex body C' C E? can be presented as a limit of a sequence of regular
convex bodies C1,Cs,... (see [9]). As it is shown above, for every C; there is a pair of
homothetic inscribed and circumscribed homothetic rhombi R; and R;. By four consecutive
choices (each for one vertex), from the sequence Ry, Ra,... we can select a subsequence
which is convergent to a rhombus abcd inscribed in C'. This rhombus and the circumscribed
parallelogram a'b’'c’d’ with parallel sides are homothetic because a’b’c’d’ is just the limit of
a subsequence of the sequence of rhombi R}, R}, .... Thus we have obtained the promised
pair R, R’ of homothetic rhombi.

From Lemma in [18], where s1 = s, it follows that the positive ratio of homothety is
at most 2, which ends the proof. .

The ratio 2 in our Theorem cannot be lessened because of the example of an arbitrary
triangle as C'. It cannot be also lessened for centrally symmetric convex bodies. It follows
from the example of any rectangle with the ratio of lengths of the perpendicular sides at
least 2.

Analogically as in Part 6 of the proof of Theorem in [18], we show that the inscribed
rhombus R in our Theorem has area at least |C|, and that the circumscribed rhombus
R’ has area at most 2|C|. Thus we obtain the following Corollary.

COROLLARY 1. Let C be a planar convex body. We can inscribe a rhombus of area
at least |C| in C, and we can circumscribe a rhombus of area at most 2|C| about C.

2. Approximation by isosceles triangles

COROLLARY 2. Let C C E? be a convex body. There exists an isosceles triangle T C C
such that its homothetic copy T' of ratio at most £ contains C. We have [T"| < £2|C].
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Proof. Consider the inscribed rhombus R = abcd and the homothetic circumscribed
rhombus R’ = a’b'c’d’ as in Theorem. Denote by p the positive ratio of this homothety.
When we prolong the sides of the rhombus abcd, they intersect the sides of the rhombus
a'b'c’d’. We obtain four parallelograms at the vertices of a’b'c’d’ (see Figure 1).

Figure 1.

One of the parallelograms contains translates of the three other parallelograms. We do
not loose the generality of the considerations assuming that this ”largest” parallelogram
K is at vertex a’. Of course, the triangle T = bed is isosceles. Now we describe the
homothetic copy T” promised in the formulation of Corollary 2. Two sides of T” contain
the segments b'¢’ and ¢’d’. The third side of T" is parallel to the segment bd and passes
through a vertex e of K in such a way that 7" contains all vertices of K different from
a’. This side is disjoint with the interior of C'. This follows from our construction and
from the convexity of C. So we have T C C C T'. Of course, T is a homothetic copy of
T. Let us estimate the ratio ¢ of this homothety and the area of |T”|. Since the ratio of
lengths of two segments (and also the ratio of the areas of two bodies) does not change
under affine transformations, we do not make our considerations narrower assuming that

’

. . . 1
Our assumption about K implies that x > 5(p—1).

We have 6 = 2p—k < 2p—2(p—1) = 3p+ 3 < % The last inequality follows from

1 < p < 2. Since R is inscribed in C and since C' touches the sides of |R’|, we get
|C| > 1+2-3(p—1) = p. Moreover |T'| = 3(2p—£)% < %((2;}—%(/}—1))2 = 5(9p%+6p+1).
Thus [T']/|C| < 2(9p+ 6 + p~') < 22, which results from 1 < p < 2.

