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Abstract

The extremal function Ex�u� n� �introduced in the theory of Davenport�Schinzel se�
quences in other notation� denotes for a �xed �nite alternating sequence u � ababa � � �

the maximum length of a �nite sequence v over n symbols with no immediate repeti�
tion which does not contain u� Here �following the idea of J� Ne	set	ril� we generalize
this concept for arbitrary sequence u� We summarize the already known properties
of Ex�u� n� and we present also two new theorems which give good upper bounds
on Ex�u� n� for u consisting of �two� smaller subsequences ui provided we have good
upper bounds on Ex�ui� n�� We use these theorems to describe a wide class of se�
quences u �
linear sequences
� for which Ex�u� n� � O�n�� Both theorems are used
for obtaining new superlinear upper bounds as well� We partially characterize linear
sequences over three symbols� We also present several problems about Ex�u� n��
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� Introduction

In this paper we shall investigate the maximum length Ex	u� n
 of �nite sequences
over n symbols not containing a �xed sequence u� We search for sequences u for
which there is a linear upper bound on Ex	u� n
� We call them linear sequences�
First we give a brief informal overview of results concerning extremal problems of this
type 	belonging to a branch which could be called Extremal theory of sequences
�
After that all necessary de�nitions will be introduced� The �rst section concludes
by the formulation of our main result� we present two operations which enable
us to derive upper bounds on Ex	u� n
 from upper bounds for shorter u� In the
second section we summarize the properties of Ex	u� n
 which are useful in the
proofs� In the third section we show four applications of our operations� we prove
the linearity of certain relatively complicated sequences� we show on examples how
to derive nonlinear upper bounds on Ex	u� n
� we discuss the linearity of sequences
over three symbols and we describe which linear sequences we are able to obtain at
present� The remaining two sections are devoted to the proofs of the main theorems�
In the second and in the third sections we list some problems which might stimulate
further research in this area�

��� History

Davenport�Schinzel sequences are �nite sequences over n symbols with no immediate
repetition of the same symbol which contain no �ve�term alternating subsequence
	or� more generally� no alternating subsequence of the length s
� Davenport and
Schinzel posed ��� the problem to estimate the maximum length of such sequences�
They proved in ��� Ex	ababa� n
 � O	n� log n
 	Ex	ababa� n
 � O	n� log n� log log n

in ���
 and Ex	ababab � � � � n
 � O	n� exp	

p
n
 	s �xed
 which was improved by

Szemer�edi ���� to Ex	ababab � � � � n
 � O	n� log� n
� As usual log� n denotes the
minimum number of iterations of the power function �m 	starting with m � �

which are needed to get a number bigger or equal to n� However� the problem
whether Ex	ababa� n
 � O	n
 remained open until ���� when it was answered ���
by Hart and Sharir in the negative� they proved Ex	ababa� n
 � �	n��	n

 where
�	n
 is the inverse to the Ackerman function and goes to in�nity but extremely
slowly� Later simpler constructions proving Ex	ababa� n
 � �	n��	n

 were found
	 ����� ����
� M� Sharir ���� derived the upper bounds 	ababab � � � is of the length s


Ex	ababab � � � � n
 � O	n��	n
O���n�
s���
�

Agarwal� Sharir and Shor ��� found almost tigh upper and lower bounds�

Ex	ababab � � � � n
 � n�����n��
s��

� log� ��n��Cs�n� for s � � odd

Ex	ababab � � � � n
 � n�����n��
s��

� �Cs�n� for s � � even

Ex	ababab � � � � n
 � �	n��Ks����n��
s��

� �Qs�n�
 for s � � even
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where Ks � �
� s��

�
��
and the functions Cs	n
 and Qs	n
 are asymptoticaly smaller

then the main terms in the exponent� For s � � they found a stronger estimate
Ex	ababab� n
 � �	n����n�
�
F�uredi and Hajnal ��� investigated a similar problem what is the maximum number
of ��s in a ��� matrix of the size n� n if some con�gurations are forbidden�
The primary motivation of Davenport�Schinzel sequences was geometrical and now
they play an important role in computational geometry� See the books ��� and ����
for more information and references�
The function Ex	u� n
 extending functions Ex	ababa� n
 resp� Ex	ababab � � � � n
 was
de�ned in ���� Note here that this de�nition which follows in the next subsection
was suggested by J� Ne�set�ril� Some other results from ��� will be mentioned in the
second section� In ��� it was proved that

