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Abstract

A halving hyperplane of a set S of n points in Rd contains d a�nely independent
points of S so that equally many of the points o� the hyperplane lie in each of the
two half�spaces� We prove bounds on the number of halving hyperplanes under the
condition that the ratio of largest over smallest distance between any two points is
at most �n��d� � some constant� Such a set S is called dense�
In d � 	 dimensions� the number of halving lines for a dense set can be as much as

�n log n�� and it cannot exceed O�n���� log� n�� The upper bound improves over
the current best bound of O�n���� log� n� which holds more generally without any
density assumption� In d � 
 dimensions we show that O�n���� is an upper bound
on the number of halving planes for a dense set� The proof is based on a metric

argument that can be extended to d � � dimensions� where it leads to O�nd�
�

d � as
an upper bound for the number of halving hyperplanes�
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� Introduction

Dense point sets are sets with bounded ratio of largest over smallest distance between
points
 We present extremal properties of dense point sets for the number of halving
hyperplanes and for the stabbing number of geometric d�uniform hypergraphs
 In
this section� we introduce and discuss notions and results


Dense Sets� Let � � �
 A set S of n points in Rd is ��dense if the ratio of the
maximum over the minimum distance between two points in S is at most �n	�d

We use dense short for ��dense if � is a constant
 Note that values of � that admit
arbitrarily large ��dense sets cannot be arbitrarily small
 For example in R�� � �
�� 


q
	
p
��� � ���� is necessary and su�cient
 Arbitrarily large ���dense sets can

be constructed as the intersection of a triangle grid with a disk
 For our purposes�
it is possible to suppose the minimum distance is �� so S is ��dense if the diameter
of S is at most �n	�d


Various combinatorial extremal problems previously considered for arbitrary
point sets have recently been studied for dense sets
 These include convex and
empty convex subsets �	� 	�� 	��� separation discrepancy ���� mutual avoidance and
crossing families �	��
 The complexity of the convex hull problem for ��dense sets
was determined in �	��


The investigation of dense point sets is motivated by the common discrepancy
between the complexity of algorithms in the worst case and in practical cases
 The
complexity of a geometric algorithm typically depends on certain combinatorial pa�
rameters associated with the geometric data� and it is often the case that these
parameters obtain their extrema only for bizarre and rare data sets
 In particular�
extremal point sets constructed in the literature often exhibit large distance ratios�
sometimes exponential in the number of points
 This is related to the fact that
there are combinatorial types of point con�gurations that require the distance ratio
be at least double�exponential in the number of points� see ���� ���
 Such sets are
unlikely to occur in practical applications
 As a consequence� researchers spend a
substantial amount of time and e�ort battling di�culties that are too rare to be
relevant in practical applications
 The notion of density can be seen as an attempt
to make the theoretical analysis of algorithms more relevant to practice


There are two related concepts
 Random sets of points uniformly distributed
in the unit square� and sets of points with small integer coordinates �grid points�

Dense point sets behave di�erently from such sets� at least in some respect
 For
example� a random set of n points in the unit square is likely to have a pair at
distance O� 	

n
�� and is therefore not dense
 Similarly� a dense set of n points in the

plane can include the vertices of a convex m�gon� m 
 ��
p
n�� which is impossible

for any set of points with integer coordinates between � and some constant timesp
n

It is perhaps worthwhile to mention that dense point sets have been considered in

computer graphics ���� and that they commonly appear in nature �eye�photoreceptor
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distributions� minimum distance constraints for molecules� atoms of proteins� etc
�


Halving hyperplanes� A notion that is closely related to and somewhat more
general than a halving hyperplane is that of a k�set
 A subset T � S of a �nite set
S � R

d is a k�set if cardT 
 k and there is a half�space so that T is the intersection
of S with this half�space
 The number of k�sets� for some �xed k� arises in the
analysis of geometric algorithms� see e
g
 ������	�
 The number of k�sets obtains its
maximum when the points are in general position� which we henceforth assume