R is a square of side 1. Put k = |ea

]

The question is how much the ratio from Corollary 2 can be lessened. Surely not
below 1 + 1/5 because of the example of the regular pentagon as C; see [11], [17] and
[1], where analogical approximation by a pair of triangles (not necessarily isosceles) is
considered. What is more, in the following example the best ratio is over 1 + %\/5 In the
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approximation of the regular pentagon by a pair of homothetic triangles, the best possible
ratio 1 + % 5 is attained exactly for five symmetric positions of a triangle inscribed in
the regular pentagon. Each of the triangles is regular and has a vertex at a vertex of the
pentagon (see Figure 2 in [17]). When we apply an affine transformation which stretches the
regular pentagon along one of its axes of symmetry, then only one of those five triangles
remains isosceles. It is the only isosceles triangle in C for which the ratio 1 + % D is
attained. Thus if we lessen the stretched pentagon by moving a little the vertex which is
on the axis of symmetry along the axis of symmetry, the best homothety ratio for a pair
of approximating homothetic isosceles triangles is over 1 + %\/5 It is matter of a tedious
calculation to find the optimum estimate from below here.

DeValcourt [8] presents two ”theorems” which say that every convex body C C E2
contains an isosceles triangle of area at least g|C’ | and that it is contained in an isosceles
triangle of area at most 2|C|. He presents a proof of the first ”theorem” and explains that
the second proof is analogical. The given proof is incorrect and the second one cannot be
provided by the proposed approach. The author considers a triangle T,, with a side of a
given direction ¢ which is contained in (a strictly convex) C. He changes ¢ in order to
apply continuity arguments which should lead to the conclusion that there is a specific ¢
for which the triangle T, is isosceles. The proof is based on the claim about the continuity
of the function f(¢) = a’/a”, where o’ and o’ arthe distances of the two vertices of T,
lying in e a line of direction ¢ from the orthogonal projection of the remaining vertex of
T, on this line. But this is not true because the position of T, may vary non-continously.
For instance, let C' be the convex hull of the union of the unit circle centered at (0,0),
of the point (0.01,1.01) and of a small piece of the concentric circle of radius 1.01 with
an endpoint at (0, —1.01) which is in the fourth quarter of our coordinate system (if we
wish to have a strictly convex body, we can exchange the four segments in the boundary
by some pieces of circles which differ so little that the horizontal lines through the points
(0.01,1.01) and (0, —1.01) still support C'). For the direction ¢ = 0 of the axis Oz we have
two triangles T, with the maximum possible area; one has a vertex at (0.01,1.01) and the
other at (0,—1.01). The ratios a’/a’” in those two triangles are different. Even if we choose
one of them, the trouble remains because the ratio a’/a” does not change continously at
¢ = 0. Just the one-sided limits of this ratio at ¢ = 0 are different.

The proof is incorrect also in the case if by Ty the author means the triangle abc
inscribed in C' of the maximum possible area such that the vector ab is of the direction ¢
and such that a, b, c are in the counterclockwise order on the boundary of C'. When such
a triangle T}, becomes isosceles for a direction ¢, the quoted proof of Hodges [14] does not
guarantee that its area is at least 2|C|. This proof only claims that |abc| > 2 or that

8

|a’b'’| > 2, where a/b'c’ is an analogical triangle with vertices in the clockwise order. Of

course, the proof of deValcourt remains valid if C' is centrally symmetric.
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Also the ”theorem” of deValcourt about an isosceles triangle of the area at most 2|C/|
containing C' can be proved for centrally symmetric C' by his approach. It is likely that
every convex body C' C E? is contained in an isosceles triangle of area at most 2|C/| (this
is true when we do not require that the triangle is isosceles, as proved by Gross [12]). For
arbitrary convex body C' C E? we have up to now only the estimate ‘11—2 |C'| from Corollary 1.

DeValcourt [8] conjectures that every convex body C' C E? contains an isosceles
triangle of area at least i—‘{rg|0 | (this is true when we do not require that the triangle is
isosceles, as proved by Gross [12]). The following example disproves this conjecture. Let
E be the ellipse %xz +y? = 1. It is an affine image of the unit disk U. The corresponding
images of the regular triangles inscribed in U are the only triangles of the area i—‘f |E|in E.
Exactly four of them are isosceles; they are the images of the regular triangles inscribed in
U with a vertical or a horizontal side. Thus if we take a convex body F' which is obtained
from F by a sufficiently slight ”enlargement” at the point (\/5, %\/5), those four isosceles
triangles are still the only isosceles triangles of maximum area in F', which disproves the
conjecture.

