On Mimicking Networks*

Shiva Chaudhuri’ K.V. Subrahmanyam' Frank Wagnert ~ Christos D. Zaroliagis'

December 4, 1997

Abstract

A mumicking network for a k-terminal network, N, is one whose realizable external flows
are the same as those of N. Let S(k) denote the minimum size of a mimicking network for a
k-terminal network. We prove the following results (the values in brackets are the previously
best known results): S(4) = 5 [219], S(5) = 6 [23?]. For bounded treewidth networks we show

S(k) = 0O(k) [22k], and for outerplanar networks we show S(k) < 10k — 6 [£22k+2].

1 Introduction

Network flows is a problem domain of fundamental importance in computer science and other
areas (e.g., operations research, engineering, etc.), having a wealth of theoretical and practical
applications [1]. One of the central (and classical) problems in network flows is the characterization
of the flow behavior of multiterminal networks, i.e., networks with & > 2 terminals, first motivated
and solved by Gomory and Hu [8] and later improved and simplified by many others (see e.g.,
[6, 7, 14]). The Gomory-Hu approach, as well as its subsequent improvements and simplifications,
deal mainly with the case where every vertex of the network is a potential candidate for being a
terminal. However, there may be cases where the number of terminals is much smaller than the
number of vertices in the network. For example, in computing max-flows/min-cuts on networks
that can be decomposed into subnetworks that share a small number of vertices with the rest of the
network. Such a situation appears in hierarchical methods for integrated circuit layout problems:
a circuit (network) is described and processed as a collection of components (subnetworks), where
each component is in turn described and handled succinctly, i.e., in terms of the pins that connect
it to the rest of the circuit [12].

Under this perspective, there is a recent, renewed interest on the problem of characterizing
the flow behavior of networks with a small (usually constant) number of terminals [10]. More
precisely, it was shown in [10] that for a k-terminal network (&, there is a set of 2* inequalities that
characterize the feasible flow values at the terminals (the external flows). Moreover, it was shown
that there exists a network M (G) with 22" vertices, of which k are terminals, that has the same
feasible external flows as . The network M (G) is called the mimicking network of ;. For constant
k this implies that the size of M (G) is bounded by a (maybe large) constant. Mimicking networks
constituted the main building block in the development of a linear time algorithm for computing
a maximum s-t flow in a bounded treewidth network [10] and for obtaining an optimal solution to
the all-pairs min-cut problem in the same class of networks [2].

*This work was partially supported by the EU ESPRIT LTR Project No. 20244 (ALCOM-IT).

"Max-Planck-Institut fir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany. E-mail: {shiva, kv,
zaro }@mpi-sb.mpg.de.

Hnstitut fir Informatik, Freie Universitat Berlin, Takustr. 9, 14195 Berlin, Germany. This author was supported
by the Heisenberg program of the Deutsche Forschungsgemeinschaft. E-mail: wagner@inf.fu-berlin.de.

A natural question is whether there are more efficient constructions of mimicking networks,
i.e., constructions such that |M(G)| does not depend double-exponentially on k&, as this would
immediately lead to more practical algorithms for all problems whose solution is based on the
existence of small mimicking networks.

This question was partially answered for outerplanar networks. More precisely, in [2] it was
proved that the mimicking network M (G,) of a k-terminal outerplanar network G, has size E2ok+2,
and moreover M (G,) is also outerplanar. The outerplanarity of the resulting mimicking network
was crucial in the development of better algorithms for computing an s-t min-cut and all-pairs
min-cuts in planar networks [2] (an improvement that cannot be achieved using the construction
of mimicking networks given in [10]).

In this paper, we make a step forward in constructing smaller mimicking networks. We have
two types of results.

The first result concerns the case of general undirected k-terminal networks for specific values
of k; namely, for £ = 3,4,5. We show that any 3-terminal network has a mimicking network
consisting of 3 vertices, and any 4-terminal (resp. 5-terminal) network has a mimicking network
consisting of 5 (resp. 6) vertices (Section 4). We also prove that these constructions are optimal by
showing that, for any k£ > 4, there exists a k-terminal network for which the mimicking network
must have at least one vertex in addition to the k terminals. We further provide necessary and
sufficient conditions for a vector of min-cut values to be realizable, i.e., whether the values of a
given vector represent min-cut values of a 3,- 4-, and 5-terminal network. Our approach is simple
and provides a new insight in the construction of mimicking networks. Our methods are based on
a result of independent interest (Section 3) concerning values of multisets of min-cuts in arbitrary
k-terminal networks that seems to have further applications. In particular, it can be used to prove
a conjecture by Lengauer [12, Sec. 6.1.5] regarding the problem of mimicking the cut properties of
a hypergraph by a graph, a problem arising in circuit partitioning (see Section 7 for details).

