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[fland|jantz|knipping|rojas]@inf.fu-berlin.de

April 2005

Abstract

In our system for recording and transmitting lectures over the Internet the board
content is sent as vector graphics, yielding a high quality image, while the video
of the lecturer is sent as a separate stream. It is easy for the viewer to read the
board, but the lecturer appears in a separate window. To eliminate this problem,
we segment the lecturer from the video stream and paste his image on the board
image at video stream rates. The lecturer can be dimmed by the remote viewer
from opaque to semitransparent, or even transparent. This paper explains the two
techniques we apply to achieve this: texture classification based segmentation, and
segmentation using a novel 3D camera based on the time-of-flight of backscattered
light principle. We argue that this technique provides a solution to the divided
attention problem which arises when board and lecturer are transmitted in two
different streams.

1 Introduction

Lectures held in front of a blackboard can be captured and transmitted in two ways:
Either as a video of lecturer and board, or as a set of strokes and images captured by an
electronic whiteboard which are rendered with high quality in the remote computer. In
order to record or transmit classes, it has become common to use either standard Inter-
net video broadcasting systems [36, 35, 23] or software that records and/or transmits
stroke based information [28, 19]. The advantage of using state-of-the-art video broad-
casting software is its availability and straightforward handling. The disadvantages are
the high bandwidth and file storage capacity required1. Also, some video compres-
sion techniques used by the software can lead to deterioration of the board image2.

1See for example [37]. A 90 minutes talk in MPEG-4 format, for example, can swell to 657 MB.
2DCT or Wavelet based codecs assume that higher frequency features of images are less relevant, and

this produces an unreadable blurring of the board handwriting or a bad compression ratio.
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Figure 1: Example of a remote lecture: the board image is transmitted independently
of streaming video

Pen tracking devices, on the other hand, capture strokes that can be transmitted and
rendered as a crisp image; the strokes can be further processed, for example, by hand-
writing recognition software [31]. However, when only the board image is transmitted,
the mimic and gestures of the instructor are lost. For this reason, many lecture record-
ing systems do not only transmit the slides or the board content but also an additional
video of the instructor [11, 22] (compare Figure1). However the issue of divided at-
tention arises [2, 30]: We have two areas of the screen competing for the viewer’s eye:
the video window showing the instructor, and the board or slides window.

In our project, we cut the video image of the lecturer from the video stream separating
it from the background. The image of the instructor can then be overlaid on the board,
creating the impression that the lecturer is working directly on the screen of the remote
student. Mimic and gestures of the instructor appear in direct relation to the board
content. Moreover, the image of the lecturer can be made semi-transparent, to look
through the lecturer, or opaque.

This article presents and compares two approaches we have tested to solve the lecturer
segmentation problem: A texture based classification algorithm and a hardware solu-
tion using a time-of-flight 3D camera. The article first reviews some related work, we
then discuss texture based segmentation, and finally, 3D camera based segmentation.

2 Related Work

The standard technology for overlaying foreground objects onto a given background is
chroma keying [13]. This technique is not applicable to our segmentation problem, be-
cause the background of the scene is neither fixed nor monochromatic. Separating the
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foreground from either static or dynamic background is the object of current research,
see for example [20]. Much work has been done on tracking objects for computer
vision (like robotic soccer [33], surveillance tasks [17], or traffic applications [4]),
and also on interactive segmentation for image processing applications [5]. Numerous
computationally intensive segmentation algorithms are being developed in the MPEG
community, for example [7]. In computer vision, real-time performance is more rel-
evant than segmentation accuracy as long as the important features can be extracted
from each video frame. For photo editing applications, accuracy is more important and
algorithms can rely on information obtained through user interaction (see discussion
in [32]). For the task we investigate here, the segmentation should be as accurate as
possible and non-interactive. A real-time solution is needed for live transmission of
lectures.

The use of stereo cameras for the reconstruction of depth information has been thor-
oughly investigated. Disparity estimation is a calculation intensive task. Since it in-
volves texture matching, it is affected by the same problems as texture classification
methods, that is, similar or homogeneous areas are very difficult to distinguish and
real-time processing requires additional hardware [39].

3D laser scanners are being used with increasing frequency, for example for the con-
servation of historical heritage [27], special effects [10], and autonomous robots [24].
They use use triangulation to reconstruct depth information. This process of recon-
structing the 3D model of an object is computationally expensive [3].

Göktürk and Tomasi [15] investigated the use of 3D time-of-flight sensors for head
tracking. They use the output of the camera as input for various clustering techniques
in order to obtain a robust head tracker.

As we can see from this short overview, researchers have concentrated on each of
two possible alternatives: Segmentation of objects exploiting depth information and
segmentation of objects using texture and/or motion cues. In our project we pursue
both strategies.

3 Texture Based Segmentation

3.1 Setup

Our scenario is that of an instructor using an electronic board3 in front of a classroom.
Some software systems [12] record and transmit all actions on the board, while a video
camera synchronously captures a video of the lecturer. Figure2 shows a video of a
lecturer.