It is likely that every convex body C' C E? is contained in an isosceles triangle of area
at most 2|C|. Of course, this is true when we do not require that the triangle is isosceles,
as proved by Gross [12]. It is likely that every convex body C' C E? is contained in an
isosceles triangle of area at most 2|C|. Of course, this is true when we do not require that
the triangle is isosceles, as proved by Gross [12].

REMARK. Similarly as in Corollary 2, from the result about the approximation of a
convex body by a pair of rectangles ([21], [18], [22]), we obtain the following corollary.
For every conver body C C E? there exists a rectangular triangle T C C such that its
homothetic copy T of ratio % contains C'. How much can be the ratio % lessened? Surely
not below v/2+ 1 as the example of a disk as C shows. But even this is not the infimum as
it follows from an example analogical the to the example of the set F' presented just before
this Remark. Also the questions appear about a rectangular triangle of possibly large area
contained in C' and about a rectangular triangle of possibly small area containing C' (a
rectangular triangle of area at most ‘11—2|C | containing C' can be constructed similarly like
in Corollary 1).

3. Approximation by arbitrary axially symmetric bodies

Remember that by affine regular hexagon we mean any non-degenerated hexagon which is
an affine image of the regular hexagon. In other words, a non-degenerated hexagon abcde f
is affine regular if it is centrally symmetric, and if the segment ab is parallel to the chord
fc and is exactly two times shorter. We call a non-degenerated hexagon abcdef azially
reqular if the straight line through f and c is an axis of symmetry of this hexagon and if
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the segment ab parallel to the chord fc and exactly two times shorter. Here is a lemma
analogical to the well known result of Besicovitch [2] that an affine regular hexagon can
be inscribed in an arbitrary convex body C C EZ2.

LEMMA. In every convex body C' C E? we can inscribe an axially regular hexagon.

Proof. Assume that C is a regular convex body; at the end of the proof we will
consider an arbitrary convex body C C EZ2.

For any given direction 6 there are three chords ab, fc, ed in C' of this direction so that
lab| = led|, fc is equidistant from the straight lines containing ab and ed, and |fc| = 2|ab|
(see [2]). Since C'is a regular body, those three chords are unique. The chords ad, be, fc
meet in a point 0. The chords ad and be are bisected at o. For arbitrary 6 consider the
angles a« = / foa, 3 = Laob and v = boc. Let H(f) denote the hexagon abedef determined
by 0. Of course, for any direction € there is a unique H(6).

Besicovitch [2] rotates the direction # and applies continuity arguments in order to
show that there exists a direction 6y for which the position oy of o is the center of the
corresponding chord fic;. Thus H(61) = a1bicidye; f1 is an affine-regular hexagon. Denote
by 65 the direction of the chord a;d; and by A3 the direction of the chord bye;.

Let H(0;) = a;bicid;e; f; and oy = / fi0a,, B; = La;o0b; and ~; = b;oc; for i € {1,2,3}.
From the uniqueness of H(#) and since H(f;) is an affine-regular hexagon, we see that
H(0,) = H(A3) = H(03). Thus there is an index i € {1,2,3} such that «; is not greater
than (3; and not greater than ~;. Let for instance ar; < min{/31,v1}. The further consider-
ation is similar in the remaining cases.

When rotating the direction 6 from 6 to 62, all the six vertices of H(f) and the point
o change the positions continuously and also the angles «;, (3, v change continuously: «
from «aq to gy = f1, B from (1 to B2 = 71, and v from 1 to 79 = ay. Thus there is an
angle 0* between 6; and 03 for which the corresponding angles a* and v* are equal. Of
course, H(6*) is an axially regular hexagon inscribed in C.

The above solution for a regular convex body leads to a solution for an arbitrary
convex body C C E2. Just C is a limit of a sequence of regular convex bodies (see [9]).
From the corresponding sequence of axially regular hexagons inscribed in those regular
bodies we can select a subsequence convergent to an axially regular hexagon inscribed
in C.

|
Below we improve the result of Krakowski [16] that every convex body C C E? contains

an axially symmetric body of area at least 2|C/.