The second result concerns the case of (directed or undirected) bounded treewidth networks.
Informally, the treewidth t is a parameter that indicates how close the structure of the network is to
a tree (see Section 2 for a formal definition). The class of bounded treewidth networks — pioneered
by the work of Robertson and Seymour [13] and continued by many others (see e.g., [3, 4, 5]) —
includes outerplanar networks (¢t = 2), series-parallel networks (¢ = 2), and networks with bounded
bandwidth or cutwidth [3, 5]. For any k-terminal bounded treewidth network, we show that there
is a mimicking network of size O(k), where the constant in the Big-O depends on the treewidth
(Section 5). For the special case of outerplanar networks, we provide further improvements. We
show that the size of the (outerplanar) mimicking network in this case is much smaller than the one
we get with the general method of bounded treewidth networks (Section 6). For both the bounded
treewidth and the outerplanar cases, our results are optimal up to constant factors.

2 Preliminaries

The treatment in this section follows that in [2]. A network is a (directed or undirected) graph
G = (V, F) with a nonnegative real capacity c. associated with each edge e € E. The terminals of
G are the elements of a distinguished subset, @ = {q1, ¢2,. .., qx}, of its vertices. A flowin G is an
assignment of a nonnegative real value f, < ¢, to each edge e such that the net flow out of each
non-terminal vertex is zero, where the net flow out of a vertex is the sum of flows on edges leaving
the vertex minus the sum of flows on edges entering the vertex. An external flow x = (21,...,) is
an assignment of a real value z; to each terminal ¢; € (), 1 < < k. A realizable external flowis an
external flow such that there exists a flow in which the net flow out of each terminal ¢; is z;. A cut
(S,S) is a partition of the vertices of G into two subsets S and S =V \ S; S is called the defining

subset of the cut. The capacity of the cut (5, .5) is the sum of capacities of edges going from vertices
in S to vertices in S. For a subset R of @, an R-separating cut is a cut (S, S) where Q NS = R.
A minimum R-separating cut (or just min-cut when R is well understood from the context) is an
R-separating cut of minimum capacity. We denote the capacity of a minimum R-separating cut by
br. The sum of the net flows out of the terminals in R is called the R-value of a flow. A maximum
R-flow is a flow of maximum R-value. If Q = {s,t}, an s-t maz-flow is a maximum {s}-flow, and
an s-t min-cut is a minimum {s}-separating cut.

Let (S, .51) and (S3, S2) be two min-cuts in a network G where QN.S; = Ry and QNS = Ry. We
call these min-cuts equal if Ry = R3, in the case where G is directed, or if Ry = Ry or Ry = Q\ Rs,
in the case where (G is undirected. Two min-cuts that are not equal are called distinct. A k-terminal
directed network has 2* distinct min-cuts (two of which are trivial), and a k-terminal undirected
network has 28=! — 1 distinct min-cuts (since half of the 2% — 2 min-cuts are equal).

Let G be a network with terminal set . A network M (G) with terminal set Q' is a mimicking
network for G if there exists a bijection between) and @’ such that every realizable external flow
in GG is also realizable in M (G), and vice versa. The following lemma is a reformulation of the
results in [10].

Lemma 1 Let G and G’ be two networks with the same terminal set Q). Then, every realizable
external flow in G is also realizable in G' (and vice versa) iff the capacities of the minimum R-
separating cuts are equal for all R C Q.

To compute a mimicking network of a network GG using either of the approaches in [2, 10], as
well as the approaches described in this paper, we have to find the 2% minimum R-separating cuts.
This is done by the standard method of solving 2* s-t max-flow /min-cut problems in a network G’
which consists of (¢ augmented with two vertices s and ¢ and edges of infinite capacity from s to
every vertex in R and from every vertex in @\ R to t. However, G’ may not preserve the structural
properties (e.g., outerplanarity, planarity, bounded treewidth) that G may have and which may be
desirable for reasons of efficiency. In [2, Lemma 2.3] it was shown how to overcome this problem
and find the 2F minimum R-separating cuts by solving k?2* s-t max-flow/min-cut problems in .
Therefore, we assume henceforth that the 28 minimum R-separating cuts are provided to us with
the input.