The method described here was inspired by GrabCut [32]. While GrabCut requires a
rectangular area to be specified by the user, our algorithm tries to learn a coarse sepa-
ration of the foreground objects by exploiting the temporal differences between several

3Examples of such hardware can be found at [18, 25, 34].
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Figure 2: The image of the lecturer as captured with the video camera.

frames. Like GrabCut, the algorithm exploits color and color distribution informa-
tion to improve the segmentation and better predict the spatial relationship of picture
elements.

3.2 Temporal Foreground and Background Classification

The input for the classifier is a sequence of digitized YUV video frames. Each frame
is subdivided into 8×8 pixel blocks. The classifier uses two main data structures:

• A foreground block buffer that is filled with any blocks that have a high chance
of being part of the foreground, and

• a background buffer that contains those blocks classified as being definitely part
of the background.

A block is moved into the foreground buffer if, during a sequence ofn frames, the
block has changed more than twice. Our experiments have shown that a good value
is settingn to half the frame rate. A block is considered to have changed, when it
differs significantly from the block at the same position in the previous frame, for
example, according to the Euclidean distance. The background buffer contains all
blocks that have never changed during the sequence being processed, and which were
never classified as foreground during later operations. Both foreground buffer and
background buffer are organized as ageing FIFO queues.

3.3 Color Distribution Classification

All frames are color quantized from YUV to a fixed 256 color palette (using 4 bits for
Y and 2 bits for each U and V) and are divided into 8×8 pixel blocks. For each quan-
tized block, the color histogram is calculated. The block histograms are now classified
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Figure 3: Original image (above) and output of the color distribution classification
(below). The output improves, when a temporal classifier is used in addition.

into foreground and background by comparing each of them with block histograms
of the foreground and background buffer. Metrics tested for comparison include the
Euclidean distance and the Earth Mover’s Distance [8]. A result of this classification
applied to an image is shown in Figure3.

3.4 Combining the Classifiers

The temporal classifier tends to find the borders of moving objects, while the color
distribution classifier is better for surfaces. Given a frame and the results of the two
classifications, any block considered foreground by at least one of the classifiers is con-
sidered foreground. The remaining blocks are a subset of the real background. For the
foreground blocks, a connected component analysis is performed. The biggest blob
is considered to be the instructor, and all other blocks (mostly noise or other moving
objects) are put into the background buffer. Edge detection, using the Sobel Operator
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Figure 4: A lecturer extracted from the video stream and superimposed on the board
image. The lecturer has been pasted as a semitransparent object.

[16], helps to smooth the edges of the blob, which appear ragged because of the res-
olution reduction to 8×8 pixel blocks. Smaller holes are filled and the corresponding
block pixels are taken out of the background list. The resulting segmented video is
scaled to fit the board resolution and is pasted over the board content at the receiving
end of the transmission or lecture replay. Figure4 shows the result. The current pro-
totype implementation is still far from real-time performance4 but we are sure this rate
can be dramatically increased, for example, by processing only regions of interest, and
by utilizing the SIMD multimedia instruction sets of modern CPUs.

4 Time-of-Flight Segmentation

Time-of-flight principle 3D cameras are now becoming available (see for example [9,
29, 6, 1]). They make real-time segmentation of objects easier, avoiding the practical
issues resulting from 3D imaging techniques based on triangulation or interferometry.
For our experiments we tested a miniature camera called SwissRanger SR-2 [9] built
by the Swiss company CSEM, and a prototype camera called Observer 1K built by the
German company PMD Technologies [29]. The cameras emit frequency modulated
light in the infrared spectrum. This signal is backscattered by the scene and is detected
by the cameras. An array of sensor elements is able to demodulate the signal and detect
its phase, which is proportional to the distance to the reflecting object. The output of
the cameras consists of depth images and conventional low-resolution gray scale video,
as a byproduct. A detailed description of the time-of-flight principle can be found in
[21, 26, 14]. Camera settings, such as frame rate, integration time, and user-defined
region of interest (ROI) can be entirely configured by writing on internal registers of

4At this time we are able to process roughly one frame per second on a standard 2GHz PC.
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Figure 5: Depth-data represented by gray values (above) and 3D reconstruction (be-
low). The resolution was quadrupled by fusing multiple images displaced half a pixel.

the camera. The resolution of the SwissRanger camera is 160×124 non-square pixels.
The resolution of the Observer 1K is 64×16 non-square pixels. In a separate project
the resolution could be doubled for each dimension at the cost of a lower frame rate
by combining several pictures from slightly shifted camera positions (see Figure5).
Both cameras behaved similarly in our experiments, but its low resolution made the
Observer 1K unusable for our purposes. We therefore concentrated on experimenting
with the SwissRanger. The depth resolution depends on the modulation frequency. For
our experiments we used a frequency of 20 MHz which gives a depth range between
0.5 m and 7.5 m, with an accuracy of about 1 cm.

