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Abstract

For positive integers d and n let fq(n) denote the maximum cardinality of a subset of
the n¢-grid {1,2,..., n}d with distinct mutual euclidean distances. Improving earlier
results of Erd8s and Guy, it will be shown that fo(n) > ¢ - n2/? and, for d > 3, that
fa(n) > ca- n2/2. (In n)1/3, where ¢, cq > 0 are constants. Also improvements of lower
bounds of Erd8s and Alon on the size of Sidon-sets in {1%,2% ... n?} are given.

Furthermore, it will be proven that any set of n points in the plane contains a subset
with distinct mutual distances of size c¢1 .plift
i.e. no three points on a line, of size ¢z -n'/? with constants c¢1,¢2 > 0. To do so, it

will be shown that for # points in R? with distinct distances d1,ds, ..., ds, where d;
¢

i=1 .
points are in general position, then we prove Zi:l m? < ¢-n® for a positive constant

, and for point sets in general position,

has multiplicity m;, one has Z m? < c¢-n>? for a positive constant ¢. If the n
¢ and this bound is tight. This confirms a conjecture of Erdés and Fishburn.
Moreover, we give an efficient sequential algorithm for finding a subset of a given set
with the desired properties, for example with distinct distances, of size as guaranteed
by the probabilistic method under a more general setting.
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1 Introduction

In [EG] Erd6s and Guy considered the following problem: Determine the maximum size
of a subset X of the n x n-grid, that is the set {1,2,...,n} x {1,2,...,n}, such that all
mutual euclidean distances between different points of X are distinct, compare also [Gu].
Denoting the cardinality of such a set X by fa(n), they proved the following:

Theorem 1 [EG] For every integer n > 3,

2__°9 n
ni~whw < fa(n) < ez - TN (1)

where ¢1,co > 0 are constants.

To obtain the lower bound for fz(n), Erdés and Guy used Greedy-type arguments.
The upper bound for fz(n) follows from a result of Landau [La], namely, that the number
of integers less than @, which are representable as a sum of two squares, is asymptotically
c- W, where ¢ is a positive constant.

(

Recently, in [Th] by using more refined counting techniques, the lower bound from (1)
has been improved:

Theorem 2 [Th] For all integers n > 2,

n2/3

fz(n)ZC'Wa

where ¢ > 0 is a constant.

In this paper, we will further improve the lower bound on fy(n) by using uncrowded
hypergraphs, cf. [AKPSS] and [ALR], as well as some results from number theory, namely
we will show:

Theorem 3 For integers n > 1,
fo(n) > c-n?l?
where ¢ > 0 is a constant.

In order to prove this, we will show a so-called anti-Ramsey theorem, which will be
given in Section 2. This anti-Ramsey result, together with some number theoretic results
which we deduce in Section 3, also yields lower bounds for the analog of the problem of
Erdés and Guy in higher dimensions. Let fj(n) denote the maximum size of a subset X
of the d-dimensional grid {1,2,...,n}? such that all mutual euclidean distances within X
are distinct.

We remark that for d = 1 one has fi(n) = 6(y/n) by using perfect difference sets,
cf. [EG]. For d > 3, Erdés and Guy showed the following:

Theorem 4 [EG] Let d > 3 be a positive integer and € > 0 a fized real. Then, for
positive integers n sufficiently large,

n¥37 < fy(n) < e Vd o, (2)

where ¢ > 0 is a constant.
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Indeed, in [EG] it has been conjectured that
fa(n) < e-d*® -3 (Inn)'/?

for d > 3.
In Section 4 we improve the lower bound (2) on fy(n):

Theorem 5 Let d > 3 be a positive integer. Then for every integer n > 1,
fa(n) > eq-n23 - (Inn)'/3
where ¢q > 0 is a constant only dependent on d.

In Section 5 we will consider the corresponding selection problems for points in the

plane in arbitrary position. We will show that every n-point set in the euclidean plane

1/4 for some

2/9

R? contains a subset X with mutual distinct distances such that |X| > c¢-n
constant ¢ > 0. This improves a former result from [Th], where the lower bound ¢ - n
has been shown. Moreover, we will show that under the assumption that the n points are
in general position (no three on a line) the lower bound on |X| can be improved to ¢-n'/3.
To do so we will prove a conjecture of Erdés and Fishburn [Fi], [EF]. Namely, we will
show the following: if 7 points in general position in R? are given with distinct distances
dy,ds, ..., ds, where d; occurs with multiplicity m;, 2 = 1,2,...,t, then Ele m? < c-n’
for some positive constant ¢. The regular n-gon shows that this bound is tight up to a
constant factor. Moreover, we will show that for the corresponding problem for »n arbitrary
points in R? one has Ele m? < ¢-n3% where ¢ is a positive constant.

In Section 6 we will give the new lower bound ¢ - n%/? (¢ a positive constant) on the
size of a Bo-subset of the set {12,2%,...,n%}. This improves earlier results of Alon and
Erdos [AE].

Finally, in Section 7 we consider some algorithmic aspects of these selection problems
under a more general setting. In particular, using derandomization we will give an efficient
sequential algorithm that finds in every edge coloring of the complete graph K, a totally
multicolored complete subgraph of size at least as large as guaranteed by the probabilistic
method. This algorithm has running time O (n2 Inn+ 3, mf), where m; is the number
of edges in color .

2 An Anti-Ramsey Result

In this section we will prove a so-called anti-Ramsey theorem, which we will use for the
proofs of Theorems 3 and 5. Before stating it we will introduce some notation. For further
references to anti-Ramsey results we refer to [ALR].

A graph G with vertex set V' and edge set F is denoted by G' = (V, F). By K, we
denote the complete graph on n vertices. A mapping f: F(K,) — T is called an edge
coloring of K,, with colors t € T. Fort € T, f~!(t) is the set of all edges colored by color

t. By d; = 2|f+1(t)| we denote the average degree of color ¢t € T'. Let d; be the maximum
degree of color ¢, i.e. the maximum number of edges in color ¢, incident at some vertex,
and let A = max {d; | t € T'}. Finally, a complete subgraph K of K, is called totally
multicolored if the restriction f|E(K}) to the edge set of Ky is a one-to-one coloring.



Theorem 6 For every v > 0 there exists a constant C = C(v) > 0, such that for all
integers n > 2 the following holds.
Let f: E(K,) — T be a coloring and suppose T satisfies the following conditions

(i) > % d;, and
teT

(ii) > n'/2H7 . A3/2,

Then there exists a totally multicolored subgraph Ki of K, with

2

kZC-(%)UéUnmUB. (3)

For the proof of Theorem 6 we will use the concept of uncrowded hypergraphs. Let
G = (V,&) be a hypergraph with vertex set V and edge set £. For a vertex v € V let
degg(v) denote the degree of v in G, i.e. the number of edges £ € £ containing v. By
Deg(G) = max {degg(v) | v € V} we denote the maximum degree of G. A hypergraph
is k-uniform if each edge F € &£ has cardinality k. A 2-cycle in G is given by a set of
two distinct edges from &, which intersect in at least two elements. A hypergraph is
called uncrowded if it contains no 2-cycle. Finally, the independence number a(G) is the
maximum cardinality of a subset of V' which contains no edges from &.