The problem of bounding the maximum number of k�sets possible for a set of n
points turns out to be notoriously di�cult� even in d 
 	 dimensions
 The largest
k for which matching upper and lower bounds are known is �� see ����
 The most
di�cult case seems to be when k is roughly n

�
� which is the reason why this case

receives special attention as the problem of bounding the number of halving lines

The best upper bounds for general point sets in R� is O�n���� log� n�� see ����� and
there are constructions of sets with ��n log n� halving lines� �������
 Our results for
dense sets in R� consist of an adaptation of the lower bound in ���� and of the upper
bound O�n���� log� n�


In three and higher dimensions� the problem seems even harder
 The �rst non�
trivial upper bound for d 
 � dimensions has been given in ���
 This bound has
been improved in ������� and the current best bound is O�n
���� as derived in ���
 In
d � � dimensions there are minute improvements over the trivial O�nd� bound based
on algebraic topology arguments about the non�embeddability of certain complexes�
see �		�
 We have O�nd�

�
d � as an upper bound for dense sets in all d � � dimensions


Outline� Section 	 shows the ��n log n� lower bound on the number of halving
lines is asymptotically una�ected by the density assumption
 Section � gives a proof
of the O�n

�
�� log� n� upper bound on the number of halving lines for a dense set of n

points in R�
 The crux of the argument is a reduction to k�sets for about
p
n subsets

of size at most about
p
n each
 Section � considers point sets in R�
 The approach

to proving an upper bound rests on an area argument combined with an observation
about centroids of subsets of the set
 This is extended to d � � dimensions in section
�
 Alternatively� the metric argument can be combined with an upper bound on the
stabbing number of geometric d�uniform hypergraphs known as Lov�asz� lemma ����

This is discussed in section �


� Lower bound in the plane

The constructions in ������� establishing the ��n log n� lower bound on the number
of halving lines are not dense� with minimum distance � they require the maximum
distance be at least some constant times n
 This section shows that asymptotically
the same lower bound can also be obtained for dense sets
 We begin by modifying the
construction in ���� so that the x	�coordinates of the points are contiguous integers




�

Lemma � For any positive even integer m there are points p	� p�� � � � � pm in R� so
that

�i� for all i the x	�coordinate of pi is i� and

�ii� there are at least m


log�

m
�

halving lines�

Proof� Assume �rst that m 
 	 � �k� k � �� and denote the number of halving lines
of a set S by h�S�
 We construct sets Sk� card �Sk� 
 	 � �k� with slightly higher
number of halving lines than claimed� namely h�Sk� 
 �k � �� � �k 
 m

�
log�

�m
�



For k 
 � we have m 
 	� S� 
 f��� ��� �	� ��g� and h�S�� 
 �
 We continue by
induction
 Sk�	 is the union of three sets� T�� T	� T�� each an a�nely transformed
copy of Sk as described below
 By horizontal translation� along the x	�axis� make
sure the points in Ti have x	�coordinates from im�� through �i���m
 Next� shrink
the x��coordinates of all points in Ti by a su�ciently large factor
 Then� move the
points vertically� along the x��axis� so that the shrunk x��coordinates become vertical
displacements with respect to a line� one for each Ti
 The three lines meet in point
��m�	

�
� �� and have slopes �� �� and ��
 The line for T� is x� 
 �� the one for T	 is

x� 
 x	� �m�	
�

� and the one for T� is x� 
 �x	� �m�	
�


 So in fact� the only di�erence
between Sk and T� is in the x��coordinates which are scaled down for T�� the points
in T	 and T� also experience horizontal translation and vertical displacement other
than scaling
 The shrinking factor for each set Ti is chosen su�ciently large so that
any line through two points of Ti separates Ti�	 and Ti��� where indices are taken
modulo �


Any halving line of Ti is also a halving line of Sk�	
 In addition� Sk�	 has m
�

halving lines connecting a point of Ti with a point of Ti�	 each� for i 
 �� �� 	
 It
follows that

h�Sk�	� 
 h�T�� � h�T	� � h�T�� � �m�	


 �h�Sk� � �k�	


 �k � 	��k�	�

To extend this construction to arbitrary positive even m observe that all halving
lines of Sk�	 have bounded slope
 We can thus add equally many points above
and below all these lines and retain them as halving lines
 To satisfy the integer
coordinate requirement� we add the points with contiguous integer x	�coordinates�
starting at 	 � �k � �
 After adding j points above and j points below all halving
lines of Sk� we get a set of m 
 	 � �k � 	j points� which we denote by Pm for later
reference
 We may assume j � 	 � �k� so Pm has fewer than three times as many
points than Sk� which implies the claimed lower bound for h�Pm�


The integer x	�coordinates can be used to control the density of transformed
copies of Pm
 This is done in the lower bound construction below
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Theorem � For any even n � 	 there is a ��dense set of n points in R� with at
least n

	�
log� n� n halving lines�

Proof� We may assume that n � �	�� for otherwise the claim is void
 De�ne
m 
 	 � b

p
n
�
c and M 
 	 � dpn e � �� so m is even and M is odd
 Let Y be the

annulus of points on and between the two circles with radiim and 	m� both centered
at the origin
 For � � i � M � let Ri be the half�line with angle i�	

M
� 	� starting at

the origin
 The intersection Ri � Y is a line segment of length m
 For 	 � � and
� � i �M �nd an a�ne transformation Qi of Pm so that

�i� Qi � Y �

�ii� the distance of any p � Qi from Ri is at most 	� and

�iii� the distance between any two points in Qi is at least �


For example� shrink the x��coordinates of the points in Pm to within ��	� 	�� rotate
the set by i�	

M
� 	� about the origin� and translate along Ri until all points lie in Y 


De�ne S 

SM

i�	Qi
 For su�ciently small 	 � �� every halving line of Qi is also a
halving line of S


Finally� we adjust the number of points from cardS 
 M � m 
 �	dpne �
���	b

p
n
�
c� to n
 Notice that

n � n�

p
n

	
� �� � cardS � n �

��
p
n

	
� n� �	m�

We can delete points from �	 sets Qi until a set S� � S with cardS� 
 n remains

By choosing half these points from Qj� � � j � �� and the other half from Qj�
M�	
�

� j � M�		
�

� the halving lines of the remaining sets Qi are still halving lines of
S�
 Therefore�

h�S �� � �M � �	� � h�Pm�
� �	

p
n� �� �

p
n� �

�	
log�

p
n� �

�

� n

�	
log� n� n�

The diameter of S� is less than �m and the number of points is n � �m�
 The
density of S� is therefore � � �mp

�m�

 	


Remark� It is possible to improve the density factor by setting m �
qp

������ �
p
n � ����

p
n and M � �p

�
� 	�m �

q
���

p
� � pn � 	���

p
n and by placing the m

points of Qi alternately at distances roughly m� 	
�
� m��� 	

�
� � � �� 	m��� 	

�
and at

distances roughly m� �
�
� m��� �

�
� � � �� 	m��� �

�
from the origin
 The diameter is

smaller than �m� so the density is at most 	
qp

��� � ����
 The number of halving



�

lines is at least n
	�
log� n�n
 For any �xed � �

q
	
p
��� � ����� we can construct a

��dense set of even size n with at least cn log n�n halving lines� where c 
 c��� � �
is independent of n� as follows
 Put m	 
 	

�
�
p
n and m� 
 �	

�
� � 	�

p
n� where

	 
 	��� � � is su�ciently small
 Let Y be the annulus of points on and between
the two circles with radii m	 and m�� both centered at the origin
 We �nd a set S
of �m��m	 �m�� points in the annulus Y similarly as in the proof of Theorem 	 so
that S has at least cn log n� n halving lines
 Let T be a set of points of a triangle
grid with minimum distance � which is symmetric around the origin and does not
contain the origin
 Let T � be the intersection of T with the disk of radius m� � �
centered at the origin
 We may certainly assume that each of the cn log n�n halving
lines of S cuts T � into two equal�sized parts
 Then� S 	 T � has at least cn log n � n
halving lines
 If 	 � � was chosen su�ciently small� S 	 T � has at least n points

