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Abstract

A mimicking network for a k�terminal network� N � is one whose realizable external �ows
are the same as those of N � Let S�k� denote the minimum size of a mimicking network for a
k�terminal network� We prove the following results �the values in brackets are the previously
best known results�� S�	� 
 � �
���� S��� 
 � �
���� For bounded treewidth networks we show

S�k� 
 O�k� �
�
k

�� and for outerplanar networks we show S�k� � ��k � � �k�
k����

� Introduction

Network �ows is a problem domain of fundamental importance in computer science and other
areas �e�g�� operations research� engineering� etc��� having a wealth of theoretical and practical
applications ��	� One of the central �and classical� problems in network �ows is the characterization
of the �ow behavior of multiterminal networks� i�e�� networks with k � 
 terminals� �rst motivated
and solved by Gomory and Hu ��	 and later improved and simpli�ed by many others �see e�g��
�
� �� ��	�� The Gomory�Hu approach� as well as its subsequent improvements and simpli�cations�
deal mainly with the case where every vertex of the network is a potential candidate for being a
terminal� However� there may be cases where the number of terminals is much smaller than the
number of vertices in the network� For example� in computing max��ows�min�cuts on networks
that can be decomposed into subnetworks that share a small number of vertices with the rest of the
network� Such a situation appears in hierarchical methods for integrated circuit layout problems�
a circuit �network� is described and processed as a collection of components �subnetworks�� where
each component is in turn described and handled succinctly� i�e�� in terms of the pins that connect
it to the rest of the circuit ��
	�

Under this perspective� there is a recent� renewed interest on the problem of characterizing
the �ow behavior of networks with a small �usually constant� number of terminals ���	� More
precisely� it was shown in ���	 that for a k�terminal network G� there is a set of 
k inequalities that
characterize the feasible �ow values at the terminals �the external �ows�� Moreover� it was shown

that there exists a network M�G� with 
�
k

vertices� of which k are terminals� that has the same
feasible external �ows as G� The network M�G� is called the mimicking network of G� For constant
k this implies that the size of M�G� is bounded by a �maybe large� constant� Mimicking networks
constituted the main building block in the development of a linear time algorithm for computing
a maximum s�t �ow in a bounded treewidth network ���	 and for obtaining an optimal solution to
the all�pairs min�cut problem in the same class of networks �
	�

�This work was partially supported by the EU ESPRIT LTR Project No� ����� �ALCOM�IT��
yMax�Planck�Institut f	ur Informatik
 Im Stadtwald
 ����
 Saarbr	ucken
 Germany� E�mail� fshiva� kv�

zarog�mpi�sb�mpg�de�
zInstitut f	ur Informatik
 Freie Universit	at Berlin
 Takustr� �
 ����� Berlin
 Germany� This author was supported

by the Heisenberg program of the Deutsche Forschungsgemeinschaft� E�mail� wagner�inf�fu�berlin�de�

�



A natural question is whether there are more e�cient constructions of mimicking networks�
i�e�� constructions such that jM�G�j does not depend double�exponentially on k� as this would
immediately lead to more practical algorithms for all problems whose solution is based on the
existence of small mimicking networks�

This question was partially answered for outerplanar networks� More precisely� in �
	 it was
proved that the mimicking network M�Go� of a k�terminal outerplanar network Go has size k�
k���
and moreover M�Go� is also outerplanar� The outerplanarity of the resulting mimicking network
was crucial in the development of better algorithms for computing an s�t min�cut and all�pairs
min�cuts in planar networks �
	 �an improvement that cannot be achieved using the construction
of mimicking networks given in ���	��

In this paper� we make a step forward in constructing smaller mimicking networks� We have
two types of results�

The �rst result concerns the case of general undirected k�terminal networks for speci�c values
of k� namely� for k � �� �� �� We show that any ��terminal network has a mimicking network
consisting of � vertices� and any ��terminal �resp� ��terminal� network has a mimicking network
consisting of � �resp� 
� vertices �Section ��� We also prove that these constructions are optimal by
showing that� for any k � �� there exists a k�terminal network for which the mimicking network
must have at least one vertex in addition to the k terminals� We further provide necessary and
su�cient conditions for a vector of min�cut values to be realizable� i�e�� whether the values of a
given vector represent min�cut values of a ��� ��� and ��terminal network� Our approach is simple
and provides a new insight in the construction of mimicking networks� Our methods are based on
a result of independent interest �Section �� concerning values of multisets of min�cuts in arbitrary
k�terminal networks that seems to have further applications� In particular� it can be used to prove
a conjecture by Lengauer ��
� Sec� 
����	 regarding the problem of mimicking the cut properties of
a hypergraph by a graph� a problem arising in circuit partitioning �see Section � for details��

The second result concerns the case of �directed or undirected� bounded treewidth networks�
Informally� the treewidth t is a parameter that indicates how close the structure of the network is to
a tree �see Section 
 for a formal de�nition�� The class of bounded treewidth networks � pioneered
by the work of Robertson and Seymour ���	 and continued by many others �see e�g�� ��� �� �	� �
includes outerplanar networks �t � 
�� series�parallel networks �t � 
�� and networks with bounded
bandwidth or cutwidth ��� �	� For any k�terminal bounded treewidth network� we show that there
is a mimicking network of size O�k�� where the constant in the Big�O depends on the treewidth
�Section ��� For the special case of outerplanar networks� we provide further improvements� We
show that the size of the �outerplanar� mimicking network in this case is much smaller than the one
we get with the general method of bounded treewidth networks �Section 
�� For both the bounded
treewidth and the outerplanar cases� our results are optimal up to constant factors�

� Preliminaries

The treatment in this section follows that in �
	� A network is a �directed or undirected� graph
G � �V�E� with a nonnegative real capacity ce associated with each edge e � E� The terminals of
G are the elements of a distinguished subset� Q � fq�� q�� � � � � qkg� of its vertices� A �ow in G is an
assignment of a nonnegative real value fe � ce to each edge e such that the net �ow out of each
non�terminal vertex is zero� where the net �ow out of a vertex is the sum of �ows on edges leaving
the vertex minus the sum of �ows on edges entering the vertex� An external �ow x � �x�� � � � � xk� is
an assignment of a real value xi to each terminal qi � Q� � � i � k� A realizable external �ow is an
external �ow such that there exists a �ow in which the net �ow out of each terminal qi is xi� A cut
�S� S� is a partition of the vertices of G into two subsets S and S � V n S� S is called the de�ning






subset of the cut� The capacity of the cut �S� S� is the sum of capacities of edges going from vertices
in S to vertices in S� For a subset R of Q� an R�separating cut is a cut �S� S� where Q � S � R�
A minimum R�separating cut �or just min�cut when R is well understood from the context� is an
R�separating cut of minimum capacity� We denote the capacity of a minimum R�separating cut by
bR� The sum of the net �ows out of the terminals in R is called the R�value of a �ow� A maximum
R��ow is a �ow of maximum R�value� If Q � fs� tg� an s�t max��ow is a maximum fsg��ow� and
an s�t min�cut is a minimum fsg�separating cut�

Let �S�� S�� and �S�� S�� be two min�cuts in a network G where Q�S� � R� and Q�S� � R�� We
call these min�cuts equal if R� � R�� in the case where G is directed� or if R� � R� or R� � Q nR��
in the case where G is undirected� Two min�cuts that are not equal are called distinct� A k�terminal
directed network has 
k distinct min�cuts �two of which are trivial�� and a k�terminal undirected
network has 
k�� � � distinct min�cuts �since half of the 
k � 
 min�cuts are equal��

Let G be a network with terminal set Q� A network M�G� with terminal set Q� is a mimicking
network for G if there exists a bijection between Q and Q� such that every realizable external �ow
in G is also realizable in M�G�� and vice versa� The following lemma is a reformulation of the
results in ���	�

Lemma � Let G and G� be two networks with the same terminal set Q� Then� every realizable
external �ow in G is also realizable in G� �and vice versa� i	 the capacities of the minimum R�
separating cuts are equal for all R � Q�

To compute a mimicking network of a network G using either of the approaches in �
� ��	� as
well as the approaches described in this paper� we have to �nd the 
k minimum R�separating cuts�
This is done by the standard method of solving 
k s�t max��ow�min�cut problems in a network G�

which consists of G augmented with two vertices s and t and edges of in�nite capacity from s to
every vertex in R and from every vertex in QnR to t� However� G� may not preserve the structural
properties �e�g�� outerplanarity� planarity� bounded treewidth� that G may have and which may be
desirable for reasons of e�ciency� In �
� Lemma 
��	 it was shown how to overcome this problem
and �nd the 
k minimum R�separating cuts by solving k�
k s�t max��ow�min�cut problems in G�
Therefore� we assume henceforth that the 
k minimum R�separating cuts are provided to us with
the input�

A separator in a graph is a set of vertices which disconnects the graph� Let G � �V �G�� E�G��
be a graph and U � V �G� be a separator� Let V� and V� be a partition of V �G�nU such that in
GnU � there is no path from v � V� to w � V� for any v� w� Let G� and G� be graphs such that
V �G�� � V� � U � V �G�� � V� � U � and E�G�� � E�G�� � 	� E�G�� � E�G�� � E�G�� We say G�

and G� are subgraphs obtained by splitting G at U �
Let Q � V �G� be the set of terminals of G� Let Q� � V� � Q and Q� � V� � Q� Suppose we

construct mimicking networksM�G�� for G� at terminals Q��U and M�G�� for G� at terminals Q��
U � We join M�G�� and M�G�� by identifying� for each u � U � the vertex in M�G�� corresponding
to u with the vertex in M�G�� corresponding to u� It was shown in ���	 that the resulting network
is a mimicking network for G at terminals Q� We call this process glueing the mimicking networks
together� The notions of splitting and glueing will be used extensively in Sections � and 
�

A tree decomposition of a �directed or undirected� graph G � �V �G�� E�G�� is a pair �X� T ��
where T � �V �T �� E�T �� is a tree� X is a family fXi � i � V �T �g of subsets of V �G� that cover
V �G�� and the following conditions hold�


 �edge mapping� ��v� w� � E�G�� there exists an i � V �T � with v � Xi and w � Xi�


 �continuity� �i� j� k � V �T �� if j lies on the path from i to k in T � then Xi � Xk � Xj � or
equivalently� �v � V �G�� the nodes fi � V �T � � v � Xig induce a connected subtree of T �

�



The width of the tree decomposition is maxi�V �T � jXij � �� The treewidth of G is the minimum
width over all possible tree decompositions of G�

Bodlaender ��	 gave an O�n� time algorithm that tests� for all constant t � IN � whether a
given n�vertex graph G has treewidth � t and if so� computes a tree decomposition �X� T � of G
of width � t� where jV �T �j � n � t� Furthermore� �X� T � can be converted into another tree
decomposition �X �� T �� with width t� such that T � is binary and jV �T ��j � 
�n� t�� We call such a
tree decomposition a binary tree decomposition�

Let G be an n�vertex graph of constant treewidth and let �X� T � be its tree decomposition of
constant width� The edge mapping condition ensures that the endpoints of each edge in G appear
together in some set Xi � X � belonging to vertex i of T � Thus� in a sense� each edge is represented
in at least one vertex of T � For our purposes� we need to explicitly associate each edge of G with
exactly one vertex of T � We will� therefore� compute an augmenting function h � E�G� � V �T ��
satisfying the property that both endpoints of an edge are present in the set belonging to the
vertex that the edge is mapped to by h� More precisely� ��v� w� � E�G�� fv�wg � Xh�v�w�� Any
augmenting function will su�ce for our purposes� It is easy to compute one such function� by doing
a traversal of T and assigning h�v� w� � i for each i � V �T �� if fv� wg � Xi� �v� w� � E�G� and
h�v� w� has not yet been assigned a value� This takes time proportional to