We will use the following result from [DLR], which is an extension of a theorem from

[AKPSS]:

Theorem 7 [DLR] Let G = (V, &) be a k-uniform hypergraph, k > 3, with |V| = n and
mazimum degree Deg(G) < t*=1. If

(i) G contains no 2-cycles, and
(i1) t is sufficiently large, i.e. t > to(k)

then

n 1
a(G) > ¢ - nk (Int)*T1 ,
where ¢, > 0 is a constant depending only on k.

We will now prove Theorem 6.

Proof: It is sufficient to prove the theorem for sufficiently large n, say n > ng. To see
this assume the theorem holds for n > ng for some ng and some constant C' > 0. For
values of n less than ng the lower bound of the theorem is less than C' né/z (Inn9)*/3. By
adapting the constant C the inequality (3) holds for all n. Thus we can assume that n is
sufficiently large throughout the proof.

Let V = {1,2,...,n} be the vertex set of a complete graph K, and let f: E(K,) — T
be an edge coloring. Let 7 satisfy requirements (i) and (ii) in Theorem 6. We can also
assume that 7 satisfies

r<n’lnn, (4)

since otherwise the assertion (3) is trivial and we are done.
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We will construct i-uniform hypergraphs G; = (V, &), ¢ = 3,4, with the same vertex

set as follows:
{?}1,?]2,?]3} S 53 o4 f({v17v2}) = f({?]l,?J:))})
{?}1,?]2,?]3,?]4} € 54 = f({?]l,?JQ}) = f({?]g,?]4}).

Observe that a subset X C V yields a totally multicolored complete subgraph if and only
if X is an independent set in both Gz and G4. Our aim will be to give a lower bound for
the maximum size of such an independent set. We cannot apply Theorem 7 directly, as
the G;, @ = 3,4, are in general not uncrowded. To come to such an uncrowded situation we
will pick a random subset of the vertex set V', and show that an induced subhypergraph
can be made uncrowded.

First we will give upper bounds for the cardinalities of & and &£;. For |E3| note that
every pair {v, w} of vertices can be extended in at most 2A — 2 ways to an edge E € &s.
Thus,

|53|<(Z>-2-A<n2-A. (5)
Concerning the size of £; we obviously have
|f7H0)]
|€4] < E ( 9 :
teT
As 2-|f71(t)| = d; - n, it follows with (i) that

din 2
L n —9 1
|54|§§ (;)<§‘Edt§§'n2'7- (6)
T

teT

Next we will count the number of 2-cycles in G4. Let ¢2(G) denote the number of 2-
cycles in a hypergraph G = (V, £). We will count the 2-cycles more carefully: for j = 2,3
let ¢2,;(G) be the number of (2, j)-cycles, i.e. the number of pairs {F, F'} € [£]* with
|EN E'| = j. Clearly, ¢2(G) = ¢22(G) 4 ¢2,3(G).

Concerning ¢g 9(G4), choose an edge F € & and then pick a pair {v, w} C E of vertices.
The number of edges E' € &4 with EN E’ = {v,w} is less than the number of pairs {x, y}
with f({v,w}) = f({z,y}) or f({v,2}) = f({w,y}). There are at most 2nA such pairs,

hence with (6) we have

T AL (7)

N o

4
c22(Gq) < |E4] - (2) 22.n-AL

To count the number of (2, 3)-cycles, we fix an edge £ € &4 and a three-element subset
S C E. Then S can be extended in at most (g) - A ways to an edge F’ € &4, hence

0273(g4)§|54|-(;1)-(;)-Ag%-nQ-T-A. (8)

Now we choose a random subset of V' by picking each vertex with probability

_ ,—1/3+ -1/3
p = nolEHe =18



where 0 < € < v/12, independently of the other vertices. For the random subset V/ C V
consider the induced random subhypergraphs G/ = (V',&/) for i = 3,4, where & =
& N [V']. Moreover, let ¢y ;(V'), i = 2,3 be random variables counting the number of
(2,1)-cycles in Gj.

Assumption (4) makes sure that pn — oo as n — o0, so we have

Prob (|V/|~p-n)=1-0(1) (9)

by Chernoff’s inequality.
For a random variable X let E(X) denote its expectation. From (5) and (ii) we obtain
for € < 3 that

Ny _ .3 3.2 A = n!/ot2e. A 1 _
E(|&]) = p” - & <p”-n”- —PWTSP%'W—O(WL)- (10)

By (7) and (8) we infer for € < 75

) 3 3
E(el(Gy)) = P6'02,2(g4)+P5'02,3(g4)§§'P6'n3'T'A+§'P5'n2‘T‘A

_ 3pn nt/345¢ LA A
- 9 +2/3 + pl/3—4c . £1/3

3pn 5e¢—2/3y Al _

Moreover, we have

E(lEq]) = p* - [&] - (12)

Using Markov’s inequality, we infer with (9), (10), (11) and (12) that there exists a subset
V' CV with |V/| &= p-n, such that the induced hypergraphs G/ = (V',£!), i = 3,4, satisfy
the following: |£4] = o(pn) and c3(G}) = o(pn) and also |Ef| < 2-p*-|&4]. Now, delete one
vertex from each triple £ € & and from each 2-cycle in Gj. Moreover, delete all vertices
of degree bigger than

24 -pt &4l 24 p% - |E4|
pn N n '
For n sufficiently large, we obtain a subset V* C V' of at least &' vertices containing
no edge from &3 and such that the induced subhypergraph G5 = (V*,[V*]* N &) has no
2-cycle and has maximum degree
24 - p? - &4

Deg(G;) < < 3pPnr =30 =17,

by (6), with ¢ defined by the equation. We apply Theorem 7 to the hypergraph G; and
infer

2\ 1/3
a(Gr) > ¢4 L . (hl (31/3 . nﬁ))l/S > (- (n_) -(In n)1/3 ‘

" 31/3 - pnl/371/3 -
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Corollary 8 Let f: F(K,) — T be a coloring of the edges of the complete graph on n
vertices, where A = O(n'=?) for a fized 3 > 0.
Then, for n > 2 there exists a totally multicolored subgraph K with

n\1/3 1/3
ch-(Z) “(Inn)* /=,
where ¢ = ¢() > 0 is a constant.

Proof: By Theorem 6 with 7 = n - A and taking v < g

3 Two Results from Number Theory

In this section we are concerned with two results from analytic number theory that we
will need for the proofs of Theorem 3 and 5. For convenience we will use Vinogradov’s

notation f(n) < g(n) for f(n) = O(g(n)).

Definition 9 Let r4(m) be the number of representations of m in the form

2 2 2
m=x]+x3+...+23,

where 21, z9,..., 24 are integers.

The following result for the 2-dimensional case is due to Ramanujan (see also [Wi]).

Theorem 10 [Rm]

n

> (ra(m))? = O(nlnn).

m=1

In fact Ramanujan determines also the leading constant.

Here we will give an alternative proof for the upper bound. Our approach uses simple
geometric considerations and might be of interest by itself. For doing so and for later
purposes we will use the following definition and lemma.

Definition 11 Let P be a finite set of points in the plane. Consider the bipartite graph
B = ([P]*uU P,I) with

({p,q},z) € I < z lies on the perpendicular bisector of p and q.
Then define A(P) := |I].

Roughly speaking, A(P) is the number of incidences between perpendicular bisectors
determined by P and points of P (each bisector can be generated by several pairs of
points!). Note that A(P)is nearly the same as the number of isosceles triangles determined
by P apart from the fact that equilateral triangles are counted 3 times.