Ex	u� n
 � n��O���n�
juj���

	juj denotes the length of u
 for any �xed �nite sequence u� Thus� from the practical
point of view� Ex	u� n
 has a linear upper bound for any u� In this paper we study
the question for which u actually Ex	u� n
 � O	n
 and we give a partial answer to
it� It is easy to prove that it holds for u � abab but it is not so easy to prove the
same thing for u � aabbaabb� The more general sequence

x� � � � x�x� � � � x� � � � xk � � � xkx� � � � x�x� � � � x� � � � xk � � � xk

is linear as well 	 ���
 but here we prove stronger results�

��� De�nitions

For any �nite sequence u we denote by juj the length of u� by S	u
 the set of all
symbols occuring in u and by kuk the size of S	u
� Thus kuk � juj for all u� The
sequences for which equality is achieved are called chains� Hence in chains no symbol
repeats�
Two sequences u � a�a� � � � an and v � b�b� � � � bn of the same length are equivalent
if there exists a bijection f � S	u
� S	v
 such that f	ai
 � bi for all i � �� �� � � � � n�
Thus u and v coincide after a renaming of symbols� The notation u � v means that
u is a subsequence of v� We say that v contains u� formally u � v� if u is equivalent
to some t� t � v�
We shall refer to the occurrences of a symbol a � S	u
 in the sequence u as to
a�occurrences� The sequence u � aa � � � a� juj � i is denoted shortly by ai�
The mirror image an � � � a�a� of the sequence u � a�a� � � � an is denoted by �u� The
sequence u � a�a� � � � am is called k�regular if ai � aj� i 	� j implies ji 
 jj � k�
Thus any at most k consecutive elements in u are di erent to each other� Davenport�
Schinzel sequences are ��regular�

De�nition �����

Ex	u� n
 � maxfjvj j u 	� v� v is kuk�regular� kvk � ng



�

where u is a �xed sequence� v is arbitrary sequence and n � � is an integer�

We investigate the behaviour of this function for u �xed and n growing to in�nity�
Sometimes a more general de�nition will be useful�

De�nition �����

Ex	u� n� l
 � maxfjvj j u 	� v� v is l�regular� kvk � ng

where l � kuk is an integer�

Obviously Ex	u� n
 � Ex	u� n� l
 � kuk 
 � for any chain u and Ex	u� n� l
 � n for
any nonchain u� Also Ex	ai� n
 � 	i
 �
n and Ex	abab� n
 � �n 
 �� Our interest
is focused on the set

De�nition �����
Lin � fu j Ex	u� n
 � O	n
g�

We call its elements linear sequences� Other sequences� for instance ababa� are called
nonlinear�

��� Results

The following two theorems are the main result of this paper�

Theorem A Suppose that u � u�a
�u� and v are two sequences such that S	u
 �

S	v
 � � and a is a symbol� If v is not a chain thenEx	u�avau�� n
 � O	Ex	v� �Ex	u� n


�
In the case v is a chain Ex	u�avau�� n
 � Ex	u� n
 holds�

Theorem B Suppose a� b are two symbols and u � u�a
�u�a is a sequence such that

b 	� S	u
� Then Ex	u�abiau�abi� n
 � �	Ex	u� n

 for any i � ��

We are interested in linear sequences� For them it follows immediately

Consequence A Let u� v � Lin be as in Theorem A� Then u�avau� � Lin�

Consequence B Let u � Lin and b be as in Theorem B� Then u�ab
iau�ab

i � Lin
for all i � ��

We use both consequences in the obvious manner� by repeated applications of both
transformations u� v � u�avau� and u � u�ab

iau�ab
i we can generate a wide class

of linear sequences�
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� Properties of Ex�u�n�

Fact ��� Suppose two sequences u and v and two integers l � k � kuk are given�
Then for any n � �

�� Ex	u� n� k
 is �nite and Ex	u� n� k
 � O	juj�kuk�nkuk
�
�� Ex	u� n� l
 � Ex	u� n� k
 � 	Ex	u� l
 �� k
 ! �
Ex	u� n� l
 �

�� If v � u then Ex	v� n
 � O	Ex	u� n

� Especially if u is linear then v is
linear too�

	� Ex	u� n
 � Ex	�u� n
�

Proof� The �rst claim follows from Pigeon�Hole argumentation 	we mentioned in
the Introduction that a far stronger estimate holds 	 ���
 