A separator in a graph is a set of vertices which disconnects the graph. Let G = (V(G), E(G))
be a graph and U C V() be a separator. Let V; and V; be a partition of V(G)\U such that in
G\U, there is no path from v € V| to w € V; for any v, w. Let Gy and G be graphs such that
V(Gl) = Vl U (]7 V(Gz) = V2 U (]7 and E(Gl) N E(Gz) = @, E(Gl) U E(Gg) = E(G) We say Gl
and (G5 are subgraphs obtained by splitting G at U.

Let @ C V(G) be the set of terminals of G. Let Q1 = Vi NQ and Q3 = Vo N Q. Suppose we
construct mimicking networks M (G1) for Gy at terminals QqUU and M (G3) for G5 at terminals QU
U. We join M(G4) and M(Gy) by identifying, for each w € U, the vertex in M (G4) corresponding
to w with the vertex in M (('g) corresponding to u. It was shown in [10] that the resulting network
is a mimicking network for G at terminals). We call this process glueing the mimicking networks
together. The notions of splitting and glueing will be used extensively in Sections 5 and 6.

A tree decomposition of a (directed or undirected) graph G = (V(G), E(G)) is a pair (X, T),
where T' = (V(T'), £(T)) is a tree, X is a family {X; : ¢ € V(T')} of subsets of V(G) that cover
V(G), and the following conditions hold:

o (edge mapping) ¥(v, w) € E(G), there exists an 7 € V(1') with v € X; and w € X;.

o (continuity) Vi, j, k € V(T), if j lies on the path from ¢ to k in 7', then X; N Xy C X;, or
equivalently: Vv € V((G), the nodes {1 € V(T') : v € X;} induce a connected subtree of 7.

The width of the tree decomposition is max;cy(r) | X;| — 1. The treewidth of G is the minimum
width over all possible tree decompositions of G.

Bodlaender [4] gave an O(n) time algorithm that tests, for all constant ¢ € IV, whether a
given n-vertex graph G has treewidth < ¢ and if so, computes a tree decomposition (X,T") of G
of width < ¢, where |V(T)| = n — t. Furthermore, (X,7") can be converted into another tree
decomposition (X', T") with width ¢, such that 77 is binary and |V(T")| < 2(n —t). We call such a
tree decomposition a binary tree decomposition.

Let G be an n-vertex graph of constant treewidth and let (X,7') be its tree decomposition of
constant width. The edge mapping condition ensures that the endpoints of each edge in G appear
together in some set X; € X, belonging to vertex ¢ of T. Thus, in a sense, each edge is represented
in at least one vertex of T'. For our purposes, we need to explicitly associate each edge of G with
exactly one vertex of 7. We will, therefore, compute an augmenting function h : E(G) — V(T),
satisfying the property that both endpoints of an edge are present in the set belonging to the
vertex that the edge is mapped to by h. More precisely, V(v,w) € F(G),{v,w} C Xpy)- Any
augmenting function will suffice for our purposes. It is easy to compute one such function, by doing
a traversal of 1" and assigning h(v,w) = ¢ for each ¢ € V(T), if {v,w} C X;, (v,w) € E(G) and
h(v, w) has not yet been assigned a value. This takes time proportional to 3 7;cy(7) | X;|?, which is
O(n), since the tree decomposition is of constant width. The resulting tree decomposition with the
values h(v, w),¥ (v, w) € E(G), is called an augmented tree decomposition. The discussion above is
summarized as the following result.

Lemma 2 Given an n-vertex graph G of constant treewidth t, we can compute in O(n) time an
augmented binary tree decomposition of G' of width t.

3 A Fundamental Lemma

In the following, let w(c) denote the capacity of a cut ¢ belonging to a (multi)set C' of cuts, and let
w(C) =3 .cc w(c). The next lemma plays a central role in the paper.

Lemma 3 Let G = (V, E) be a network with k terminals ¢1,...q,. Let M = {mq,...my} be a
multiset of min-cuts in G and let é;; be the number of m;’s, that separate q¢; and q;. Let N be
a second multiset of min-cuts with N = {n! | i € {1,...,k},r € {1,...,u;}}, where each n!,
1 <r < u;, separates q; from all other terminals. If for all i, j, u; + u; < &;;, then w(N) < w(M).

Proof. The intersection of all min-cuts in M induce a partition of GG into (disjoint) subsets U of
V', which we call parts. We consider each such part U as a 0-1 vector of length p, where U[i] = 1 if
U is a subset of the defining subset of m;, and U[i] = 0 otherwise.