P
i�V �T � jXij

�� which is
O�n�� since the tree decomposition is of constant width� The resulting tree decomposition with the
values h�v� w�� ��v� w� � E�G�� is called an augmented tree decomposition� The discussion above is
summarized as the following result�

Lemma � Given an n�vertex graph G of constant treewidth t� we can compute in O�n� time an
augmented binary tree decomposition of G of width t�

� A Fundamental Lemma

In the following� let w�c� denote the capacity of a cut c belonging to a �multi�set C of cuts� and let
w�C� �

P
c�C w�c�� The next lemma plays a central role in the paper�

Lemma � Let G � �V�E� be a network with k terminals q�� � � � qk� Let M � fm�� � � �mpg be a
multiset of min�cuts in G and let �ij be the number of mi
s� that separate qi and qj � Let N be
a second multiset of min�cuts with N � fnri j i � f�� � � � � kg� r � f�� � � � � uigg� where each nri �
� � r � ui� separates qi from all other terminals� If for all i� j� ui � uj � �ij� then w�N� � w�M��

Proof� The intersection of all min�cuts in M induce a partition of G into �disjoint� subsets U of
V � which we call parts� We consider each such part U as a ��� vector of length p� where U �i	 � � if
U is a subset of the de�ning subset of mi� and U �i	 � � otherwise�

Let ��i be the part that contains qi �such a part always exists�� De�ne � ri � fU j H���i � U� �
r��g� for r � f�� � � � � uig� where H is the Hamming distance of the two vectors �i�e�� the number of
bits in which they di�er� corresponding to the parts� The sets � ri satisfy the following two claims�

Claim �� For every � � i � k� ��i � ��i � � � �� �uii �

Claim �� For any i 
� j� any r � f�� � � � � uig and any s � f�� � � � � ujg� � ri � �
s
j � 	�

The �rst claim follows directly from the de�nition of � ri � For the second claim� assume that there
is a pair � ri and � sj whose intersection is not the empty set� This means that there is a part from
the partition induced by M which simultaneously has Hamming distance r�� � ui�� from ��i and
s� � � uj � � from ��j � By the triangle inequality this in turn implies that H���i � �

�
j � � ui � uj � 
�

But this contradicts the fact that H���i � �
�
j � � �ij � ui � uj � Hence� Claim 
 is also true�

�



To complete the proof of the lemma� it su�ces to show that

w�N� � w�N �� �� w �f� ri j i � f�� � � � � kg� r � f�� � � �uigg� � w�M��

We �rst show w�N� � w�N ��� It follows from Claim 
� that every � ri contains only a single terminal�
namely qi� Thus� w�� ri � � w�nri �� for all i and r� since nri is a min�cut� Hence� w�N� � w�N ���

We now show w�N �� � w�M�� By Claim �� the set N � induces a partition of V into �disjoint�
vertex sets �i

�� �i
� n �i

�� � � � � �i
ui n �i

ui��� i � �� � � � � k� plus the set of the remaining vertices� say V ��
For convenience� we assume in the following that ��i � 	� There are three types of edges that are
cut by the cuts in N ��

Type�� edges� are those edges �x� y� with x in some � ri n �
r��
i and y in some � si n �

s��
i � r 
� s�

r� s � f�� � � � � uig�
Type�
 edges� are those edges �x� y� with x in some � ri n �

r��
i and y in some � sj n �

s��
j � where

i 
� j� r � f�� � � � � uig� and s � f�� � � � � ujg�
Type�� edges� are those edges �x� y� with x in some � ri n �

r��
i and y in V �� where i � f�� � � � � kg

and r � f�� � � � � uig�
Let us count how many times the above edges are cut by �the cuts in� N � and M � A type��

edge is cut by N � exactly s � r times �assuming w�l�o�g� that s � r�� By the triangle inequality
we have H�x� y� � H�y� qi� �H�x� qi� � s � r� As H�x� y� is exactly the number of times such an
edge is cut by M � we have shown the desired inequality in this case� A type�
 edge is cut by N �

exactly ui � �r � �� � uj � �s � �� � ui � uj � r � s � 
 times� since it is cut only by those �ai
with r � a � ui and by those � bj with s � b � uj � By the generalized triangle inequality we have
H�x� y� � H�qi� qj��H�qi� x��H�qj� y� � �ij��r�����s��� � �ij�r�s�
 � ui�uj�r�s�
�
where the last inequality follows by the assumption of the theorem� Therefore� the type�
 edges
are cut by M at least as many times as they are cut by N �� For the type�� edges� we can show
�similarly to the type�� edges� that they are cut by M at least as many times as they are cut by
N ��

Hence� in total M cuts at least so many edges as N � does� and consequently w�N �� � w�M��

� Mimicking k�terminal networks for k � �� �� �

Recall that a k�terminal undirected network has 
k�� � � distinct min�cuts� Throughout this
section� we shall use the following notation� The �at most � element� terminal set is denoted
as Q � fA�B�C�D�Eg� The capacities of the minimum R�separating cuts� for R � Q� will be
denoted as� � �� bfAg� � �� bfBg� 	 �� bfCg� � �� bfDg� 
 �� bfEg� �� �� bfA�Bg� �	 �� bfA�Cg�
�� �� bfA�Dg� �
 �� bfA�Eg� �	 �� bfB�Cg� �� �� bfB�Dg� �
 �� bfB�Eg� 	� �� bfC�Dg� 	
 �� bfC�Eg�
and �
 �� bfD�Eg�

For vertices X� Y of a mimicking network M�G�� we shall denote the capacity of the edge XY

by w�XY �� and the capacity of a cut with de�ning subset S by w�S j S��

��� ��terminal networks

Let G be a network with three terminals A�B�C� Note that G has three distinct min�cuts whose
values are �� � and 	�

Theorem � A ��terminal network G with terminal set fA�B�Cg has a mimicking network M�G�
which is the complete graph on vertices fA�B�Cg with the following capacities on its edges�
w�AB� � �����

� � w�BC� � �����
� � and w�AC� � �����

� �

�



Proof� First we have to show that the edge capacities are nonnegative� To show that w�AB� � ��
it su�ces to show that � � � � 	� This true� because � � � � �� � 	 �a cut separating A from
fB�Cg� and B from fA�Cg de�nitely separates C from fA�Bg��

To complete the proof� we have to show that the conditions of Lemma � are satis�ed� We
have� w�A j BC� � w�AB� � w�AC� � �����

� � �����
� � �� Similarly� w�B j AC� � � and

w�C j AB� � 	� Hence� the conditions of Lemma � are indeed satis�ed and consequently M�G� is
a mimicking network of G�

Let M be a vector with values �a� b� c	� It can be easily veri�ed that these values are realizable
min�cut values of a ��terminal network i� the following inequalities are satis�ed� a�b � c� b�c � a�
and c � a � b�

��� ��terminal networks

Let G be a network with four terminals A�B�C�D� Note that G has seven distinct min�cuts whose
values are �� �� 	� �� ��� �	� ���

Theorem � A ��terminal network G with terminal set fA�B�C�Dg has a mimicking network
M�G� which is the complete graph on vertices fA�B�C�D�Zg� where Z is an additional vertex�
with the following capacities on its edges�
w�AB� � ������

� � w�AC� � ������
� � w�AD� � ������

� �

w�BC� � ������
� � w�BD� � ������

� � w�CD� � ������
� � and

w�ZA� � w�ZB� � w�ZC� � w�ZD� � �� where � � ��������������������
� �

Proof� The capacities on the edges not incident on Z are all nonnegative as it was shown in the
proof of Theorem �� The nonnegativity of � follows by Lemma � with M � f��� �	� ��g and
N � f�� �� 	� �g� Hence� it remains to show that the conditions of Lemma � are satis�ed�

It can be easily veri�ed that w�A j BCDZ� � �� w�B j ACDZ� � �� w�C j ABDZ� � 	�
w�D j ABCZ� � �� and that w�AB j CDZ� � w�ABZ j CD� � ��� w�AC j BDZ� � w�ACZ j
BD� � �	� w�AD j BCZ� � w�ADZ j BC� � ��� We must also ensure that any other cut that
separates a subset of fA�B�C�Dg from the rest of terminals has value greater than or equal to
these values� For example� we must have w�AZ j BCD� � w�A j BCDZ�� which is true since
w�AZ j BCD� � � � 
� � � � w�A j BCDZ�� The rest of the cuts can be checked in a similar
way� Hence� the conditions of Lemma � are satis�ed and consequently M�G� is a mimicking network
of G�

Let M be a vector with values �a� b� c� d� ab� ac� ad	� It can be easily veri�ed that these values
are realizable min�cut values of a ��terminal network i� the following inequalities are satis�ed�
a� b � ab� a � c � ac� a � d � ad� b� c � ad� b� d � bd� c� d � ab� ab� ac� ad � a� b� c� d�

��� ��terminal networks

Let G be a network with �ve terminals A�B�C�D�E� Note that G has �� distinct min�cuts whose
values are �� �� 	� �� 
� ��� �	� ��� �
� �	� ��� �
� 	�� 	
 and �
�

Theorem � A ��terminal network G with terminal set fA�B�C�D�Eg has a mimicking network
M�G� which is the complete graph on � vertices fA�B�C�D�E�Zg� where Z is an additional vertex�
with the following capacities on its edges�
w�AB� � ������

� � w�AC� � ������
� � w�AD� � ������

� � w�AE� � ������
� �

w�BC� � ������
� � w�BD� � ������

� � w�BE� � ������
� �

w�CD� � ������
� � w�CE� � ������

� � w�DE� � ������
� �






w�ZA� � �A � ��������������������������
� � w�ZB� � �B � ��������������������������

� �

w�ZC� � �C � ��������������������������
� � w�ZD� � �D � ��������������������������

� � and

w�ZE� � �E � ��������������������������
� �

Proof� As before� the capacities of the edges not incident on Z are all nonnegative as it was shown
in the proof of Theorem �� Hence� it remains to show that �A � �� �B � �� �C � �� �D � ��
and �E � �� The �rst inequality follows immediately by Lemma � with M � f��� �	� ��� ��g and
N � f�� �� �� 	� �� �g� The rest of the inequalities can be proved similarly�

Now� we have to satisfy the conditions of Lemma �� Observe that w�A j BCDEZ� � � �as
required� and w�AZ j BCDE� � � � �A � �B � �C � �D � �E � Since it must hold that
w�AZ j BCDE� � w�A j BCDEZ�� we have to show that

�B � �C � �D � �E � �A ���

Also� notice that w�AB j CDEZ� � �� �as required� and w�ABZ j CDE� � �� � ��C � �D �
�E�� ��A � �B�� We have to guarantee that w�ABZ j CDE� � w�AB j CDEZ�� i�e�� we have
to show that

�C � �D � �E � �A � �B �
�

Note that �
� implies ���� By considering the rest of the cuts� we get a total of �� inequalities
symmetric to �
� �and which can be all proved in a similar way�� Hence� to complete the proof of the
theorem� it su�ces to show that �
� holds� As before� this follows by Lemma � with M � f	�� 	�� ��g
and N � f��� 	� �� �g�

Let M be a vector with �� values �a� � � �� e� ab� � � � � ae� bc� � � � � be� cd� ce� de	� It can be easily
veri�ed that these values are realizable min�cut values of a ��terminal network i� the following
inequalities are satis�ed�

a � b � ab ��
C � ��

D � ��
E � ��

A � ��
B

a � c � ac ��
B � ��

D � ��
E � ��

A � ��
C

a � d � ad ��
B � ��

C � ��
E � ��

A � ��
D

a � e � ae �
b � c � bc �
b � d � bd �
b � e � be �
c � d � cd �
c � e � ce �
d � e � de ��

A � ��
B � ��

C � ��
D � ��

E

��
A � ����

B � ����
C � ����

D � ����
E � �

where ��
A � �ab�ac�ad�ae����a�b�c�d�e�

� � ��� � and ��
E � �ae�be�ce�de����e�a�b�c�d�

� �

��� Optimality

We now show that the preceding constructions of mimicking networks are optimal� All we have to
show is the next lemma�

Lemma � There exists a k�terminal network for which the mimicking network must have at least
one vertex in addition to the k terminals� for any k � ��

�



Proof� Assume that the network G to be mimicked is a star �i�e�� a tree of depth one� where all
vertices but the center Z �root of the tree� are the k � � terminals� Let Q denote the terminal set
and let all k edges have capacity �� Hence� every min�cut in G has a non�zero value�

Now assume contrary to the lemma that there is a mimicking network G� for G without additional
vertices� Since there are no additional vertices in G�� we must have that G� contains exactly k

vertices� where each vertex is a terminal� Take any two vertices �terminals� in G�� say A and B�
Then� w�AB j Q n fA�Bg� � w�A j Q n fAg� � w�B j Q n fBg� � 
w�AB�� and since G� is a
mimicking network� this gives that �� � � � � � 
w�AB�� or w�AB� � ������

� � Since k � ��
�� � w�AZ� � w�BZ� � 
� Hence� w�AB� � �����

� � ��
But since A and B are any two terminals� this implies that every edge of the mimicking network

has capacity zero� which� in turn� implies that the value of every cut in G� is also zero� this
contradicts the fact that all min�cuts in G have non�zero value�

� Bounded Treewidth Networks

Let G be a network of bounded treewidth and �X� T � its augmented binary tree decomposition�
For a subtree T � of T � we de�ne the subgraph G� spanned by T �� as follows� The vertices of G� are
the vertices in the sets associated with the vertices of T �� i�e�� V �G�� � �i�V �T ��Xi� The edges of
G� are those edges that the augmenting function maps to vertices in T �� i�e�� E�G�� � fe � E�G� �
h�e� � V �T ��g� It is easy to check that vertex�disjoint subtrees span edge�disjoint subgraphs� �In
fact it is only to ensure this property that we introduce the augmenting function��

Theorem � Let G be a n�vertex network of treewidth t� Let Q � V �G� be the terminals of G and

let jQj � k� Then� a mimicking network for G at terminals Q has size at most k
�
��t���

�

Proof� We use induction on k� If k � ��t � ��� then the theorem follows from the result in ���	�
Assume the theorem holds for k� � k� We will show that it holds for networks with k terminals�

Let �X� T � be an augmented binary tree decomposition of G� Root T at some arbitrary vertex
of degree less than �� We de�ne the following notation� For a vertex v � V �T �� let T�

v denote the
subtree of T rooted at v� including the vertex v� and let T�

v denote the subtree TnT�
v � De�ne G�

v

and G�
v to be the subgraphs spanned by T�

v and T�
v respectively� Let w be the parent of v� De�ne

Q�
v � Q � V �G�

v � and Q�
v � Q � V �G�

v ��
Suppose we have a vertex� v � V �T �� such that jQ�

v j � k and jQ�
v j � ��t � ��� Let w be the

parent of v� The continuity condition of tree decompositions ensures that Xv �Xw is a separator�
Split the graph at Xv � Xw into G�

v and G�
v � By induction� we construct a mimicking network

of size at most �k � ��
�
��t���

for G�
v at terminals Q�

v � Using the algorithm of ���	� we construct

a mimicking network of size at most 
�
��t���

for G�
v at terminals Q�

v � Glueing the two networks
together yields a mimicking network for G at terminals Q of the required size�

To complete the proof� we only have to describe how to �nd such a vertex� v� Let w be a vertex
in T � with children l and r� such that jQ�

w j � ��t� �� �such a vertex must exist� since k � ��t� ����
Let x � jQ � �V �G�

l �nV �G�
l ��j� that is� x is the number of terminals of G that appear in G�

l but
not in G�

l � Similarly� de�ne y � jQ � �V �G�
r �nV �G�

r ��j� Without loss of generality� assume x � y�
Observe that x � y � jXwj � jQ�

w j � ��t � ��� Since jXwj � t � �� and x � y� we have x � t � ��
This implies that jQ�

l j � k� since jQ�
l j � k � x � jXlj � k � x � t � �� Hence� if jQ�

l j � ��t � ���
then l is the vertex v that we are seeking� Otherwise� we just repeat the argument with l and its
children� This de�nes an algorithm to �nd the required vertex v�

The above construction holds for both directed and undirected bounded treewidth networks�
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� Outerplanar networks

Outerplanar graphs have treewidth 
� Theorem � promises a mimicking network of size 
�
�
k for an

outerplanar network with k terminals� In this section� by arguing more carefully for outerplanar
networks� we give a di�erent construction for mimicking networks of much smaller size�

��� The general case

For simplicity� we start with the case of undirected outerplanar networks� The basic idea is as
follows� Consider an embedding of the outerplanar network� Then� the endpoints of any edge not
adjacent to the outer face are a separator� The proof shows how to split the network at a number
of such separators to obtain O�k� subgraphs with the property that each has either � or � terminals
�including its separator vertices�� The size upper bound follows by glueing together the mimicking
networks for these subgraphs�

Theorem � Let G be an n�vertex undirected outerplanar network with terminal set Q� where jQj �
k� Then� in O�n� time we can construct� �i� a mimicking network of G at Q with at most ��k� 

vertices
 �ii� an outerplanar mimicking network of G at Q with at most ��k� 
� vertices�

Proof� We start with the case where G is biconnected and treat later the non�biconnected case� Fix
an outerplanar embedding of G and triangulate its interior faces by adding edges of zero capacity�
Associate each edge of G with a single face of the embedding that is not the outer face� One way
to do this is to number the faces� giving the outer face the highest number and associate each
edge with the smaller numbered of the two faces adjacent to it� Let D be the dual graph of this
embedding� Deleting the vertex in D corresponding to the outer face yields a binary tree �since
each interior face is a triangle�� which we call T � A subtree S� of T � de�nes a subgraph G�S� of G
in a natural way� G�S� is the union of the edges associated with the faces that are the duals of the
vertices of S�

Let �u� v� be an edge of T � and let Tu and Tv be the subtrees obtained by deleting �u� v�� We say
�u� v� is an e	ective edge if� �x � fu� vg� it holds that G�Tx� contains a terminal of G that G�TnTx�
does not contain� For a vertex v of T � de�ne its e	ective degree to be the number of e�ective edges
it is adjacent to� As an example� consider Figure ��a� which shows an outerplanar network with �
terminals �black vertices� and its associated binary tree T �the edges of T are shown with dashed
lines�� The number next to a vertex in T denotes its e�ective degree�

We form groups of maximal connected subtrees of T that do not contain any vertices of e�ective
degree �� Shrinking each group into a single vertex by contracting edges yields a binary tree we
call T �� We will show that in T �� �i� there are at most k leaves� and �ii� no two vertices of degree
less than � are adjacent�

To see �i�� notice that a leaf� l� of T �� corresponds� in T � to a maximal subtree with e�ective
degree less than �� Call this subtree Tl� The parent of l must have e�ective degree �� which implies
that G�Tl� contains a terminal of G not contained in G�TnTl�� Since the number of terminals of G
is k� �i� follows� The condition �ii� follows directly from the maximality of the groups�

Conditions �i� and �ii� ensure that T � has at most k � 
 degree � vertices� at most k � 
 � �
degree 
 vertices and at most k leaves�

For S� a subtree of T �� let F �S� denote the subtree of T corresponding to the vertices of S�
De�ne H�S� � G�F �S��� Figure ��b� shows the tree T � for the tree T of Figure ��a�� The dotted
lines denote the subgraphs H�u� and H�z� of G which include terminals q� and q� respectively�

Since T � is obtained from T by shrinking edges� there is a correspondence between the edges
of T � and a subset of the edges of T � i�e�� those that were not contracted� We split G into the
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Figure �� Computing a mimicking network for an outerplanar network�
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following subgraphs� H�v�� �v � V �T ��� For a subgraph� H�v�� we de�ne the terminals to be the
endpoints of the duals of the edges adjacent to v� We consider two cases� if F �v� is a vertex of
T with e�ective degree three� then H�v� is a face of G with three terminals� Otherwise� we will
split H�v� further to ensure that each resulting subgraph has at most four terminals� Let m be the
number of terminals of G contained in H�v� that are not contained in H�Tnv�� Then� we will split
H�v� into at most m � � subgraphs�

If m � �� then there is nothing to be done� Hence assume m is at least one� Construct a
new subgraph as follows� F �v� is connected to the rest of T by one or two e�ective edges� by
construction� Start at the endpoint of one of these edges� e� The e�ective edges of F �v� form a
path� since each vertex of F �v� has at most two such edges adjacent to it� Walk along this path
until you encounter an edge f such that one of the endpoints of its dual is a terminal of G and is
di�erent from the two endpoints of the dual of e� Let T� denote the subtree in between e and f
�not including either edge�� De�ne G�T�� to be a new subgraph whose terminals are the endpoints
of the duals of e and f � which ensures that the subgraph has at most � terminals� Start the process
again with the next vertex� i�e�� the other endpoint of f � Notice that we create a new subgraph only
when we encounter a new terminal� or when we exhaust the subtree F �v�� Since we can encounter
at most m new terminals� by hypothesis� we create at most m � � subgraphs�

Let us illustrate this process on the tree T � of Figure ��b�� There are two vertices with e�ective
degree � resulting into a face of G with three terminals� there are three leaves �whose dual faces
contain the terminals q�� q� and q	�� all of which have m � �� and there are two vertices u and z

such that both H�u� and H�z� contain a terminal� and consequently have to be split once� Figure
��c� shows the resulting subnetworks after splitting� The bold edges show where the splits occurred
and their endpoints are the terminals of the subnetworks�

When we perform this process on all degree 
 vertices and leaves of T �� we increase the number
of subgraphs by at most k� Hence the total number of subgraphs that we split G into is at
most � k � 
 subgraphs �that are faces� with � terminals� for the e�ective degree � vertices� and
k � 
� � � k � k � ��k � �� subgraphs with at most � terminals each for the other vertices� �In
our example of Figure � we get a total of � subnetworks� 
 from the two vertices with e�ective
degree �� � from the leaves� and � from the splitting of H�u� and H�z�� cf� Figure ��c��� Construct
mimicking networks for each subgraph with � terminals using Theorem � and for each subgraph
with � terminals using either Theorem 
� or Lemma � �Section 
�
� which states that such a special
��terminal subgraph has an outerplanar mimicking network of at most �
 vertices� Glueing the
di�erent mimicking networks together yields the desired mimicking network�

To bound the number of vertices in the resulting network� think of the glueing process sequen�
tially� That is� we start with one mimicking network at glue to it another that shares separator
terminals with it� We continue in this manner� Then� since each separator has two vertices� every
time we glue a new mimicking network with x vertices� we increase the number of vertices by x�
�
The �rst network has at most � vertices� after which we add one vertex for each ��terminal mimick�
ing network and �a� either three vertices for every ��terminal mimicking network �Theorem 
�� or
�b� �� vertices for every ��terminal mimicking network �Lemma �� Section 
�
�� This yields a total
of ���k�
�����k��� � ��k�
 for the former case� and a total of ���k�
������k��� � ��k�
�
for the latter case� It is easy to verify that the whole process takes O�n� time�

We now discuss the case where G is not biconnected� First identify the articulation vertices
of G �the vertices shared by two biconnected components�� Let v be an articulation vertex� If v
is a terminal� then do nothing� If v is not a terminal� then replace v by two vertices v� and v�
connected by an edge of in�nite capacity� and appropriately divide the edges incident on v between
v� and v� such that outerplanarity is preserved� Now� proceed as before� i�e�� start by �nding the
dual graph of G excluding the outer face� Since there may be still articulation vertices in G �which
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are terminals�� T is a forest� In this case� work with every tree of T and �nd a mimicking network
for the biconnected component it represents� Finally� glue together these mimicking networks at
the articulation vertices which are terminals to get a mimicking network for G� Clearly� neither the
size of the resulting mimicking network is a�ected� nor the time�

In the case of directed outerplanar networks� we proceed in a similar fashion except that now we
have to use the directed version of Lemma � �Section 
�
�� and a new ��vertex mimicking network
for a ��terminal directed network� The need for the latter is shown by the counterexample below�

As before� let A�B and C be the terminals of a ��terminal directed network� Observe that there
are six distinct min�cuts whose values are �� �� 	� ��� �	 and �	�

Counterexample� Assume that a ��terminal directed network has as a mimicking network the
complete �directed� graph on vertices fA�B�Cg� Then� we must have that � � � � 	 � w�AB� �
w�AC��w�BA��w�BC��w�CA��w�CB� � ����	��	� Let the input ��terminal directed net�
work be a ��vertex network with vertex set fA�B�C� Zg and edge set fAZ�BZ�CZ� ZA� ZB� ZCg
with capacities w�AZ� � w�BZ� � w�CZ� � 
 and w�ZA� � w�ZB� � w�ZC� � �� Then�
� � � � 	 � 
 
� � � �� � �	 � �	�

Hence� a mimicking network for a ��terminal directed network must have at least � vertices�
Such a ��vertex network is described next �it seems that this construction was known before ��	�
but never published�� It has vertex set fA�B�C� Zg� where Z is an additional vertex� and edge set
fAZ�BZ�CZ� ZA� ZB� ZCg with capacities� w�AZ� � �� w�BZ� � �� w�CZ� � 	� w�ZA� � �	�
w�ZB� � �	� and w�ZC� � ��� It can be easily veri�ed �using Lemma �� that this is indeed the
required mimicking network�

Now� to �nd a mimicking network for a directed outerplanar network we follow the method of
Theorem �� with the exception that when we need to glue together mimicking networks we use a 
��
vertex mimicking network �directed version of Lemma �� for a ��terminal network� and a ��vertex
mimicking network for a ��terminal one� This yields a mimicking network which is outerplanar and
has a total of � � 
�k� 
� � 

��k� �� � ��k � �� vertices� We have established the following�

Theorem � Let G be an n�vertex directed outerplanar network with terminal set Q� where jQj � k�
Then� in O�n� time we can construct an outerplanar mimicking network of G at Q with at most
��k � �� vertices�

��� A special case

To complete the proofs of Theorems � and 
� recall that we have to �nd mimicking networks of
��terminal outerplanar networks that have a special structure� That is� two of the terminals� say
A�D� are in the same interior face� they are connected by an edge� and one of them is of degree 
�
Similar conditions hold for the other two terminals� B�C� too� Let G be such a network and let
Q � fA�B�C�Dg� Based on the approach of �
	 and on a new property that we prove below� we
can show the following�

Lemma � Let G be the above de�ned special ��terminal outerplanar network with n vertices� Then�
in O�n� time we can construct� �i� an outerplanar mimicking network for G of at most �� vertices�
if G is undirected
 �ii� an outerplanar mimicking network for G of at most �� vertices� if G is
directed�

Proof� For convenience� assume that the vertices of G are numbered �� 
� ���� n in clockwise order
along the boundary of the outer face fo of G� �W�l�o�g�� assume that A � B � C � D in this
numbering�� Then� with �i� j	 we shall denote the interval of vertices in clockwise order along fo
from vertex i to vertex j� i�e�� �i� j	 denotes the set fi� i � �� � � � � jg of vertices� if i � j� and it
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denotes fi� i � �� � � � � n� �� � � � � jg� if i � j� Let a chain be the set of vertices determined by some
interval �i� j	� We shall say that an interval �i�� j�	 is between two intervals �i�� j�	 and �i�� j�	 for
which i� � j�� if j� � i� and j� � i�� The case where i� � j� is de�ned similarly�

As observed in �
	� any coloring of the vertices of G with green and red colors de�nes a cut�
namely� the cut separating the green vertices from the red ones� For a subset R � Q of terminals�
let �SR� SR� be a minimum R�separating cut� Color the vertices of SR green and those of SR red� A
green unit is de�ned to be a maximal chain of green vertices� and a red unit is de�ned analogously�
De�ne the support of a green unit to be a green terminal such that some �and therefore every� vertex
in the unit has an undirected path� consisting only of green vertices� to this terminal� Similarly�
de�ne the support of a red unit� We say a green unit is unsupported if no vertex in the unit has an
undirected path� consisting only of green vertices� to a green terminal� De�ne an unsupported red
unit analogously� A collection of unsupported units is connected if there is an undirected path� not
including a vertex from any supported unit� between any two units of the collection�

In �
	 it is proved that the cut obtained by changing the color of any maximal monochromatic
connected collection of unsupported units is also a minimum R�separating cut� Hence� these un�
supported units can be �absorbed� by a neighboring monochromatic supported unit� To apply the
linear�time method of �
	� we need the following property�

Proposition � If G does not contain any unsupported units� then the de�ning set SR of any
minimum R�separating cut induces at most 
 units in G�

Proof� It su�ces to prove that each terminal in SR supports one unit in each of �A�B	 and �C�D	�
Assume on the contrary that there are two units U�� U� in �A�B	 supported by a terminal in

SR� W�l�o�g�� assume that this is terminal A and also assume that A � U�� This implies that there
is a path p �consisting only of vertices in SR� from some vertex u� � U� to some vertex u� � U��
Since there are no unsupported units in G� there must be at least one unit U � between U� and U�

that is supported by a terminal X � SR� i�e�� there is a path p� �consisting only of vertices in SR�
from X to some vertex u� � U �� However� the subgraph of G induced by the boundary of the outer
face and the paths p and p� is homeomorphic to the complete graph on the � vertices u�� u�� u� and
X � which contradicts the outerplanarity of G� Hence� there is at most one unit supported by A in
�A�B	� Similarly� we can prove that there is at most one unit in �C�D	�

Now� we construct the mimicking network of G using the above Proposition and the approach
in �
	� Let m be the �distinct� minimum R�separating cuts in G� each one de�ning at most 
 units
from the proposition above� and whose intersection de�nes a partition of the vertex set of V into

m chains� Contract �repeatedly� the edges between two vertices in the same chain and replace
multiple edges by a single edge of capacity equal to the sum of the capacities of the edges it replaces�
The resulting network is clearly outerplanar and has at most 
m vertices� The construction can
be done in time O�mn�� where n is the number of vertices in G� Note that if G is directed� then
m � 
	 � 
 � ��� If G is undirected� then m � 
	�� � � � � which can be further reduced to 
� as
we show next�

De�ne a cut �SR� SR� to be connected in G� if both SR and SR are connected� Otherwise�
�SR� SR� is called disconnected� Call a minimum R�separating cut a singleton cut� if R is a singleton�
Consider the � minimum R�separating cuts in G for which R contains 
 terminals� Observe that
�SAD� SAD� is always connected and �SAC � SAC� is always disconnected� To prove that m � 
� it
su�ces to show that �SAC � SAC� can be expressed in terms of two singleton cuts�

Assume w�l�o�g� that SAC is disconnected� Let S�
AC and S�

AC be the two parts of SAC � where

the �rst contains A and the second contains C� Note that �S�
AC � S

�
AC� is a cut separating A

from fB�C�Dg� Hence� w�S�
AC jS

�
AC� � � � w�SAjSA�� Similarly� �S�

AC � S
�
AC� is a cut separating

��



C from fA�B�Dg� Hence� w�S�
AC jS

�
AC� � 	 � w�SC jSC�� Therefore� �	 � w�SAC jSAC� �

w�S�
AC jS

�
AC� � w�S�

AC jS
�
AC� � � � 	�

On the other hand� we know that �	 � � � 	� since �SAC � SAC� is a min�cut� Consequently�
�	 � � � 	� which implies that �SAC � SAC� consists of the two singleton min�cuts �SA� SA� and
�SC � SC�� This completes the proof of the lemma�

� Extensions of Our Results

Another important area of research is to mimic the cut properties of a hypergraph H by a graph G�
This is called modeling of a hypergraph by a graph with the same min�cut properties ���� �
	 and is of
particular importance on partitioning circuits in layout problems� In this case� circuits are modeled
as hypergraphs and the task is to partition them according to a minimum cut of the hypergraph�
However� the existing partitioning algorithms are usually designed for �ordinary� graphs and become
very ine�cient when applied to hypergraphs ���	� mainly because all interesting variants of the
partitioning problem involving hypergraphs are NP�hard� Moreover� no approximation algorithm
exists for any of the hypergraph partitioning problems� For this reason� an elegant and general
method is to model hypergraphs by graphs with the same min�cut properties and then apply the
graph partitioning algorithms to the resulting model ��
� Sec� 
����	� Note that in this case� it
su�ces to examine the existence of graphs that model a single hyperedge with capacity �� For if
this is true� then we can construct a model for an arbitrary hypergraph with positive hyperedge
capacities by multiplying the edge capacities by appropriate factors and putting together the models
for all the hyperedges�

A graph G � �V � D�E�� where jV j � k and jDj � d � �� is called a min�cut model for a
hyperedge with capacity � and vertex set V �� which is in ��� correspondence with V � if for every
non�empty U � V the capacity of any min�cut with de�ning subset S � U is equal to �� If U � 	�
then the capacity of the min�cut should be ��

In ���	 it is shown that there is no min�cut model for k � � if negative capacities on the edges
of G are not allowed� But one can hope to �nd an approximate min�cut model with positive edge
capacities that is as balanced as possible� i�e�� the quotient between the capacity of the largest and
the smallest min�cut that partitions V � is as small as possible� More formally�

A graph G � �V � D�E�� where jV j � k and jDj � d � �� with positive edge capacities is
called a b�approximate min�cut model for a hyperedge with capacity � and vertex set V �� which is
in ��� correspondence with V � if the quotient between the capacity of the largest and the smallest
min�cut separating a proper and non�empty subset U of V from V nU is b� The quotient b is called
the balance of the model�

Lengauer conjectures in ��
� Sec� 
����	 �see also ���� Conjecture 
	� that cliques without addi�
tional vertices �i�e�� d � �� are the best balanced approximate min�cut models� In the next theorem
we show that Lengauer s Conjecture is true�

Theorem 	 
Lengauer�s Conjecture� For a hyperedge with capacity � and k vertices� there is
no b�approximate min�cut model having a balance b smaller than that achieved by the complete
graph on k vertices and all edge capacities equal to �
�k� ���

Proof� Take a best approximate min�cut model� i�e�� a graph with k � d vertices and positive edge
capacities such that the quotient between the capacity w�L� of the largest min�cut and the capacity
w�S� of the smallest min�cut is minimum�

Let M be the set of
� k
k���
� min�cuts separating k

 of the terminals from the rest� Let N be

the multiset of the k min�cuts separating a single terminal from the rest� where each one of the

��



min�cuts is taken with multiplicity
k� k

k���

�k��� � Now� invoke Lemma � with these two sets� It is not

hard to verify that the conditions of Lemma � are ful�lled�

This implies that the capacity of the
� k
k���
� min�cuts in M is greater than or equal to the capacity

of the
k�� k

k���

�k��� min�cuts in N � Hence� the capacity of the largest min�cut in M � say w�m�� must be

at least
k�
� k
k��

�

���k� ���

� k
k��

�




�
k�

��k � ��

times larger than the capacity of the smallest min�cut in N � say w�n�� Consequently� w�L�
w�S� �

w�m�
w�n� �

k�

	�k��� � But it can be easily veri�ed that this is exactly the quotient achieved by a clique

on k vertices and all edge capacities equal to �
�k� ��� since the smallest min�cut in such a clique
cuts k � � edges and hence has capacity �� while the largest min�cut cuts k

� �
k
� edges and hence

has capacity k�

	�k��� �
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