4.1 Segmentation

The setup is similar to the scenario described in Section3.1. The SwissRanger 3D cam-
era was mounted on top of the video camera, and both cameras started capturing data
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synchronously. The 3D camera delivers images with depth information. We achieved
a frame rate of about eleven frames per second. When an object is too close to the
camera lense, overflows occur due to the large amount of light that is reflected. When
an object is too far away from the lense, the distance measurement becomes imprecise.
We found, that the optimal range for segmentation in terms of minimal visual noise and
low overflow probability is between 2 m and 4 m. Ideally, the camera setup should be
located at the end of the room to minimize the optical disparity between the video and
the 3D camera without requiring a mirror setup. Due to the restricted range of 7,5 m,
the disparity is noticeable. It is therefore necessary to calculate the disparity by know-
ing each camera’s radial distortion and by scaling the captured 2D image according to
the depth reported. Knowing the radial distortion and having fixed both cameras at the
right position, segmentation reduces to setting a lower and upper bound for the depth
values, and identifying corresponding pixels in the video stream. Only those pixels
from the 2D video that are within the specified depth range are shown in the output.
Figure6 illustrates the result of segmenting a sphere from a video stream.

5 Comparison

Each approach we have investigated has its own set of advantages and disadvantages.
The advantage of using texture based methods is that by choosing the right heuristics,
it is possible to get useful results purely with software. Domain specific assumptions,
like “the instructor area always begins at the bottom of the image”, can improve the
precision, as well as the speed of the segmentation. Texture based methods can be used
without special hardware. Their disadvantage is the high computational cost incurred,
and the method can fail when foreground and background textures are very similar.
Interlacing effects, reflections, and shadows can produce problems, too. Segmenting
areas with skin color (hands, faces) is especially difficult [38]. In our implementation,
we track the instructor and do not handle yet the reinitialization needed when the lec-
turer moves out of the video frame. Due to motion blur, the edges are not as sharp
as they should be. Still another problem is that if the instructor points at a rapidly
changing object (for example, an animation on the board screen), the two correspond-
ing blobs could become merged. However, such artifacts are not as distracting as it
may seem, and we continue working on improving the quality of the lecturers image.

Using a time-of-flight 3D camera the computational costs are dramatically reduced.
The 3D camera captures depth and intensity information at acceptable frame rates. The
segmentation problem is theoretically reduced to a simple depth range check (compare
Figure7). However, the exact calibration and synchronization of the two cameras is
tricky. The 3D cameras do not yet provide any explicit synchronization capability,
such as those provided by many FireWire cameras. The lowx and y-resolution of
the 3D camera results in coarse edges. Thez-resolution is just about enough, since
the instructor stands usually very close to the board (and then the range of interest
becomes about 50 cm). Besides overflows, there are other artifacts caused by quickly
moving objects, light scattering, background illumination, or the non-linearity of the
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Figure 6: Depth data (upper left), mask computed for a specific range (upper right),
and mask applied to the video image (below). The sphere has been cut perfectly from
the video stream. During calibration, the video and 3D camera have been matched
correctly.

measurement. We also found that the depth measurement is not texture and material
independent. Since darker objects reflect less light, the output of the camera is noisier
than in the measurement of brighter objects. Last but not least, using a time-of-flight
camera requires a larger budget, at least for now. For our purposes, the ideal time-
of-flight camera should offer a higher depth range (for example 15 m) and az-axis
resolution of a few millimeters. The image resolution should be at least PAL. It would
be ideal if a color video chip could be combined with the depth measurement chip in a
single unit.

6 Conclusion

This paper proposes a novel solution to the divided attention problem which arises
when board and lecturer are transmitted separately, in order to improve the quality of
the board or slides reproduced at the receiving end. We propose to cut the lecturer out
of the video stream and paste it on the rendered image of the board. Our experiments
show that this approach is feasible and also esthetically appealing. The superimposed
lecturer does not distract the student, it helps the student to better associate the lec-
turer’s gestures with the board contents.

The paper presents and compares two approaches for instructor segmentation in board
based lecture recordings. We presented a working example of a texture based seg-
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Figure 7: The mask obtained by depth range check for segmenting an instructor.

mentation algorithm and compared it to using a time-of-flight 3D camera. Although
time-of-flight cameras are promising, they are not yet available with sufficient quality
and resolution. The approach we want to follow in the immediate future is combining
both methods: The 3D device could be used to get an approximation of the shape of the
instructor, and a software based classifier can refine the shape to get a clean segmen-
tation result. Therefore, 3D cameras will change the way certain segmentation tasks
can be performed, but they will not eliminate 2D segmentation approaches in the near
future. Their combination seems the best alternative to achieve our goal of mixing two
data streams into a single high-quality one.

It is also worth noting, that although the methods presented in this paper cannot yet
be applied in real time at 30 frames per second, the data can already be processed off-
line, the result can be stored, and the lectures can be replayed using the superimposed
lecturer technique described in this paper. Our future work will extend what can be
already done off-line to real-time transmissions.

We thank C̈uneyt G̈oktekin for the preparation of the high-resolution 3D images, and
Gerald Weber for enlightening discussions about lecturer’s segmentation.
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