� The second inequality in
the second claim is obtained by deleting occurrences by a a greedy algorithm� For
both proofs we refer to ���� The �rst inequality as well as the fourth claim are obvi�
ous� We prove the third claim� Suppose w is a kuk�regular sequence not containing v�
Hence it cannot contain u and therefore Ex	v� n� kuk
 � Ex	u� n� kuk
 � Ex	u� n
�
The second inequality in �� yields the estimate

Ex	v� n
 � Ex	v� n� kvk
 � O	Ex	v� n� kuk
 � O	Ex	u� n

�

The reason why we exclude from the following considerations chains is that the
extremal function of any chain is constant and hence for these singular sequences
the nice estimates are not valid�

Fact ��� Suppose u� v and w are three sequences� i � �� j � � are two integers and
a is a symbol such that au is not a chain� Then for n � �

�� Ex	aiu� n
 � �	Ex	au� n

� Ex	uai� n
 � �	Ex	ua� n

�

�� Ex	wajv� n
 � �	Ex	wa�v� n

�

Proof� See in ����

Let us reformulate Fact ���� Suppose the sequence u is written in the exponential
form u � ai�� a

i�
� � � � a

ir
r � ai 	� ai��� ij � � 	note that i� � i� � � � � � ir � � i 

u is ��regular
� The reduced sequence is de�ned by red	u
 � aj�� a
j�
� � � � ajrr where

j� � jr � � and jk � minf�� ikg for � � k � r� The fully reduced sequence is de�ned
by fred	u
 � a�a� � � � ar�

Fact ��� Ex	u� n
 � �	Ex	red	u
� n

 for any sequence u and any integer n � �
provided that red	u
 is not a chain�



�

Proof� Follows from the previous Fact ����

There is the question whether Ex	u� n
 � �	Ex	fred	u
� n

 	suppose fred	u
 is
not a chain
 which is equivalent to the following problem�

Problem ��� Does Ex	ua�v� n
 � O	Ex	uav� n

 hold for any symbol a and all
sequences u� v 
provided uav is not a chain��

Fact ��� Suppose i � � is an integer� u is a sequence over two symbols 	kuk � �

and a� b are two symbols� Then

�� aibiaibi is linear�

�� ababa is nonlinear�

�� u is nonlinear i ababa � u�

Proof� For the proof of the �rst statement we refer to ���� Or apply Consequence
B to the sequence a�i� The second claim is proved in ����
We deduce the last statement from the �rst two� If ababa � u then clearly u is
nonlinear� If the sequence u is over two symbols and does not contain ababa then
clearly u � am�bm�am�bm� wheremi � �� Thus u � ambmambm form � max	mi j i �
�� �� �� �
 and u is linear according to �� and according to �� of Fact ����

� Applications of Theorems A and B

��� Linearity of abcdcbabcd

The sequence w	k� i
 � ai�a
i
� � � � a

i
ka

i
�a

i
� � � � a

i
k which we mentioned in Introduction is

a k�symbol analog to aibiaibi� It was proved in ��� by methods di erent from those
presented here that w	k� i
 is linear� Now we prove a stronger result�

Theorem ����� The sequence z	k� i
 � ai�a
i
� � � � a

i
k��a

i
ka

i
k�� � � � a

i
�a

i
�a

i
� � � � a

i
k��a

i
k�

where the symbols a�� a�� � � � ak are mutually distinct� is linear for all i� k � ��

Proof� By induction on k� For k � � the sequence z	�� i
 � a�i is linear� Suppose
that the assertion holds for k � �� Thus ai�a

i
� � � � a

i
k��a

�i
k a

i
k�� � � � a

i
�a

i
�a

i
� � � � a

i
k��a

i
k �

z	k� �i
 is linear because z	k� �i
 is a linear sequence� Applying Consequence B we
conclude that z	k ! �� i
 is linear as well�
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��� Superlinear bounds

Despite the fact that we stress the linear case here we cannot resist the temptation
to present an application of our theorems to nonlinear sequences� The di"culty
is that the strong superlinear bounds of ��� and ��� were derived only for the ��
regular case and we need a bit more here� However� it may be checked that the
method of ��� giving Ex	ababa� n
 � �	n�	n

 works for aibiaibiai as well and so
Ex	aibiaibiai� n
 � �	n�	n

� We present two examples of new strong superlinear
upper bounds� It is possible to derive other similar results�

Theorem �����

�	n�	n

 � Ex	abacdcdcaba� n
 � O	n��	n



Proof� The lower bound follows trivially from ababa � abacdcdcaba� The upper
bound follows from Theorem A�

Ex	abacdcdcaba� n
 � O	Ex	ababa� �Ex	aba�ba� n


 �

� O	O	n�	n

��	O	n�	n



 � O	n��	n



where �	O	n�	n


 � O	�	n

 follows from the extreme slow growth of �	n
�

Theorem �����
Ex	abacdcabacd� n
 � �	n�	n



Proof� This result follows from Theorem B�

Ex	abacdcabacd� n
 � �	Ex	abac�abac� n

 � �	Ex	aba�ba� n

 � �	n�	n

�

��� Linear sequences over three symbols

The third point of Fact ��� gives a complete characterization of linear sequences
over two symbols� We would like to obtain a similar characterization for the whole
set Lin of linear sequences but this seems to be a hard task� Though we are unable
to decide linearity even in the slightly more general case of sequences over three
symbols� we give for these sequences a characterization theorem which puts away
only few sequences as undecided�

Theorem ����� Suppose u is a sequence over three symbols 	kuk � �
 and neither
u nor �u contains any of the three sequences

ababa cababcb acbabcb�

Then u is a linear sequence�



�

Proof� Suppose that ababa 	� u� It is not di"cult to show that any ��regular se�
quence u� ababa 	� u� kuk � � is contained in one of three sequences u� � ababcbc� u� �
abcbabc and u� � acababcb� Thus ababa 	� u� kuk � � implies u � u�	i
 or u � u�	i

or u � u�	i
 	for large i
 where u�	i
 � aibiaibicibici� similarily for u�	i
 and u�	i
�
But� as may be deduced from Consequence B and Fact ������� u�	i
 and u�	i
 are
linear 	actually u�	i
 � z	�� i

� Hence u is linear or u � u�	i
�
Using Consequences A and B it may be proved that any subsequence of u�	i
 which
does not contain any of the four sequences s� � cababcb� s� � acbabcb� s� � acabacb
and s� � acababc is linear� Thus u is linear or u  sj for some j � f�� �� �� �g� But
s� is equivalent to �s� and s� is equivalent to �s�� We are �nished�

In the opposite direction we are able to say only that ababa � u implies the nonlin�
earity of u� The linearity of three sequences over three symbols u� � acababcb� s� �
cababcb and s� � acbabcb remains open�

Problem ����� Are u�� s� and s� resp� u�	i
� s�	i
 and s�	i
 linear�

��� How to get many linear sequences

We conclude this section by a compact description of the widest class of sequences
M such that M � Lin may be proved from above�
Let M be the minimal 	to inclusion
 set of sequences satisfying the following rules

�� ai �M for any symbol a and any integer i� i � ��

�� If u � u�a
�u� and v 	a is a symbol
 are two sequences of M such that S	u
 �

S	v
 � � then u�avau� lies in M as well�

�� If u � u�a
�u�a 	a is a symbol
 is a sequence of M and b� b 	� S	u
 is a new

symbol then u�ab
iau�ab

i lies in M for any i � � as well�

�� If u is a sequence of M and v� v � u is another sequence then v lies in M as
well�

�� If u is a sequence of M then �u lies in M as well�

Then

Theorem ����� M � Lin

Proof� We see immediately that the �rst and the last two rules preserve linearity
and hence it su"ces to prove only that the set Lin is closed on the second rule as
on the third one� But this is exactly the statement of Consequence A and B�

We present� as a concrete example of an application of the previous theorem� three
linear sequences� The reader will be surely able to establish how the previous �ve
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rules were used to derive these sequences as well as 	s
he will be able to obtain many
others�

Example
The following three sequences belong to M and therefore they all are linear�

ababcbcdcdedefefgfg ccaaccaabbdefedefbabb ccaaccabgggbdefedefbbbaabbgg

It is worth noting that u � M i fred	u
 � M � Hence the answer to Problem ���
is a"rmative if we restrict ourselves to M � This supports the conjecture that the
change of any exponent in u does not in#uence 	except the trivial case of a chain

the growth rate of Ex	u� n
�

Problem ����� Characterize the set Lin� Are there ��regular linear sequences over
n symbols which are longer than �n 
 ��

This bound is achieved for instance by z	n� �
 or by the sequences which are con�
structed as the �rst sequence in the example above�

Problem ����� Suppose B is the set of all minimal 	to �
 nonlinear sequences�
What can be said about the elements of B� Is B �nite�

The set Lin is closed to � 	u � v � Lin� u � Lin
 and thus B characterizes Lin�
u 	� Lin i there is a sequence v that v � B� v � u� The set B serves for Lin as
a collection of forbidden pictures� An immediate observation is that ababa � B�
Another observation� nontrivial� is that the set B must contain at least two elements�
the simple and nice construction of ���� proving Ex	ababa� n
 � �	n�	n

 proves
also implicitely Ex	w�n
 � �	n�	n

 where w � abcbadadbcd but ababa 	� w� Thus
there is a sequence u�� u� 	� ababa� u� � w� u� � B� For details we refer to �����

� Proof of Theorem A

Suppose a is a symbol and u � u�a
�u� and v are two sequences such that S	u
 �

S	v
 � �� We denote by t the sequence u�avau��
We start with the simpler case of Theorem A when v is a chain� Suppose w is a
ktk�regular sequence not containing t� We show that w cannot even contain u� Let
s � w be equivalent to u� The ktk�regularity of w implies that there occur kvk
distinct symbols between the two a�s in s which are not elements of S	s
� Thus
t � w which is a contradiction� We get an inequality Ex	t� n� ktk
 � Ex	u� n� ktk
�
Hence Ex	t� n
 � Ex	t� n� ktk
 � Ex	u� n� ktk
 � Ex	u� n� kuk
 � Ex	u� n
�

Before proving the �rst part of Theorem A we give an auxiliary lemma� We say that
a nondecreasing integral function f � f�� �� � � �g � f�� �� � � �g is big if

P
i f	ni
 �

cf	
P

ni
 for some �xed constant c for any sum of integers
P

i ni�



��

Lemma ��� The function Ex	u� n
 is big for any nonchain u�

Proof� We call in this proof a sequence u irreducible if there does not exist a
nontrivial decomposition u � u�u� such that S	u�
 � S	u�
 � �� Otherwise we
call it reducible� It is easy to see that Ex	u� n
 is big with constant c � � for any
irreducible u� Indeed� if n � n� ! n� ! � � � ! nm then by concatenation of m kuk�
regular sequences vi� u 	� vi� kvik � ni� jvij � Ex	u� ni
� S	vi
 � S	vj
 � � we get
a kuk�regular sequence v � v�v� � � � vm� kvk � n not containig u which proves the
desired inequality� To manage the case of reducible sequences we need the following
claim�

Claim Ex	u�u�� n
 � O	Ex	u�� n
 ! Ex	u�� n

 for any two sequences u�� u��
S	u�
 � S	u�
 � � except when ju�j � ju�j � ��
Proof� Suppose v is ku�k!ku�k�regular� jvj � c	Ex	u�� kvk
!Ex	u�� kvk

 for some
large �xed constant c� We show that this implies u�u� � v� We split v � v�v�� jv�j ��
jv�j �� �

�
c	Ex	u�� kvk
!Ex	u�� kvk

� There is a sequence t� t � v� equivalent to u��

After deleting all a�occurrencess� a � S	t
 from v� we get a ku�k�regular subsequence
of v� long enough to contain inevitably u�� Thus u�u� � v which proves the claim�

For a given reducible nonchain sequence u we decompose u � u�u� � � � um where ui
are irreducible and S	ui
 are mutually disjoint� The previous claim yields Ex	u� n
 �
O	Ex	u�� n
 !Ex	u�� n
 ! � � �!Ex	um� n

� Any term of this sum is a big function
and Ex	ui� n
 � O	Ex	u� n

 	�� of Fact ���
� Hence the lemma follows�

Now we are able to continue in the proof� Let u� v� t be as above� v is a nonchain
and w is a ktk � kuk! kvk� regular sequence not containing t� Let f � f�� �� � � �g �
f�� �� � � �g be a nondecreasing big function that will be speci�zed later� We take the
leftmost occurrence in w and add occurrence after occurrence maintaining in every
step the condition jsj � f	ksk
 for currently constructed contiguous subsequence s
of w� In case we get equality we �nish s and start a new s by the next occurrence�
On the end we get the decomposition

w � w�w� � � �whw	� jwij � f	kwik
� i � �� jw	j � f	kw	k
�

We need f	n
 be su"ciently large but not too much� we need namely�

	
� f	�
 � Ex	t� �kuk 
 �
�

	

� f	n
 � �
kvk	kuk! kvk
	Ex	v� n
 ! kuk
 for any n � ��

	