Finally� we delete �card �S 	 T �� � n��	 pairs of points of T �� each pair symmetric
around the origin� so that exactly n points remain in S 	T �
 This gives us a ��dense
set of size n with at least cn log n� n halving lines


� Upper bound in the plane

Let fk�n� be the maximum number of k�sets in a set of n points in the plane�
and let f�n� 
 maxffk�n� � � � k � ng
 As mentioned in the introduction�

f�n� 
 O�n
�
�� log� n� is the best known upper bound on f�n�
 We show that ��dense

sets admit smaller bounds
 In particular� the result implies that O�n
�
� � log� n� is an

upper bound for dense sets


Theorem � The number of halving lines of a ��dense set of n points in R� is at
most O��

p
n � f���pn���

Proof� Let S be a ��dense set of n points in R�
 Consider a general direction

 � ��� �� and a line � 
 ��
� with direction 
 so that equally many points of S lie
on both side of �
 The length of � � convS is at most the diameter of S� which is at
most �

p
n
 LetR 
 R�
� be the smallest rectangle that contains the 	

�
�neighborhood

of � � convS� its length is at most �
p
n � �� its width is �� so its area is at most

�
p
n � �
 For each point p � S � R consider the disk Dp 
 fx j jxpj � 	

�
g� where

jxpj is the Euclidean distance between x and p
 The area of R covered by Dp is at
least �




 Since all such disks are disjoint� this implies that

card �S � R� � �
p
n � �
�



�
�

�
� �pn� ��

We say a line h meets R shortside if h meets the two short sides� which have length
� each
 A halving line of S necessarily meets � within convS and thus within R

It follows that if h is a halving line then it meets R shortside if its direction di�ers
from 
 by at most x� where ��

p
n� 	

�
� tan x 
 	

�
� or equivalently� x 
 arctan 	

���pn�	 
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Since �
p
n certainly exceeds �� we have

arctan
�

	�
p
n� �

� �

	�
p
n � �

� �

� � �pn �
�

�� � �pn�

Choose m 
 d� � �pne and assume that all directions 
 
 �� 	
m
�� �

m
�� � � � � m�	

m
� are

general in the sense that no two points of S lie on a line with such a direction
 Two
contiguous directions di�er by less than 	x� so each halving line meets at least one
of the rectangles R�
� shortside


To �nish the argument observe that each rectangle� R� is met shortside by at
most f� 


�
�
p
n� �� halving lines� because they are all split S � R the same way
 It

follows that the total number of halving lines is at most

m � f� �
�
�
p
n � �� 
 O��

p
n � f���pn���

as claimed


Remark� Let fk�n� �� be the maximumnumber of k�sets in a ��dense set of n points
in the plane� and let f�n� �� 
 maxffk�n� �� � � � k � ng� Thus� Theorem � yields

fk�n� �� 
 O��
p
n � f���pn���

where k 
 n
�
� �
 An analogous argument gives also

f�n� �� 
 O��
p
n � f���pn���

Remark� Let us rede�ne R 
 R�
� in the proof of Theorem � to be the smallest
rectangle that contains the 	�neighborhood of � � convS� where 	 � � is a small
positive constant
 In this case� the points of S � R are almost collinear
 We call
S � R

� of size n ��line�dense if there is a line q such that the orthogonal projection
of S to q is a ��dense set in the ��dimensional interpretation


Let lk�n� �� be the maximum number of k�sets in a ��line�dense set of n points
in the plane� and let l�n� �� 
 maxflk�n� �� � � � k � ng� Analogous arguments as

in sections 	 and � yield that for any �xed � � �� 

q
	
p
��� and �� � ��

f�n� �� 
 O�
p
n � l�c	

p
n� ���� 
 O�f�c�n� ����

where c	 and c� are two constants depending only on � and ��

In particular� if the function f�n� �� is smooth as a function of n �i
e
� f�cn� �� 