PROPOSITION 1. Every convex body C C E? contains an axially symmetric convex
body of area at least 2|C/.



Proof. According to Lemma, we can inscribe an axially regular hexagon H = abcde f
in C' . Without loss of generality we may assume that |fo| > |oc|.

Consider the triangle pqr such that fa C pq, bc C qr and de C rp, and also the
triangle p’q’r’, where p’, ¢, r’ are points symmetric to the points p, g, 7 with respect to the
straight line containing fc. Since H is inscribed in C, from the convexity of C' it follows

! 0

that C' is contained in the starshaped set S = pgr U p'q'r’ (see Figure 2).

Ny

Figure 2.

We provide supporting lines of C' at points a, c, e, f and we consider the half-planes bounded
by them and containing C'. Let () denote the intersection of those four half-planes and
of S. The supporting lines at f and at ¢ cut off from S four triangles of total area
3|H|. Denote by W the starhaped set which remains from S after cutting off those four
triangles. Consider the two triangles fsa and fet, where s and ¢ are the intersections of
the supporting line through f with the segments p’a and pe, respectively. We do not make
our considerations narrower assuming that Zofs < 90° and that Ztfo > 90°.

The supporting line of C at a cuts off two triangles from W. Since |fa| = |ag| and
|sa| < |abl, the total area of those two triangles is minimized when the supporting line
contains fa (this is when we cut off the triangle fsa). Analogically, the supporting line
of C' through e cuts off two triangles from W. Since |fe| = |eq’|, the total area of those
two triangles is minimized when we cut off the triangle fet or if we cut off the triangle
edq’. The first case is when [te|] < |ed|, and the second case is when |te] > |ed|. In each
of the two worst cases, the sum of the areas of all the pieces cut off from S by the four
considered supporting lines is at least %|H |; the reason is that the area of the pieces which
are cut off is at least |pfe| + [p'af| + 3(|cdr| + |ber’]) > 2|H| in the first case, and at
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least 3 (|pfe| + [p'af| + |cdr| + |ber'|) + |edq’| = 3|H| + §|H| = 3|H| in the second case.
From |S| = 2|H| we see that |Q| < 2|H|. By C C Q, we have |C| < 3|H|. Consequently,
|H| > 2|C|. Since H is axially symmetric, we obtain the thesis of Proposition 1.

It does not seem that the estimate %|C’ | obtained in Proposition 1 is the best possible. A
reasonable way to deal with this question would be in finding an axially symmetric hexagon
(not obligatory axially regular) of a large area in C'. The examples of some parallelograms
(see [19]) and triangles (see [3]) show that a value over (2y/2 — 2)|C| is not possible here.

Proposition 1 implies the existence of an axially symmetric set (usually non-convex)
of the area at most %|C’ | containing C'. This set is the union of C' and of its image in the
straight line containing the segment fc (see the proof of Proposition 1). What is more,
the following three conditions are equivalent: (1) C' contains an azially symmetric convex
body of area \|C|, (2) C is contained in an axially symmetric set (not necessarily conver)
of area (2—MN)|C|, (3) C can be dissected into two parts by a straight line L such that after
folding one of the two obtained parts of C' along L, the area of the union of the folded part
and of the other part of C' is (1 — $A)|C]. We leave the short proof as an exercise for the
reader.

This last approach leads to the question how large piece of C' may be folded along a
straight line into C'. An estimate is given in the following Proposition.

PROPOSITION 2. For every convex body C C E? there is a straight line L which cuts
off from C such a subset of area at least %|C’| which remains in C' after folding it along L.