Lemma 12 Let P be a set of n points in the plane R%. Let the points of P determine
distinct distances dy,ds, ..., d;, where d; occurs with multiplicity m; for v+ = 1,2,...,t.
Then,

Yt e (s (3))

The idea of the proof is similar to an argument of Szemerédi (see [E]).
Proof: Let P be the set of n given points in the plane. Notice that a point z lies on the
bisector of p and ¢ if and only if p and ¢ have the same distance from z. For z € P and
i=1,2,...,t let m;(z) denote the number of points in P, which have distance d; from z.
Using Jensen’s inequality we infer that

2m;

2 n
_ E.;mg_(Q).

Thus,

=0
IN

St (04 (3))-

Lemma 13 Let G, be the set of points of the n x n-grid {0,1,...,n—1} x{0,1,...,n—1}.
Then,

A(Gy)<ec-n*-lnn,
for some positive constant c.

Note that A(G),) is equal to the number of isosceles triangles since G, contains no equi-
lateral triangle.

Proof: For distinct points py, pp in the nxn grid G,,, where p1 = (21, 1) and py = (22, ¥2),
let I be the line through py and p, and define

1 1
s(1) ImaX{§'|9€2 —$1|7§'|Z/2—y1|}7

where ¢ = ged(22 — z1,y2 — y1). Note that s(l) only depends on [ and is independent
of the choice of p; and p;. We observe that |I N G,| < # Let I’ be the perpendicular

bisector of p; and py, then we also have |I' N G| < #
To bound A(G),) we fix an arbitrary point p; € P and an integer 1 < s < n. Choose

a line [ through p; with s(I) = s. The number of such lines is at most 4s. Then we select
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a point py € IN G, and a point z € I N G, where I’ is the perpendicular bisector of pq
and py. For both py and z there are at most % possibilities. Thus

2 - n n 4 - 1 4 nl 4
-54-—-—_—4 E - <4n*- 1+ —dz ) <c-n*-lnn.
n 2 S 3 3 n 515 n ( /1$$) cC-n nn

Corollary 14 Let GG, be the set of points of the n x n grid. Fori=1,2,...,2(n—1)? let
m; denote the occurrence of distance \/i between different points of G,. Then,

2(n—1)>2
Z mf <ecy-nblnn

=1

for some positive constant c,.

Proof: By Lemmas 12 and 13 we obtain

2
Z mfg% (c-n4-lnn—|—(r;)) <eyenS-lnn.

Corollary 15 There exists a positive constant cs such that for every positive integer n

n

Z(T2(i))2 <ecg-n-lnn.

=1

Proof: Consider a circle of radius at most ”2;1 around an arbitrary point of the n x n-grid.
Then at least a quarter of this circle lies inside the n x n-grid. Thus

("5)°

5 T2(i) 2 A 2
=1

=1

where m; denotes the occurrence of distance /i between different points in the n x n grid.
By Corollary 14 we deduce Y., (r2(i))?> < ¢5-n-Inn for some positive constant c3.

Remark. By using the same ideas it is also possible to prove the lower bound in Theorem
10.

For higher dimensions we will show
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Theorem 16

> (ra(m))? = 0(u'"),  ford > 3.

Remark. It can be shown that the bound given in Theorem 16 is asymptotically sharp
by using for example Cauchy’s inequality together with the fact that " _ rq(m) =

/2 d/2
INCIP T /

We are going to prove Theorem 16 by using the Hardy-Littlewood circle-method (see
[Dp], [Vg]). Throughout the remaining part of this section let N := |\/n] and suppose

d > 3. Define Ry(m, N) as the number of representations of m in the form

m:x%—l—x%—l—...—l—xﬁ, 1<z, <N.

Lemma 17 Let ¢ > 0 and N = [\/n], then

n

Y (ra(m)* < eq Y (Ra(m, N))? + O(n=2/+)

m=1 m=1

with a constant cg depending only on d.
Proof: It is easy to see that we can estimate
Ra(m, N) < rg(m) < 2% Ry(m, N)+d - rqg_1(m)
for m < n. As ro(m) = O(m) for every ¢ > 0, we have
ro(m) < (Vim)*=* - O(m”) = O(m*/*~1+)
for s > 2. We can then estimate
(ra(m))* < 2°%- (Ra(m, N ))* + O(m*=5/2+<)

and the assertion follows.

Define e(y) := €™ and f(a):= Y0, e(az?) for real numbers a.

Lemma 18

1

dn
> (R, 60 = [ |fefda.

Proof: First we observe that

N

N dn
(Fla)t=>" ) efa-(af+... +2)) = Z:le(m,N)-e(am),

1’1:1 l’dzl

(13)
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hence,

9 dn dn
‘(f(a))d‘ = Y Ra(mi, N)-e(amy) Y Ri(ma, N) - e(—ams).

If we integrate this we obtain

1

/ Fa)Pda= 3 Ra(ma, N): Ru(ma, N)- / (- (m1 — my)) da.

0 1<my,m2<dn

The integral on the right hand side is 0 for my # my and 1 for mqy = mg, thus

1 dn
/ @) da = S (Ra(m, N))?

In order to estimate fol |f(a)|**da we break the integration interval into two parts
called major-arcs and minor-arcs. The major-arcs will determine the order of magnitude
while the contribution of the minor-arcs will be negligible.

In the following calculations let 0 < § < 1/5 be a fixed real number. For integers a, ¢
with 1 <a < ¢ < N® and (a,q) = 1 define the major-arcs as

My, ={a€R:|a—a/q < N7

We observe that these major-arcs are disjoint since their lengths are much smaller than
the distances between their centers. Let M denote the union of the M, ,. It is convenient
to shift the integration interval (0, 1] to the right to U := (N 726 1+ N=2+]. As f(a) =
fla+ 1) we have

/llf(a)lmda:/|f(a)|2dda.
0 U

Now M C U by definition. The set M := U \ M forms the minor-arcs.
To see that the minor-arcs can be neglected in order to prove Theorem 16 we use the
following

Lemma 19 Suppose s > 5, then

/ F(@)° da = O(n*/271-") |
M

where &' is a constant depending on 6.

This lemma can be found for example in [Dp] and [Vg]. Using this, we immediately get
for d > 3, that

/ F(@)* da = O(nd=1=% (14)

M



12

where ¢’ is a constant depending on é.
Thus it remains to prove that

/ F@)* da = O(nt1) |
M

Define

q

N
Say = Z e(az?/q) and 1(B) = /e(ﬁ{z) dg.

z=1

For the treatment of the major-arcs we use the following lemmas.
Lemma 20 [Dp] If a € M, ,, then

fla) = V(a)+ O(N?)
with V(a):=q '+ 8., - I(a—a/q).

The notation V() is a bit sloppy because V' also depends on @ and ¢. Nevertheless
there should be no confusion since a determines the major-arc M, , in which it lies.