O�f�n� ��� for any constant c� then

f�n� �� 
 ��
p
n � l�pn� �����

and determining the asymptotic behavior of the maximum number of halving lines
is equally di�cult for dense sets as for line�dense sets
 We believe that the function
f�n� �� �and also the function f�n�� is smooth but have no proof at this moment

Remark� Note that Theorem � can be bootstrapped
 So if dense sets asymptotically
maximize the number of halving lines� then this maximum is O�n polylog n�




�

� Upper bound in space

Let S be a dense set of n points in R�
 As mentioned in the introduction� we derive an
upper bound on the number of halving planes using an area argument for triangles
spanned by points in S
 In particular� we need a lower bound on the total area of a
collection of m such triangles
 We begin with two lemmas
 The collection of subsets
of S with size k is denoted by

�
S
k

�



Lemma � �Lemma A	 Let S be a set of n points with minimum distance � in R��
Then X

fp�qg��S��

�

jpqj � � � n �
� �

Proof� Consider the ordered sequence of the N 

�
n
�

�
distances� x	 � x� � � � � �

xN 
 The pigeon�hole principle implies that for each index i there is a point with
at least �i

n
points at distance xi or less
 So we have at least �i

n
� � points inside

a ball of radius xi
 Because of the minimum distance assumptions we get at least
�i
n
�� pairwise disjoint open balls of radius 	

�
each inside a ball of radius xi�

	
�

 By

dividing volumes we get

	i

n
� � � �xi �

	
�
��

�	
�
��


 ��xi �
�

	
�� � �� � x�i �

It follows that xi �
	
�
� i
n
�
�
� � and therefore

X
fp�qg��S��

�

jpqj 

NX
i�	

�

xi
� �n

�
�

NX
i�	

i�
�
� � � � n�� �

� �

Based on the bound for distances we can now prove a bound for areas of triangles


Lemma 
 �Lemma B	 Let S be a set of n points with minimum distance � and
maximum distance D in R�� Then the total area of m � �	Dn� di�erent triangles
is at least 	

��
m

�
��n

�
� �

Proof� For two points p� q � S consider all third points r � S so that the area of
the triangle pqr is at most A and pq is its longest edge
 The distance from r to
the line through p and q is therefore at most �A

jpqj � and r lies between the two planes
through p and q normal to pq
 The number of points r that can possibly lie inside
this cylinder can be bounded by a packing argument
 After growing by 	

�
in every

direction� the volume of the cylinder is

V 
 �jpqj� ���
	A

jpqj �
�

	
��� � ��A�

jpqj � ��A�
�jpqj
	

�
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because jpqj � � � 	jpqj
 It contains at most 

�
V pairwise disjoint open balls of

radius 	
�
each
 Using Lemma A we get an upper bound on the number of triangles

with area A or less� X
fp�qg��S��

�

�
V � ���A�n

�
� � �	An� �

�D

	
n��

If A	 � A� � � � � � AM is the ordered sequence of the M 

�
n
�

�
triangle areas� we

can rewrite this as

i � ���A�
i n

�
� � �	Ain

� �
�D

	
n��

For i � �Dn� this implies that at least one of ���A�
in

�
� and �	Ain

� exceeds 	
�
�i �

�D
�
n�� � �i

�

 The �rst inequality implies

Ai �
i
�
�

��n
�
�

�

which is weaker than the second inequality provided i � 

�
n

�
� 
 This is indeed the case

if i � �Dn�� because D � 	
�
n

�
� � which can be proved by a straightforward packing

argument
 Finally� the total area of m 
 	i � �	Dn� triangles is at least

i �Ai �
m

	
� �m

�
�
�
�

�� � n �
�

�
�

��
� m

�
�

n
�
�

�

The lower bound on the total area of m triangles is su�cient to prove an upper
bound on the number of halving planes of a ��dense set S
 Assume n is odd and
de�ne k 
 n�	