Proof. We will use the notation introduced in the proof of Proposition 1. We provide
the supporting line M of C parallel to the segment ae and passing through the triangle
pef. Denote by u a point of support and by w the intersection of M with the segment pe.
Let o = |we|/|ed|. Since |fo| > |fc|, we have 3 < o < 2. The required line L is parallel
to M and its position depends on o. Below we consider two cases in which we determine
the position of L. By C; we denote the part of C' which is the intersection of C' with the
halfplane bounded by L and containing the point u. Let C| denote the image of C after
folding it along L.

Case 1, when 1 < o < 2. We provide L such that it bisects the segment wd (see
Figure 3). Since C' is convex and since the axially regular hexagon abedef is inscribed in
C', we conclude that C] C C.
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Figure 3.

Of course, C; contains the triangle a’e’u, where o’ and ¢’ are the intersections of L with the
segments af and ef. A short calculation shows that we have |a’e’u| = (0 + 1)%0~|H]|.
Since 1 < o < 2, this is at least $|H|. From the inequality |H| > 2|C| established in
Proposition 1 we obtain that [Cy| > 2|C| > £|C].

Case 2, when % < o < 1. We provide the line L through points a and e. From the
convexity of C' and since the axially regular hexagon abcdef is inscribed in C, we obtain
that C7 C C. We provide supporting lines of C' through the points b and d. They cut off
four triangles from S. Since |gb| = |bc| and since |ab| > |br'|, we see that the area of the
two triangles cut off from S by the supporting line through b is minimized when the line
contains the segment bc. Analogically, the area of the two triangles cut of by the second
line is minimized when this line contains c¢d. Thus |C| < |Cy| + |ageq’e]. Consequently,
C < [l + ZIHL. Thus [C1l/IC| > |Cal/(Cul + EIH]). Since [C1] > L[H], we get
|C1]/|C| > %. Hence |Cy| > £|C].

Proposition 2 leads to the problem formulated below. Let C' be a convex body in Euclidean
d-space E?. Denote by u(C) the greatest number with the property that there exists a
hyperplane L which cuts off from C a subset of volume at least p|C| whose mirror image
obtained by reflection about L belongs to C.

PROBLEM. Find the infimum g4 of the numbers p(C) over all convex bodies C C E4.

By the way, observe that the number 2u(C) is a very natural measure of symmetry with
respect to a hyperplane (i.e. a measure of axiality for d = 2), comp. [13], [4] and [6].
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From Proposition 2 we immediately obtain the following Corollary.

COROLLARY 3. Every convex body C C E? contains an axially symmetric convex
body of area at least %|C’| whose symmetric half of the boundary is a subset of the boundary
of C.

There is an open problem about possibly small, with respect to the area, axially symmet-
ric convex body containing a convex body C' C E2. Of course, always such an axially
symmetric body of area at most 2|C| exists. We can take here the rectangle of area at
most 2|C/| containing C' (see [20]). We can also use the circumscribed rhombus R’ from
Corollary 1. We can get a slight improvement of the ratio 2 by lessening R’ up to the
axially symmetric pentagon P = R'NT" (here and below we use the notation of the proof
of Corollary 2). Remember that |C| > p|R|. From the definition of P we obtain that
1P| = (£p® + 1p — 1)|R|. Hence |P|/|C| < Zp+ 1 — Lp~'. Since p € [1,2], this value is
always at most i’—é. Thus we obtain the following corollary.

COROLLARY 4. Every convex body C C E? is contained in an axially symmetric

convex body of area at most 31|C|.

For every convex body C' C E? there is the smallest positive 7(C) such that C' contains
an axially symmetric convex body D and that D C C' C h(D) for a homothety h of ratio
7(C'). The number 1/7(C) is one more reasonable measure of axiality. A natural question
is about the infimum 7 of 7(C) over all convex bodies C' C E2. Of course, 7 < 2 which
follows from the John’s approximation of C' by a pair of homothetic ellipses with ratio at
most 2 (this follows also from the analogical theorems on pairs of rectangles and on pairs
of rhombi). A similar question is when we additionally require that the homothetic bodies
D and h(D) have a common axis of symmetry (like the pair of ellipses in John’s theorem).
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