Lemma 21 [Dp] Let a,q be relative prime integers with ¢ > 0. Then for every € > 0,
Sl = O(g/#).
Now let a € M, ,. Lemma 20 and the obvious fact that
V() =g~ Say - I(a = a/q) < N

yields
(f(@)* = (V(a)* + O(N?=1H2),

Since the measure of M is bounded by O(N~2+%) and since § < 1/5 we can again
neglect the O-term and consider only [, |V(a)[**da.
By Lemma 21 we see that

V(@) < g7 S0 [T(a = a/q)*" < ¢~ - [I(a = a/q)*
for « € M, ,. Substituting o = a/q +  implies
[ vtetaa <t [ jisas.
Ma,q |ﬁ|<N_2+5
Summing up over all major-arcs gives

N* q Né q )
)OI SN RITIEZED S D UG

— =1 =1 a=1
(aqy=1 Mag = (@t |Bl<N=2+6
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S ) [ ezt [ i)
= |8 <N—2+6 Bl =2t

The infinite sum converges since d > 3. By substituting ¢ = N -t and 8 = N2 .~ in
fo e(BE?) d€ we obtain

1
(s = N¥2. / /dw%w dy
|Bl<N—2+4 |[y|<Né 10

(15)

I
=3
Q.
L
o
D
—~
-2
™
[N~}
Sa—’
I
e
=
-2

since N = |/n].
We want to show that the outer integral is bounded from above independent of n. By
substituting ¢ = ¥'/2z and by the fact that [ cos(2?)dx and [J” sin(22) dz are bounded

one can show that

1 y1/2
/ dt| = [y~1/2. / e(z3)dz| <477, (16)
0 0
for v > 0. On the other hand, obviously
1
/e(’ytz)dt <1. (17)
0

This enables us to extend the integration in (15) to inﬁnity:
2d

+oo| 1 1 +oo| 1 2d
/ /e(’ytz) dt| dvy / / dt| dy+2- / /e(’ytz) dt| dv
“% |0 110 1 lo

< 2-142- / v~ 1dy = 0(1)
1
since d > 3. There we made use of (16) and (17). Thus we have proved

Lemma 22

[ 15t da = 0t
M

Because of the fact that [) = S+ Ju and by (14) we have
Corollary 23

/umwwa:mﬂ*y

Now Lemma 17 and 18 and Corollary 23 imply Theorem 16. 0
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4 Grid Points

In this section we will give the proofs for Theorems 3 and 5. First we will show Theorem
3.

Proof: Given the nxn-grid G,,, we form a complete graph K> with vertex set {1,2,...,n}x
{1,2,...,n}. We color the edges {z,y} by the square of the euclidean distance of their
endpoints @ and y. For fixed positive integer ¢ and every grid point v, notice that the
number of grid points w with euclidean distance /¢ from v is bounded from above by the
number of representations of ¢ as a sum of two squares. Hence, the average degrees d; of
color t satisfy d; < ro(t), and for the maximum degree A we have that

A< ncl/lnlnn 7 (18)

where ¢y is a positive constant, by a result of Wigert, cf. [HW]. By Theorem 10 we have

2(n—1)>2 o 2(n—1)>2
Z d; < Z (ro(t))? =cy-n?-lnn,
t=1 t=1

where ¢, is a positive constant. Setting 7 = C'-n?-1n n for a positive constant C', which is
large enough, we see with (18) that (i) and (ii) in Theorem 6 are satisfied (notice that the
number of vertices is n?). Hence, there exists a totally multicolored complete subgraph
on k vertices with

- n?.-lnn

' nt e 2\1/3 2/3
k> | —— “(Inn“)” > c-n*~.

The vertices of this subgraph determine & points in the n X n-grid with mutual distinct
distances. We remark that we could have also used Corollary 14 to obtain the same con-

clusion.

Next we will prove Theorem 5:
Proof: Fix a positive integer d > 3. We proceed as in the proof given above by coloring
the edges of the complete graph on n? vertices by the square of the euclidean distances of
the corresponding endpoints. Clearly, d; < ry(t) and

A < nd/?—l—l—e'
for any fixed € > 0 by (13).
Now,
d(n—1)>2 d(n—1)>2
—2 _ _
oA <Y (upP=0(a w2 (19)
t=1 t=1

by Theorem 16. With 7 = C'-n??=2, where C' > 0 is a large enough constant, requirements
(i) and (ii) of Theorem 6 are satisfied. Hence there exists a totally multicolored complete
subgraph on k vertices with

n2d

1/3 13
k> e(d)- (W) . (ln nd) > cq-n?? - (Inn)'/?
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which yields the desired result.

5 Points in Arbitrary Position

In this section we will study the maximum cardinality of a subset of n arbitrary points
in the euclidean plane R?, such that the mutual distances among the points of X are
distinct. Moreover, we will consider the same question for n points in general position (no
three on a line) in R?.

Theorem 24 Let n arbitrary points in the plane R? be given. Let the n points deter-

mine distinct distances dy,ds,...,d;, where distance d; occurs with multiplicity m; for
1=1,2,....t.
Then

t

g mfgc-n13/4,

=1

where ¢ > 0 is a constant.

Remarks. (1) Spencer, Szemerédi and Trotter proved in [SST] that under the assumptions
of Theorem 24 one has m; < ¢ -n%/3 for i = 1,2,...,t, where ¢ is a positive constant.
Their result applied in the straightforward way yields Ele m? < max {my,my,...,m}-
Ele m; < ¢ -ntf3. (g) < en'®/3 for a positive constant c. Another way to get this upper
bound is by using the result of Pach and Sharir [PS] that the number of isosceles triangles
is bounded by O(n7/3). Then by Lemma 12 one obtains that Ele m? < con%/3 where
¢9 is a positive constant.

(2) For the points of the y/n x y/n-grid we have > m? = O(n’lnn). One might

conjecture that this upper bound holds for any set of » points in the euclidean plane.

For the proof of Theorem 24 we will use

Lemma 25 Let 0 = Sy < 51 < ...< S and mqy > mo > ... > my > 0 be sequences of
real numbers such that

J

D mi <5 forj=1,2,...,1 (20)

=1
Then

¢ ¢
> omi <> (8- Sim1)? (21)

Proof: We will apply induction on t. For ¢ = 1 the assertion is trivial, hence assume
t > 1 and that the conclusion of the lemma holds for all values 1,2,...,¢ — 1. For given
S0, 51, ..., 5 it suffices to show (21) for any sequence my > mg > ... > my satisfying
(20) and maximizing the expression Ele m?. Let mq, ma,...,my be such a sequence. If
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my = 0, then (21) is clearly satisfied by the induction hypothesis, hence we can assume
that m; # 0. 4
Suppose first that > 7_ m; < S; forall j = 1,2,...,t— 1. Then define a new sequence

b b b
my,m3,...,m; as follows
*
my = mqte€
* _— . ; p——
m; = my fori=2,3,...,t—1
* —_
mi = my—¢
. —1 .
where ¢ = min {my, 51 — m1, 52 — (my + ma),..., -1 — Y,;—; mi}. By assumption € >

0, and hence Ele miz > Ele m?, which contradicts the maximality of the sequence
M1, M, ...y, M.
Thus thereis a k, 1 <k <t —1, with

Zmi =S5 . (22)

me < Z(Si —Sis1)? . (23)

By (20) and (22) we have Ef:kﬂ m; < 5;— Sy for j=k+1,k+2,...,t. Using again
the induction assumption we infer that

Doomi< DY (8= S) = (Sici—Sk) = >0 (8- S8im)? (24)
i=k+1 i=k+1 i=k+1

thus combining (23) and (24) we obtain 3_f_, m? < S°I_, (S; — Si_1)?, which finishes the
induction step.

