V. SUMMARY

The pentahalides of the 5th maingroup show an interesting structural trend. PCl₅ is known since 200 years and has a ionic structure in the solid state $[PCl_4^+][PCl_6^-]$.

Antimony pentachloride exists in two modifications. It has a trigonal bipyramidal structure and changes below -55° C reversibly into a double chlorine bridged dimer resulting in an edge shared double octahedral structure. This is the first pentahalide of the 5th maingroup with dimer structure.

The question whether AsCl₅ forms an immediate between ionic structure and dimer structure could be answered. It was possible to grow single crystals and to analyze it by x - ray crystallography by low temperatures, even though AsCl₅ decomposes in AsCl₃ and Cl₂ above -30° C. AsCl₅ has a trigonal bipyramidal structure with two longer axial bonds and three shorter equatorial bonds. It is interesting to compare the different packing in AsCl₅ and SbCl₅. If the whole molecules are considered to be simple spheres, then SbCl₅ has a regular hexagonal closest packing, AsCl₅ is packed body centered cubic.

In presence of water two salts could be isolated from the AsCl₅ solution containing the octahedral anion AsCl₆⁻. The first compound contain AsOCl₃ molecules with an As-O – doublebond which is solvated with $H_5O_2^+AsCl_6^-$. The other compound forms $H_5O_2^+$ ions which are convected with Cl⁻ over hydrogen bonds.

BiCl₅ could not be isolated. It remains still a challenge for the future.

The known SbCl₄F is crystallized on an other reaction way than the one known before. This comes as a surprise, since it results from a fluorine-chlorine-exchange with CFCl₃.

POCl₃ and SbOCl₃ are well know compounds. By raman spectroscopy for AsOCl₃ a monomeric structure was expected. This could not be confirmed. The crystal structure of AsOCl₃ reveals that it consists of a double oxygen bridged dimers with a trigonal bipyramidal structure environment around the arsenic atoms.

No answer could be found to the question of existence of the $NOCl_2^+$ cation.

Instead it was possible to grow single crystals of $[ClSONC2NCl_2]^+SbCl_6^-$ from the same reaction that previously has been reported to form $NOCl_2^+$. The novel cation convient of C_2N_2SO six membered ring.