�

 For every subset T � S of size k� let 
T be the centroid� that is�


T 
 	
k

P
p�T p
 Let Sk be the set of k�fold centroids� that is� Sk 
 f
T j T �

S� cardT 
 kg
 The convex hull of Sk is a three�dimensional convex polytope� Pk

Note that Pk is contained in the convex hull of S� and by density assumption� its
projections to the three coordinate planes have area at most ��n

�
� each
 It follows

that the surface area of Pk is less than ���n
�
� 


We claim that if the plane� h� through points p� q� r � S is a halving plane then
a homothetic copy of the triangle pqr is a face of Pk
 Let U � S be the subset of
points on one side of h� so cardU 
 k � �
 For each x � fp� q� rg� there is a plane
that separates U 	 fxg from S � U � fxg� and therefore 
U�fxg is a vertex of Pk

Furthermore� the centroids de�ned by U	fpg� U	fqg� and U	frg span a triangular
face of Pk
 This face is a homothetic copy of pqr� with scaling factor 	

k

 In summary�

if the plane through points p� q� r is a halving plane then a homothetic copy of
pqr is a face of Pk� and the area of pqr is k� times the area of the corresponding
facet
 Since the surface area of Pk is less than ���n���� the total area of all triangles
corresponding to halving planes is less than �k���n��� � �

�
��n
��
 Lemma B thus

implies the following upper bound on the number of halving planes




��

Theorem � The number of halving planes of an ��dense set of n points in R� is
less than 	� � ����n����

� Four and higher dimensions

The area argument of section � can be extended to Rd� d � �
 To simplify the
argument� only dense sets of n points in Rd are considered� so the diameter is D �
�n

�
d for some constant �
 Suitable positive constants are used throughout this section

and denoted as c� with or without sub� and superscript
 A set T of cardT 
 k�� �
d � � points in Rd spans a k�simplex� �T 
 conv T 
 Its k�dimensional Euclidean
measure is denoted by j�T j
 We let sk�A� denote the number of k�simplices spanned
by the points whose measure is A or less
 All logarithms are to the base 	


Lemma � �Lemma C	 Let S be a dense set of n points in R
d� Then sk�A� is

bounded from above by�
c � nAd for k 
 ��

c � n	��
k
��
d Ad logA� c�nk�

k��
d for 	 � k � d�

Proof� Let F be an �i� ��� at� � � i � d
 The �i� ���dimensional measure of its
intersection with conv S is less than Di�	
 It follows that the d�dimensional measure
of the cylinder of points at distance z� 	

�
of less from F is less than c	�z�

	
�
�d�i�	Di�	


With a di�erent constant� c�	� this is also an upper bound on the number of points
in S at distance z or less from F 


Consider an arbitrary ordering� p�� p	� � � � � pk� of the vertices of a k�simplex �T �
T � S
 For � � i � k� let xi be the distance of pi from the �i� ��� at spanned by
p�� � � � � pi�	
 If z	� z�� � � � � zk is a sequence of distances so that xi � zi for all i� then

j�T j 
 �

k!

kY
i�	

xi � �

k!

kY
i�	

zi� ���

The number of k�simplices for which ��� holds is bounded from above by

c�n

kY
i�	

��zi �
�

	
�d�i�	Di�	��

The number of k�simplices with at least one xi at most � is less than c� � nk �Dk�	

For the others we can assume all zi exceed �� so the upper bound can be simpli�ed
to

c��nD
�k��

kY
i�	

zd�i�	i � �	�

For a given A� we can now derive an upper bound on sk�A�� the number of k�
simplices �T with j�T j � A
 For k 
 � set z	 
 A� get j�T j 
 x	 � A from ���
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and s	�A� � c��nA
d from �	�
 This completes the proof of the �rst inequality in

Lemma C
 For k � 	 we consider all sequences z	 though zk so that zi � �� for all i�
and