Let P be a set of points in the plane R? and let C be a set of circles in R%. Define
a bipartite graph G with vertex set P U C and edge set F, where (p,c) € E, p € P and
c € C,if and only if p lies on the circle ¢. Let I(P,C') denote the number of incidences
between points and circle, that is, the number of edges in this bipartite graph G. In our
arguments we will use the following result of Clarkson, Edelsbrunner, Guibas, Sharir and

Welzl:

Theorem 26 [CEGSW] Let P be a set of points in R? and let C be a set of circles in
R2. Then

1(P,C)= 0 (1P 1C17 4 [Pl +1C1) . (25)

Now we are ready to prove Theorem 24:
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Proof: Let P C R? be a set of n points in the plane. Assume that mq > ma > ... > my.
Around each point p € P draw circles with radius dy,ds,...,d;. For j =1,2,...,tlet C;
be the set of all such circles with radius dy,ds, ..., d;. Then we have |C;| = jn and

I(P,C;)=2- im . (26)

Thus, by (25) we have
I(P.C)) < ey -n®% - (jn)*® (27)

where ¢q > 0 is a constant.
Combining (26) and (27), we infer that

Somi< STl i

forj=1,2,...,1.
On the other hand, we have
! 2
Swis(h) <% (29)
: T2 2
=1
forli=1,2,...,1.
Put ¢; = max{1/2,¢,/2} and

{ CQ'TL7/5 'j4/5 if 0 <j< n3/4
5 =

¢y - n? ifn3/4<j§t.
Clearly, the sequences Sg, 57, ..., 5 and mqy, mo, ..., my satisfy the assumptions of Lemma
25. Hence,

t t n3/4 n3/4 )
Somd <Y (S-S < Y (5 - S < Gty (¢4/5 —(i- 1)4/5) . (29)
=1 =1 =1 =1

Since i1/5 — (i — 1)4/> < i='/5 for i > 1, (29) becomes
13 n3/t
Zm? §c%-n14/5-zi_2/5. (30)

The function g(z) = 2=%/%, 2 > 0, is decreasing, thus

n3/4 34
St < 1 +/ e = 1 4 g(ng/zo 1)< gng/zo ‘

=1 1

We infer with (30) that

¢
E mf <ec- nt3/1
1=1
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for some constant ¢ > 0.

Surprisingly, the situation changes radically if our point set is in general position, i.e.
no three points lie on a common line. More generally, we have

Theorem 27 Let P be a set of n points in the plane R? such that at most s points are
on a line. If these points determine distinct distances dy,ds,...,d; with corresponding
multiplicities m1, mo, ..., my, then

}é 8'*1) (Z). (31)

Remark. If one assumes in contrast to Theorem 27 that the n points lie on s lines
(instead of ‘at most s points on a line’), then one can show by a similar argument that
> m? < sn(}) holds.

Proof: We will give an upper bound for A(P) (see Definition 11). By assumption the
perpendicular bisector of any two points p and ¢ contains at most s points of P. Thus,

Aungs-CO. (32)

2

By Lemma 12 we infer that

ey (s (3)) < S50 ().

Theorem 28 Let P be a set of n points in the plane R? in general position. If these points

determine the distinct distances dy,do, ..., d; with multiplicities mq, ma, ..., my, then
d 3
Zm? < an(n -1). (33)
=1

If we further assume that the n points are in convex position, then

This proves a conjecture of Erdés and Fishburn [Fi], [EF]. In their paper [EF] an even
stronger statement is conjectured namely that for convex n-gons one has

2
(n—1
. g m2< AT (n=1) ?
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for n > 3 being an odd integer. For n > 10 an even integer it is stated in [EF] that perhaps

2.(2n -3
o yme =

In both cases the regular convex n-gon would be an extremal configuration attaining the
upper bounds. For n = 4,6,8 they proved that this bound does not hold.
Remarks. (1) Fiiredi proved in [Fii] that under the assumptions of Theorem 28, i.e.,
P is a convex n-gon, one has m; < 12nlogn for « = 1,2,...,t. Applying this in the
straightforward way, one gets > i_ m? < 3°°_ m; - max {my, mg,...,m;} < 60°-logn.
(2) According to the second remark after Theorem 24 we see, that it really makes a
difference to assume general position.
Proof: If the points of P are in general position, then (33) follows by Theorem 27 with
s = 2. So assume that the points of P determine a convex n-gon. Observe that the
bisector of z and y contains at most one point from P if x and y are adjacent along the
boundary of the convex hull of P. Thus,

A(P) < 2(;‘) —n.

By Lemma 12 we infer that

S5 (o)) o (1)) - 20

It might be worth noting that the following upper bounds for the sum Ele m? match
the conjectured upper bounds of Erdés and Fishburn stated above.

Theorem 29 Let P be a set of n points in R?, which has the following property:
(*) no circle with center p € P contains three or more other points of P.

Let these n points determine distinct distances dy,ds, . .., d; with corresponding multi-
plicities mq, mo, ..., my. Then,

! n2(n=1) if n is odd
Zm? < { n2(22n—3)

] 1 if n is even.

Proof: By (*) we have m; <n fori=1,2,...,t. Thus

zt:m2§ @nQI n?(n—1)

n 2 ’

which shows the assertion for n being an odd integer.
For n even, consider as above the bipartite graph G = ([P]? U P, E) with {{z,y}, 2} €
FE if and only if z lies on the perpendicular bisector of z and y. To determine |E| = A(P),
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fix a point p € P. Let d(p) denote the degree of p in GG. Then d(p) is equal to the number
of unordered pairs {z,y} € [P\ {p}]? such that p lies on the perpendicular bisector of x
and y. Property (*) implies that these pairs form a matching. As n is even, we obtain
d(p) < (n —2)/2 and therefore
n(n —2)
A(P) = d(p) < ——=.
(=Y d(p) < "

peP

(s () <

With Lemma 12 we infer that

13
E mf <
=1

N | =

Next we will consider the corresponding selection problems.

Theorem 30 Let P be a set of n points in general position in the plane. Then there exists
a subset X C P with mutual distinct distances such that

X[ > c-nt/?
for some positive constant ¢ > 0.

Remark. An upper bound of O(nl/z) is given by the regular n-gon.

Proof: Let P = {py,p2,...,ps} be given as above. Let dy,ds,...,d; be the occurring
distinct distances with corresponding multiplicities mq, mo, ..., ms;. We will construct a
hypergraph H = (P, &5 U &4) as follows.

Let {pi,pj,pr} € & C [P]? if and only if d(p;,p;) = d(pi, px), where d(p,q) denotes
the euclidean distance between p and q. Moreover, {p;, pj, pr, pi} € €1 C [P]* if and only
if d(pi,p;) = d(pr, p1)-

Consider two points p,p’ € P andlet Q = {q € P :d(q,p)=d(q,p")}. We observe that
all points in @ lie on the perpendicular bisector of p and p’. Since P is in general position
we know that |@Q| < 2, thus

1&5] < (Z) 2<n?. (34)

Concerning |€4], we have by Theorem 24 that

¢
|g4| S ; (77;2) S c1 - n3 . (35)
We make a random experiment consisting of two steps. First choose a random subset
X C P by selecting points independently with probability p = ¢ - n=23, where ¢y > 0
is a constant that will be specified later. In the second step we delete from X one point
from each edge in & = [X]? N & and & = [X]* N &. By (34) and (35) this results in an
independent set Y C X with average size

E(Y]) > E(X) - E(&ED - E(ED =p-n—p’-|&| = p' - |&4]

1/3 3 1/3

> Cn —cz—clcgn
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Choosing ¢y = min {37'/2(3¢;)~/3}, we obtain that
E(Y]) > 63—2 /3,

Hence there exists a set Y C P of the desired size and with distinct mutual distances.