� f	n
 � O	Ex	v� n

 for n � ��

Thus the choice f	n
 � dEx	v� n
 for a large constant d clearly meets all conditions
	$
�	$$
 and 	$$$
� Obviously f	n
 is nondecreasing and big because Ex	v� n
 is�
For any i � �� �� � � � � h let w�

i � w
�
i � wi be such that kw�

i k � jw�
i j � kwik 	we take for

any x � S	wi
 exactly one x�occurrences
� Thus jw�
i j � �kuk 
 � according to 	$
�
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Then we choose w��
i � w

��
i � w�

i 	i � �
 such that jw��
i j � jw�

i j 
 	kuk 
 �
 � �
� jw�

i j
and that the two sequences

wodd � w��
� w

��
� � � � w��

h��� weven � w��
� w

��
� � � �w��

h

	suppose for simplicity h is even
 are kuk�regular� This is achieved by deleting at
most kuk
� occurrences from w�

i which equal to one of the last kuk
� occurrencess
of w�

i��� It su"ces to show wodd 	 u�weven 	 u� Then conclude�

jwj �
hX

i��

jwij! jw	j �
hX

i��

f	jw�
i j
 ! f	kw	k
 �

hX

i��

f	�jw��
i j
 ! f	kw	k
 �

�
hX

i odd

f	�jw��
i j
 !

hX

i even

f	�jw��
i j
 ! f	kw	k
 �

	bigness of f


� cf	�jwoddj
 ! cf	�jwevenj
 ! f	kwk
 � �cf	�Ex	u� kwk

 ! f	kwk
 �

	property 	$$$
 


� �cdEx	v� �Ex	u� kwk

 ! dEx	v� kwk
 � O	Ex	v� �Ex	u� kwk


�

Suppose now on the contrary that� say� wodd contains u 	the sequence weven is treated
similarily
� Thus u� � u��	a

�
�u�� � wodd is equivalent to u� The two a��occurrencess
must lie in two distinct segments w��

�i��� w
��
�j��� i � j for there is no repetition in

any w��
i and hence u��a

�w�ja
�u�� � w� Now we proceed as in the proof of the claim

above� we delete all x�occurrencess� x � S	u�
� from w�j and obtain a kvk�regular
subsequence w�

�j� w
�
�j � w�j� Clearly

jw�
�jj �

kvk
kuk! kvkjw�jj 
 kuk

which follows from the fact that the deletion of all occurrencess of a symbol from a
k�regular sequence s yields a k
 ��regular subsequence s� of s of the length at least
k��
k
	jsj 
 �
� But then� according to 	$$
�

jw�
�jj �

kvk
kuk! kvk�

kuk! kvk
kvk 	Ex	v� kw�jk
 ! kuk

 kuk �

� Ex	v� kw�jk
 � Ex	v� kw�
�jk


and v � w�
�j� Consequently t � u�avau� � w which is a contradiction�



��

� Proof of Theorem B

This theorem is in some sense stronger than Theorem A because in Theorem B the
sequence v � b�i is split into two parts which are inserted in two places of u� in
the middle and on the end� In theorem A we put simply the whole v in the middle
of u� Therefore� one can expect a more complicated proof� We start with three
preliminary lemmas�

Lemma ��� Let l � � be an integer and let �� � � � � � be a constant� Suppose v
is a d l

�
e� regular sequence� Then any v�� v� � v� jv�j � �jvj contains a subsequence

v�� v� � v� such that

�� v� is l�regular

�� jv�j � 	 �
l

�jvj

Proof� Let v and v� be as described� We split v � w�w� � � � whw where jwij �
d l
�
e� i � �� �� � � � h� jwj � d l

�
e� Let

A � fi j jv� � wij � l 
 �g� a � jAj� B � fi j jv� � wij � lg� b � jBj�

Clearly

a! b � h � b jvjd l
�
ec �

�

l
jvj�

Further a	l
 �
 ! bd l
�
e � jv�j � �jvj� Hence �jvj � 	 �

l
jvj 
 b
	l
 �
 ! bd l

�
e and

b �
�

l
jvj

d l
�
e 
 l! �

� 	
�

l

�jvj�

By appropriately taking one occurrences from any v� � wi� i � B we create an l�
regular subsequence v�� v� � v�� jv�j � b�

Suppose u � a�a� � � � am is a sequence� An interval I � haj� aj�ki in u is any
contiguous subsequence ajaj�� � � � aj�k� k � � of length at least �� In the case aj and
aj�k are both a�occurrences we call I an a�interval� An ordered sequence 	u��
 is a
sequence enriched by a linear order 	S	u
� �
�
Let 	u��
� u � a�a� � � � am be an ordered sequence� ai be an a�occurrences in u
	a � S	u

 and c� d � � be two integers� We say that ai is 	c� d
�covered 	in u
 if
there is an interval I in u such that

�� ai � I

�� there are at most c a�occurrencess in I

�� there are �d occurrencess of d 	not necessarily distinct
 symbols xj � S	u
� j �
� � � � d� xj � a in I� each of these symbols occurs at least twice in I�
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Lemma ��� For any ��regular ordered sequence 	u��
 and any integer r � � either
juj � ���rkuk or there are at least �

�	 juj occurrencess in u which are 	�r� r 
 �
�
covered�

Proof� We can suppose that S	u
 � f�� �� � � � � ng and that % coincides with the
standard order of integers� We will de�ne by induction sets U	� U�� � � � � Un of disjoint
intervals in u� For any j � �� �� � � � � n the set Uj will contain some k�intervals�
k � �� �� � � � � j� First put U	 � �� Fix j and suppose that the set Uj�� have been
de�ned� We split all j�occurrencess in u in m �r�tuples T�� T�� � � � Tm and a residual
tuple T of the size at most �r
� so that T� consists of the �r leftmost j�occurrencess�
T� consists of the next �r j�occurrencess etc� De�ne

Sj � fi j at least one j�occurrences of Ti is not 	�r� r 
 �
�covered g�

The elements of Ti� i � Sj group in �r pairs 	x� x�
 of consecutive elements generating
j�intervals hx� x�i� The set Uj consists of all those intervals hx� x�i and of all members
of Uj�� not intersecting them� Now� crucially� �r intervals hx� x�i corresponding to
one Ti� i � Sj intersect all together at most 	r 
 �
 ! � � r intervals of Uj��� This
holds by the de�nition of Sj � Thus

jUjj � �rjSj j! jUj��j 
 rjSj j � �rjSj j! jUj��j

and

jUnj � �r
nX

j��

jSjj�

Since u is ��regular and Un consists of disjoint k�intervals�

juj � �jUnj � �r
nX

j��

jSjj�

The number of occurrencess in u which are 	�r� r
 �
�covered is therefore at least 	
suppose juj � ���rn


juj 

nX

j��

�rjSj j 
 	�r 
 �
n � juj 
 �r

�r
juj 
 �

��
juj � �

��
juj�

In the remaining lemma we force the symbols xj to be distinct� Suppose 	u��
�
u � a�a� � � � am is an ordered sequence� v � u is a subsequence� y � v is an a�
occurrences 	a � S	u

 and c� d � � are two integers� We say that y is strongly
	v� c� d
�covered if there is an interval I in u such that

�� y � I



��

�� there are at most c a�occurrencess in I � v

�� there are �d occurrencess of d distinct symbols xj � S	u
� j � � � � � d� xj � a
in I� any of these symbols occurs at least twice in I�

Lemma ��� Suppose two integers k � �� d � � are given� Then there exist two
integers l � �� c � � and two positive constants ��& � � such that for any l�regular
ordered sequence 	u��
 one of the following statements holds�

�� juj � &kuk
�� there is a k�regular subsequence v� v � u� jvj � �juj such that any occurrence

in v is strongly 	v� c� d
�covered�

Proof� We proceed by induction on d� To prove the statement for d � � we take a
��k�regular ordered sequence 	u��
� Then� according to the previous lemma 	r � �
�
either juj � ����kuk or there is a subsequence v � u� jvj � �

�	
juj whose each element

is in u 	��� �
�covered� We apply Lemma ��� and choose a k�regular subsequence
v� � v� jv�j � 	 �

�	k

�juj� Any element of this sequence is still 	��� �
�covered� We see

that for k � �� d � � we can put c � ��� l � ��k�& � ���� and � � 	 �
�	k


��
Suppose the statement has been proved for d � � and any k � �� Our task is to
derive the existence of the numbers c	k� d!�
� l	k� d!�
�&	k� d!�
 and �	k� d!�

corresponding to a given d! �� k� We show that it is possible to take

l	k� d! �
 � l	��k� d
� c	k� d! �
 � �r� �	k� d! �
 � 	
�

��k

��	��k� d


and

&	k� d! �
 � max	&	��k� d
�
���r

�	��k� d




where
r � d�c	��k� d
 ! ��

Suppose 	u��
 is an ordered l	k� d ! �
�regular sequence� Then� according to the
induction hypothesis� either juj � &	��k� d
kuk or there is a ��k�regular subse�
quence v�� v� � u� jv�j � �	��k� d
juj whose each element is strongly 	v�� c	��k� d
� d
�
covered� Suppose the latter possibility holds�
Now� according to Lemma ���� either jv�j � ���rkv�k or there is a subsequence
v�� v� � v�� jv�j � �

�	
jv�j any element of which is 	�r� r 
 �
�covered in v�� Suppose

the latter possibility holds�
Finally� we choose according to Lemma ��� a k�regular subsequence v�� v� � v� where
jv�j � 	 �

�	k

�jv�j� We prove that any element of v� is strongly 	v�� c	k� d! �
� d! �
�

covered� Let x � v� be an a�occurrences� According to the choice of v� there is an
interval I in v� that 	�r� r 
 �
�covers x� This implies that there are r 
 � symbols
aj � S	u
� j � �� �� � � � r 
 �� aj � a any of which occurs twice in I and that there
are at most �r a�occurrences in I�
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We de�ne Iu as the interval in u spanned by I and show that Iu strongly 	v�� c	k� d!
�
� d!�
�covers x� Property �� is obvious� property �� requires that Iu�v� contains
at most c	k� d ! �
 a�occurrences which is true already for I � Iu � v�� It remains
to show that �� holds�
In case at least d ! � symbols aj are distinct we are �nished� Otherwise 	see the
de�nition of r
 some symbol� say a�� has at least �c	��k� d
 ! � occurrencess in
Iu� Denote the subsequence consisting of these occurrencess as p� Now we make
use of the choice of v� from u� We denote by J the interval in u which strongly
	v�� c	��k� d
� d
�covers the middle element of p� Clearly J � Iu� We see that there
are again d!� distinct symbols satisfying �� for Iu� Namely a� and those d symbols
less then a� any of which occurs twice in J � In the former possibilitties it is easy to
check that juj � &	k� d! �
�

Now we are able to prove Theorem B� Suppose u � u�a
�u�a is a sequence� b 	� S	u


is a new symbol and i � � is an integer� Our task is to prove Ex	u�abiau�abi� n
 �
O	Ex	u� n

� The lower bound Ex	u�abiau�abi� n
 � �	Ex	u� n

 follows from u �
u�ab

iau�ab
i� By Fact ��� it su"ces to prove Ex	t� n
 � O	Ex	u� n

 where t �

u�ab
�au�ab� Put k � d � kuk in the previous lemma and let c� l� � and & be the

corresponding constants guaranteed by this lemma�
Suppose the sequencew is l�regular and does not contain t� We de�ne the linear order
	S	w
� �
 by a � b i the rightmost a�occurrences lies to the right of the rightmost
b�occurrences� In the �rst case of the previous lemma jwj � &kwk� Otherwise there
is a kuk�regular subsequence v� v � w� jvj � �jwj whose each element is strongly
	v� c� kuk
�covered� We show that v does not contain the sequence u� � u�a

�c��u�a�
Suppose on the contrary that s � u��	a

�
�c��u��a
�� s � v is equivalent to u�� We

denote by p the subsequence 	a�
�c�� of s� The middle a��occurrences in the subse�
quence p must be strongly 	v� c� kuk
�covered by an interval I in w� Let J be interval
in w spanned by the �rst and by the last a��occurrences in p� Clearly I � J � There
are kuk distinct symbols xi� xi � a�� i � �� �� � � � kuk and each of them occurs at least
twice in I� By the de�nition of % each of these symbols occurs to the right of s� At
least one of them is not an element of S	s
 and we get t � v which is a contradiction�
Thus u� 	� v and jvj � Ex	u�� kvk
 � gEx	u� kvk
 for some constant g according to
Fact ���� Hence

jwj � �

�
jvj � g

�
Ex	u� kvk
 � g

�
Ex	u� kwk
�

Together

jwj � maxf&kwk� g
�
Ex	u� kwk
g � O	Ex	u� kwk

�

We have proved that
Ex	t� n� l
 � O	Ex	u� n

�

Finally� according to �� of Fact ���� the estimate

Ex	t� n
 � Ex	t� n� ktk
 � O	Ex	t� n� l

 � O	Ex	u� n





��

holds� The Theorem is proved�
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