Qk
i�	 
 k!A
 Simplices are counted only if all their xi�s exceed �� the others are

covered by the second term on the right side of the second inequality in Lemma C

To consider all sequences we use induction and the fact that

Qk�	
i�	 zi 
 k! A

zk

 So

sk�A� �

Z A

z�	

sk�	�
A

z
� � zd�k�	 �Dk�	dz�

For k 
 	 we get

s��A� � c � nAd �D
Z A

z�	

�

z
dz

� c��� � nAd logA �D�
and for k � � we get

sk�A� � c � nAd logA �D�k��
Z A

z�	

�

zk�	 log z
dz

� c���� � nAd logA �D�k���

The upper bound on sk�A� can be used to prove a lower bound on the total
measure of a collection of k�simplices� all spanned by S


Lemma 
 �Lemma D	 Let S be a dense set of n points in R
d� The total k�

dimensional measure of m � c�� � nk� k��
d k�simplices is at least�

m	� �
d��c � n �

d � for k 
 �

m	� �
d��c � n �d�k	k��


�d� log
�
d m� for 	 � k � d�

Proof� Let A	 � A� � � � � � AM be the ordered sequence of the M 

�

n
k�	

�
k�

simplex measures
 Assume c�� � �c� so the majority of any set of m k�simplices have
all xi exceeding �� see the proof of lemma C
 For k 
 �� we can rewrite the result in
lemma C as i � c � nAd

i � so

mX
i�	

Ai �
�

�cn�
�
d

mX
i�	

i
�
d � c� � m

	� �
d

n
�
d

�

For k � 	 and i � m
�
� 	c�nk�

k��
d � we get i � 	c � n�Ad

i logAi� where � 
 � �
�
k
�

�
�d


Thus

Ai � c� � �i � n��� �d
log

�
d �i � n���

�



�	

For the total measure we get

mX
i�	

Ai � c� � �

n
�
d

mX
i��

i
�
d

log
�
d i

� c�� �
m	� �

d

n
�
d log

�
d m

�

because
Rm
x��

xa

loga x
dx � c��� � m��a

logam



Remark� For d 
 �� k 
 	� and D proportional to n
�
� � the bounds in Lemmas B

and D agree up to the logarithmic factor
 The larger D gets the further the bound
in Lemma D lags behind the one in Lemma B


For k 
 d � �� Lemma D says that m � c�� � nd� �
d �d � ���simplices have total

�d � ���dimensional measure at least

m	� �
d

c � n d��d��
�d� log

�
d m

�
c�

log
�
d n

� nd� �
�
� �

�d
� �

d� �

The exponent of n exceeds d� 	
d
for d � �
 This is worth noticing because the same

argument on centroids which leads to Theorem � in section � implies that

c
D
d�	nd�	 � c�
n

d� �
d

is an upper bound on the total measure of all �d � ���simplices spanning halving

hyperplanes
 It follows that there cannot be m � c�� � nd� �
d such �d � ���simplices�

because this would contradict lemma D


Theorem � The number of halving hyperplanes of a dense set of n points in Rd�
d � �� is less than c � nd� �

d �

� Stabbing number

As described by Santal�o ����� there is a motion�invariant measure on lines in R� with
the property that the measure of lines intersecting a triangle is twice its area
 This
measure can be used to extend Theorem � to the stabbing problem for triangles
de�ned by a ��dense set S � R�
 The measure of lines intersecting the convex hull of
S is bounded by O���n����
 If we take every line with the multiplicity of its stabbing
number in a set of m triangles de�ned by S� then this measure is twice the total
area of these triangles
 Lemma B shows that this area is ��m����n��
�� provided
m � c�n���
 So if the set of triangles has the property that every line stabs at most
O�n�� of them� then m 
 O�����n����� which is the same bound as in Theorem �
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Lov�asz� lemma guarantees that this is indeed the case for triangles that span halving
planes
 Thus� the motion�invariant measure for lines together with Lov�asz� lemma
gives another proof of Theorem � based on the area bound in Lemma B
 The same
can be said about d � � dimensions� Theorem �� and Lemma D
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