Using Theorem 27 one can show using (31) and (32) in a similar fashion the following

Theorem 31 Let P be set of n points in the plane R? such that at most s points of P lie
on any line. Then there exists a subset X C P with mutual distinct distances such that

x|z e (97

where ¢ > 0 is an absolute constant (independent of s).
For n points in arbitrary position we have the following result.

Theorem 32 Let P be a set of n points in R?. Then there exists a subset X C P with
mutual distinct distances such that

|X|ZC-TL1/4,

where ¢ > 0 is a constant.

2/9

This improves a former result from [Th], where the lower bound |X| > ¢-n*/” has been

given. An upper bound of O(n'/?/(logn)'/*) follows from the /n x \/n-grid.

Proof: The arguments are similar to those used in the proof of Theorem 30. We form a
hypergraph H = (P, 35U &,) as before. Pach and Sharir have shown in [PS] that n points
in the plane determine O(n7/?) isosceles triangles, hence

13| < e - n'/?

and by Theorem 24
|E4] < e ni3/t

By choosing vertices at random with probability p = ¢35 - n=3/* for some small enough

positive constant cs we obtain as above a subset Y C P with mutual distinct distances
such that |Y| > ¢-n'/4,

With Theorem 24 we see that for an n-point set P in R? the fraction of those k-element
subsets of P which determine less than (g) distinct distances is bounded from above by

Yt () + 00T G) _ (KK
;) nf?

n3/4
Thus if & = o(n®/1%) then almost all k-element subsets of P determine distinct mutual
distances. This improves former results from [AEP] and [Th], where k = o(n'/7) respective
k= o(nl/G) has been shown. In [AEP] it was stated with respect to an upper bound for
this problem that for n equidistant points on a line and supposing k = Q(n1/4), then a
positive percentage of all k-sets determine less than (g) distinct distances. Here we will
make this statement more precise in the following form:
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Theorem 33 Let pi,p2,...,p, be n equidistant points on a line. Then the number of
k-element subsets of {p1,p2...,pn}, which determine less than (g) distinct distances, is
at least

(1 c cn) n
ko ok k)’
where ¢ is a positive constant.

Proof: Let P = {p1,p2,...,pn} be the set of equidistant points on a line. Form a
hypergraph G = (P, &3 U &y) with & C [P]? and & C [P]* as follows: {p;,p;,px} € &5 if
and only if d(p;, p;) = d(pi, px). Moreover, let {p;, p;, px, pi} € &4 if and only if d(p;, p;) =
d(pk,p1) (where d denotes the euclidean distance). Clearly,

ean® < |&4| < ciln?’ . (36)

Let & = {51, 95,...,5¢}, where ¢4 < n% < Ci;- Now pick a k-element subset K uniformly
at random among the set of all k-element subsets of V. Let E denote the event that
[KPN & =0 and [K]*N & = 0. In the following we will determine an upper bound for
the probability that F occurs. For ¢+ = 1,2,...,t let z; be indicator random variables for
the events 5; C K, i.e.

0 else.

{1 if §; CK
z; =

Define another random variable Z = >'_ 2z and let [(Z) be its expected value. Then
by Chebychev’s inequality

Prob (E) < Prob (Z =10) <

By linearity of expectation we have

E(Z) = zt:E(zi) = (o) g L (38)

p () nls

where [n];=n-(n—1)-...-(n =14 1) denotes the falling factorial.
For s = 5,6,7,8let a; denote the number of unordered pairs {5;,5;}, 1 <i < j <t,
with [S; U S;| = s. Then we have for the variance that

Var (Z) = E((Z- E(2))%)

= 2. Y E(uz)+ E(Z) - E(Z)

= 2. Zas . [i]s + E(Z)-E(Z)*. (39)

Next we will give upper bounds on a;, 5 < s < 8. First fix an edge F/ € &. For
the following considerations notice that for a fixed distance d > 0 and every integer z,
1 < i < n, the number of points p;, 1 < j < n, with d(p;, p;) = d is at most two.
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To bound a5, choose a three-element subset R C FE. Then R can be extended to an
edge in & \ {£} in at most 6 ways, hence

as < 241 . (40)

To bound ag, choose a two-element subset R of /. Then R can be extended in at most
2(n —4) ways to an edge in & \ {F}, hence

a6§t-(;1)-2-(n—4)§12nt. (41)

To bound az, take an element z € F. Then the number of edges £* € & \ {E} with
x € E*is at most (n —4)-(n—5)-2, thus

a7 < 8n’t . (42)
Finally, we have
as < (3) . (43)
Inserting (40), (41), (42) and (43) in (39) yields for k,n > 7
Var (Z) < 48t [ls + 24¢ (s + 16¢ s + 2 2) (nls +1¢ s (t [n]4)
< 88tn2-@+t%—4—t-@§88m2-@+t @. (44)
[n]7 nla o [nls nlz nls

Prob (E) < Prob(Z=0)< rlz 5 rh
t2 . (&)
[
n? [n]4 88 8l-m ¢ c¢-n
< . <-4
88 tk+[l€]4t k'C4 k4'C4_k+ 47
where ¢ = %.

Corollary 34 For k = w(n1/4) and n equidistant points on a line almost all k-element
subsets determine less than (g) distinct distances.

Considerations, similar to those in the proof of Theorem 33 yield the following

Corollary 35 Let p1,ps,...,pn be the points of the regular n-gon. Then the number of
k-element subsets of {p1,pa,...,pn}, which determine less than (g) distinct distances is

at least
c cn n
(-5 ()

for a positive constant c.



24

By Theorem 24 and (34) it follows that for every n-point set P in R? in general position
the fraction of those k-element subsets of P which determine less than (g) distinct distances
is bounded from above by

Zhant )0 ) o (4, £) o (£).

Thus, for k = o(n'/*) almost all k-element subsets of P determine distinct mutual dis-
tances. By Corollary 35 this bound is tight since almost all k-sets of the points of the
regular n-gon determine less than (5) distinct distances for k = w(n'/).

Similar conclusions can be obtained for the n X n-grid G,,. Namely, construct as in the
proof of Theorem 33 a hypergraph H = (G, U £4) with vertex set being the points of
the n x n-grid. Then by Theorem 10 we infer

Thus, by (45) and (46) the fraction of those k-element subsets of the n x n-grid G, with
less than (g) distinct distances is bounded from above by

|E] - (f__gg)) + |4 - @2__44) < E2-1nn Et.lnn
(%) =TT “rTT
k

Hence, for k = o (%) almost all k-element subsets of &, determine distinct mutual
distances.

On the other hand, using the ideas of the proof of Theorem 33 with corresponding
random variable Z for the n x n-grid and using Theorem 10 and (18) one can show by

Chebychev’s inequality, that

_c* 2
C -+ MNinlnn cC-n

E-lnn + Etolnn’

Prob(Z =0) <

n1/2

(Inn)17%
of the n x n-grid determine less than (g) distinct distances.

We remark that one can show that for the corresponding problem for the n?-grid,
d > 3, we also have a 0 — 1 law with threshold function f(n) = /n, as can be seen along
the lines above using (13), Theorem 16 and the remark after Theorem 16. In particular,
for k = o(n'/?) almost all k-element subsets of the n?-grid determine distinct mutual
distances, while for k = w(n'/?) almost all k-element subsets of the n%-grid determine less
than (5) distinct distances.

where ¢, ¢* are positive constants. Thus for k = w ( ) almost all k-element subsets

6 DBs>-Sets

For finite sets X C N a subset 5 C X is called a By-set (or Sidon set) if all pairwise
sums s + 5/, s # 5/, are distinct. Ome is interested in the maximum size of 5. For
the case X = {1,2,...,n} the maximum size of a By-set S C X is asymptotically well
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known by results from Erd8s and Turan to be (1 + o(1)) - n!/2. In [AE] Alon and Erdés
considered the maximum size of By-subsets of the set {1%,22,...,n?} consisting of the
first n squares. Using an idea similar to the one given in the proof of Theorem 30 they
showed the following:

Theorem 36 [AE] For every ¢ > 0 there exists ¢ = ¢(€) > 0 such that for every positive
integer m there exvists a Bqy-set S C {1%2,22,...,n?} with

15| > ¢-n?/3c. (47)

As already observed in [AE], by a theorem of Landau [La] one has the upper bound

15| < ¢ - W Here we will improve inequality (47), namely we will show:

Theorem 37 For every integer n > 1 there exists a By-set S C {12,22,...,n%} with
|S|ZC-TL2/3, (48)

where ¢ > 0 is a constant.

The first idea to prove Theorem 37 might be to consider a complete graph with vertex

set V .=1{12,2%, ..., 0%} and a coloring of the edges, where the edge {12, j2} receives color
i? + j%. Then a totally multicolored complete subgraph on k vertices gives rise to a By-
subset of V' of cardinality k. But Theorem 6 is not applicable to prove Theorem 37, as
by condition (ii) we can only guarantee a totally multicolored complete subgraph of size
less than ¢ - n'/2. But it turns out, that with more refined counting arguments a similar
strategy as used for the proof of Theorem 6 will show (48):
Proof: As in the proof of Theorem 6 we can assume that n is sufficiently large. In
the following ¢y, ¢g,. .., c10 are positive constants. We construct a 4-uniform hypergraph
G = (V,&) with vertex set V = {12,22 ..., n%} and edges {i?, 2, k?,[*} € £ C[V]*if and
only if ¢ + 52 = k%2 + [%2. As the number of representations of any positive integer z by a
sum of two squares is given by ra(2), we have by Theorem 10 that

€| < i (7’22(")) < on®ilnm. (49)

=1

Next we will count the number of 2-cycles in G. To count 0272(g) choose an edge
Ec &, say B = {i?, 52 k% 1?} where 12+ j2 = k% 4 [2. There are six possibilities to choose
a two-element subset of F, say we choose {i?,j2}. Then the number of pairs {22, y?} with
i* 4+ 52 = 2? + y? is bounded from above by ry(i* + j%) < i (cf. [HW]). Now consider
those pairs {2, y?} with i24+22 = j2+y%. Assuming j > ¢, we have j2—i? = (z+y)-(z—y),
i.e. (¥ + y) divides j? — i%. Fixing this divisor fixes both = and y. Hence the number of
such pairs {22, y*} is bounded from above by the number of divisors of (52 — %), which is
at most niiw (see [HW]). Summarizing these considerations, we have

c22(G) < C4-n2-1nn-n1niﬁ ) (50)

Concerning ¢ 3(G), we choose an edge IV € £ and a three-element subset 7' C £. Then
T can be extended in at most two ways to an edge E' € £\ {E}, thus

c23(G) < cg-n*-Inn. (51)
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As in the proof of Theorem 6 we choose a random subset of V' by picking vertices
v € V, independently of the others, with probability

p=n"1/3te. (In n)_1/3 ,
where € < 11—8. Let R be the arising random subset of V. Then,
Prob (|R| = pn)=1-0o(1) (52)
and by (49) we have

n2/3+4e

E(|[R]4ﬂ5|):p4-|5| < W

(53)
The expected number E(cy(R)) of 2-cycles in the subhypergraph induced on R can be
bounded from above by (50) and (51) as follows:

<5
NSt s n1/3+5¢

+ ¢g - W = o(pn) (54)

Inn nn

E(ca(R)) = p° - c22(G) +p° - c23(G) < eq-

for € < L.

As iIllgthe proof of Theorem 6 we infer with (52), (53) and (54) by using Chernoff’s and
Markov’s inequality, deleting one point from each 2-cycle and deleting points of degree
bigger than, say, twice the average degree, that there exists a subset Y C V,|Y| > ¢r-p-n
such that the subhypergraph G of G induced on Y has no 2-cycles, has at most cg - p*- |€]
edges and has maximum degree at most t> = cg - n>¢. By Theorem 7 applied to G we see
that

n2/3—|—5

t-(Inn)t/3

!

a(G) > a(G') > cro- ()3 > c-n?l3

which finishes the proof.

7 Algorithmic Aspects

In this section we will discuss some algorithmic aspects of the selection problems considered
in this article. All these selection problems can be formulated in terms of edge colorings of
complete graphs. The general question is: given an edge coloring f of the complete graph
K., what is the maximum size r(f) of a totally multicolored complete subgraph, i.e. a set
of vertices determining mutually distinct edge colors. Clearly, this problem is NP-hard.
With an edge coloring we associate a hypergraph H = (V(K,,),E U &), where & is the
family of 3-sets of vertices determining two equal edge colors and &, is the family of 4-sets
of vertices that determine two equal colors but do not contain a 3-set from &s. Hence we
have r(f) = a(H), where a(H) is the independence number of H.
We define the probabilistic bound

(M) := max (pn — p°|&3| — p*|&4)),
p€[0,1]
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which is a lower bound for a(H), since we can pick each vertex independently with prob-
ability p and then delete one vertex from each edge occurring in the resulting subhyper-
graph. This gives an independent set of size at least pn — p®|&3| — p*|€4| in the average.
By using derandomization techniques (see [AS]) we can turn this probabilistic argument
into a deterministic algorithm that computes an independent set of the hypergraph and
thus a totally multicolored complete subgraph of the original graph of size at least a(H).
In the following, we will describe the algorithm.

Let the vertex set of K\, be V.= {1,2,...,n}. Let f: E(K,) — T be an edge coloring
and assume that 7" is totally ordered. For ¢ € T let m; = |f~!(¢)| be the number of edges
in color ¢. In a preprocessing we form our hypergraph H = (V,E3U &) by collecting pairs
of edges of the same color. By first sorting the set of edges with respect to their colors this
can be done in time O(n*Inn+ 37, ., m?). Moreover, we use the following data structure.
There is a list of the vertices v € V' and a list of the edges e € & U &;. For each vertex
v € V there are pointers to all edges containing v. For each edge there are pointers to all
vertices contained in it.

Knowing |&3| and |£4], we can easily compute that value p € [0, 1], which maximizes
the expression pn — p3|&3] — p?|€4|. Fix this value of p.

In the following we will examine the vertices of V one by one and decide whether each
vertex belongs to our independent set or not.

Set £ = &3 U &4. Suppose that we already made a partial selection of vertices and let
€1,€2,...,€; be the 0,1-sequence representing this selection, that is, for some vertices we
determined whether they do (¢; = 1) or do not (¢, = 0) belong to our independent set.
Define weight functions f; and F}; depending on €1, €,.. ., ¢€; as follows. For vertices v € V

let
e o<y
f](v)_{p if > j.

For edges e € & set

fitey=T] fiv) -

vEe

Finally, set
Fi=File, 6. 6o1) = > fi(v) =Y file) .
veV eef
Observe that F; is the expected value of the number of vertices minus the number of edges
in a random extension of the selection €, €a,...,¢;.
At the beginning, for j = 0, we have fo(v) = p and fo(e) = plel for v € V and
e € &, thus Fy = a(H). We will construct a 0, 1-sequence €1, €g,...,€, such that the

values F; = Fj(e€1,...,¢;) are nondecreasing for j = 0,1,...,n. In particular, we will have
F, > F.
Now assume that €1, €,...,€;j_1 and F;_y > F;_9 > ... > Iy are given. To determine

€; and thus F;, we compute the two values

W]Q = Fj(€1,€2,...,€]‘_1,0)
le = FJ‘(€1,€2,...,€]‘_1,1).

This can be done in time O(1 4 degy(7)). If W) > W, then we set ¢; = 0 and F; = W7.
Otherwise, if le > W]Q, then set ¢; =1 and F; = le.
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By straightforward calculations or by interpreting I as an expected value, we derive
Fioy=(1—-p)-W+p-W}. (55)

This implies F; > F;_;.

Continuing in this way, we obtain a 0, 1-sequence €1,¢€5,...,€, with F, > Fy. Set
I={veV]|e =1}. We claim that [ is an independent set in H. Assume this is not the
case. Thus there is an edge e € £ contained in /. Let j be the last vertex of e chosen by
our algorithm. Since j was chosen, we know that le > W]Q, which with (55) implies that

Fy=W!>F;_y.
On the other hand, since j is the last chosen vertex of e, we infer that
Fy = Fioy <(£i(3) = i) = (fi(e) = fima(e)) = (1= p) = (1 =p) = 0,
a contradiction. Thus [ is an independent set with
|| = F, > Fy=a(H)

as desired.

Without the preprocessing this algorithm has a linear running time of O(n+|E3|+|E4]).
Since |Esl,|€4] < X cp mi, we have an overall running time of O(n*Inn + 3,0 m?).

By our former results we obtain the following typical consequences. By Theorem 28,
given a set P of n points in R? in general position, this algorithm finds in sequential time
O(n®) a subset X C P with mutual distinct distances of size at least ¢ - n'/3, where ¢ is a
positive constant. Moreover, by Theorem 24, if the n points of P are in arbitrary position,
then the algorithm finds in time O(n'?/%) a subset X C P with mutual distinct distances
of size ¢ - nl/* for some positive constant c.

On the other hand, we remark that by the method described by Alon, Babai and Itai
[ABI] there is an NC-algorithm that computes a totally multicolored complete subgraph
of size at least ¢ - &(H) for some constant ¢ > 0.

Remark. This research was partly motivated by related problems considered in [EGRT]
which have applications to the problem of distance measuring by using radar or sonar

signals, see [Go] and [GT].
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References

[ABI] N. Arown, L. BaBar aAND A. Ita1r, A Fast and Simple Randomized Parallel
Algorithm for the Maximal Independent Set Problem, Journal of Algorithms
7 (1986), 567-583.

[AKPSS] M. Ajtarl, J. KoMLos, J. PINTZ, J. SPENCER AND E. SZEMEREDI, Extremal
Uncrowded Hypergraphs, Journal of Combinatorial Theory Ser. A 32 (1982),
321-335.



Point Sets With Distinct Distances 29

[AE]

[ALR]

[Dp]

[DLR]

[GT]

[Gu]

N. ALoN AND P. ErDOS, An Application of Graph Theory to Additive Num-
ber Theory, Furopean Journal of Combinatorics 6 (1980), 201-203.

N. Aron, H. LEFMANN AND V. RODL, On an Anti-Ramsey Type Result,

Colloquia Mathematica Societatis Jdnos Bolyai, 60. Sets, Graphs and Numbers,
Budapest (1991), 9-22.

N. AroN aND J. SPENCER, The Probabilistic Method, Wiley & Sons, New
York (1992).

D. Avis, P. ERDOs AND J. PacH, Distinct Distances Determined by Subsets
of a Point Set in Space, Computational Geometry 1 (1991), 1-11.

K. CLAarksoN, H. EDELSBRUNNER, L. GuiBAs, M. SHARIR AND E. WELZL,
Combinatorial Complexity Bounds for Arrangements of Curves and Spheres,
Discrete and Computational Geometry 5 (1990), 99-160.

H. DavENPORT, Analytic Methods for Diophantine Equations and Diophan-
tine Inequalities, Campus Publishers (1962), 1-30.

R. A. Dukg, H. LEFMANN AND V. RODL, On Uncrowded Hypergraphs,
preprint, (1993).

P. ErRDOs, Some Combinatorial and Metric Problems in Geometry, Intuitive
Geometry, Coll. Math. Soc. Jdnos Bolyai 48 (K. Boéroczky and G. Fejes T6th,
eds.), North-Holland, Amsterdam-New York (1987), 167-177.

P. ErRDOs AND P. C. FIsHBURN, Multiplicities of Interpoint Distances in
Finite Planar Sets, preprint, (1991).

P. ErDOs AND R. GUy, Distinct Distances between Lattice Points, Flemente
der Mathematik 25 (1970), 121-123.

P. ErDOs, R. L. Granam, I. Rusza AND H. TAYLOR, Bounds for Arrays
of Dots with Distinct Slopes or Lengths, Combinatorica 12 (1992), 39-44.

P. FisaBurN, Convex Polygons with Few Vertices, Dimacs Technical Report
92-17 (1992).

7. FirEDI, The Maximum Number of Unit Distances in a Convex n-gon,
Journal of Combinatorial Theory, Ser. A 55 (1990), 316-320.

S. W. GoromB, Construction of Signals with Favourable Correlation Prop-

erties, Surveys in Combinatorics London Mathematical Society Lecture Note
Series 166 (1991), 1-39.

S. W. GoromMB aND H. TAvLOR, Two-dimensional Synchronization Pat-
terns for Minimum Ambiguity, IEFE Transactions Information Theory I'T-28
(1982), 600-604.

R. K. Guy, Unsolved Problems in Number Theory, Springer Verlag, New
York (1981), 132-133.



30

G. H. Harpy, E. M. WRrIGHT, An Introduction to the Theory of Numbers,
Ozxford University Press (1979).

E. LAnDAU, Handbuch der Lehre von der Verteilung der Primzahlen, Teubner
Verlag, Leipzig (1909).

J. PacH AND M. SHARIR, Repeated Angles in the Plane and Related Prob-
lems, Journal of Combinatorial Theory Ser. A 59 (1992), 12-22.

S. Ramanusan, Collected Papers, Chelsea Publishing Company (1962), 133-
135.

J. SPENCER, E. SzEMEREDI AND W. T. TROTTER, Unit Distances in the

Euclidean Plane, Graph Theory and Combinatorics, Academic Press, London
(1984), 253-278.

T. THIELE, Point Sets with Distinct Slopes or Lengths, preprint, (1993).

R. C. VAuGHAN, The Hardy-Littlewood Method, Cambridge University Press
(1981), 1-25.

B. M. WiLsoN, Proofs of Some Formule Enunciated by Ramanujan, Proceed-
ings London Mathematical Society 21 (1923), 235-255.