Let 7} be the part that contains ¢; (such a part always exists). Define 77 = {U | H(7},U) <
r—1}, forr € {1,...,u;}, where H is the Hamming distance of the two vectors (i.e., the number of
bits in which they differ) corresponding to the parts. The sets 77 satisfy the following two claims.

Claim 1: Forevery 1 <i<k, 7} Cr2 C...C7".
Claim 2: For any ¢ # j, any r € {1,...,u;} and any s € {1,...,u;}, 7/ N7f =0,

The first claim follows directly from the definition of 7. For the second claim, assume that there
is a pair 7/ and 77 whose intersection is not the empty set. This means that there is a part from
the partition induced by M which simultaneously has Hamming distance r—1 < u; — 1 from 7} and
s—1<wu;—1from le. By the triangle inequality this in turn implies that H (7}, le) < uiFuj—2.
But this contradicts the fact that H (7}, 7)) = d;j > u; 4+ u;. Hence, Claim 2 is also true.

To complete the proof of the lemma, it suffices to show that
w(N) < w(NY:=w{r |ie{l,...;k},re{l,...u;}}) < w(M).

We first show w(N) < w(N’). It follows from Claim 2, that every 7/ contains only a single terminal,
namely ¢;. Thus, w(7]) > w(n}), for all ¢ and r, since n! is a min-cut. Hence, w(N) < w(N’).

We now show w(N’) < w(M). By Claim 1, the set N’ induces a partition of V into (disjoint)
vertex sets 7,1, 72\ 7., ., v\ %7l i =1,.. .k, plus the set of the remaining vertices, say V*.
For convenience, we assume in the following that 70 = (). There are three types of edges that are
cut by the cuts in N'.

Type-1 edges: are those edges (z,y) with z in some 77 \ 7/~! and y in some 75\ 757! r # s,
ros€ {1, .. ut

Type-2 edges: are those edges (z,y) with 2 in some 77 \ 77! and y in some T2\ Tjs_l, where
i#j,re{l,...;u;},and s € {1,...,u;}.

Type-3 edges: are those edges (z,y) with z in some 77\ 7/ ™' and y in V*, where i € {1,...,k}
and r € {1,...,u;}.

Let us count how many times the above edges are cut by (the cuts in) N’ and M. A type-1
edge is cut by N’ exactly s — r times (assuming w.l.o.g. that s > r). By the triangle inequality
we have H(z,y) > H(y,q) — H(z,q) = s —r. As H(z,y) is exactly the number of times such an
edge is cut by M, we have shown the desired inequality in this case. A type-2 edge is cut by N’
exactly w; — (r — 1) + u; — (s — 1) = w; + u; — r — s + 2 times, since it is cut only by those 7/
with r < a < u; and by those T]b with s < b < u;. By the generalized triangle inequality we have
H(z,y) > H(qi,q;) —H(qi,2)—H(qj,y) =0;;—(r—=1)—(s—=1)=6;;—r—s+2 > u;+u;—r—s+2,
where the last inequality follows by the assumption of the theorem. Therefore, the type-2 edges
are cut by M at least as many times as they are cut by N’. For the type-3 edges, we can show
(similarly to the type-1 edges) that they are cut by M at least as many times as they are cut by
N'.

Hence, in total M cuts at least so many edges as N’ does, and consequently w(N') < w(M). B

4 Mimicking k-terminal networks for k£ =3,4,5

Recall that a k-terminal undirected network has 2*~! — 1 distinct min-cuts. Throughout this

section, we shall use the following notation. The (at most 5 element) terminal set is denoted
as Q = {A,B,C,D,FE}. The capacities of the minimum R-separating cuts, for R C @, will be
denoted as: « := bray, B := bypy, v = byoy, 0 1= bypy, € := bygy, af = ba By, @y = bracys
ad = b{A,D}v oL = b{A,E}v ﬁ’y = b{B,C}? ﬁ& = b{B,D}v ﬁa’f = b{B,E}v 75 = b{C,D}v ve ‘= b{C,E}7
and dz := byp g

For vertices X, Y of a mimicking network M (G), we shall denote the capacity of the edge XY
by w(XY), and the capacity of a cut with defining subset S by w(S | S).

4.1 3-terminal networks

Let G be a network with three terminals A, B, . Note that G’ has three distinct min-cuts whose
values are o, 3 and .

Theorem 1 A 3-terminal network G with terminal set {A, B,C'} has a mimicking network M (G)
which is the complete graph on vertices { A, B, C'} with the following capacities on its edges:
w(AB) = 2= (BC) = B2 and w(AC) = 2432,

Proof. First we have to show that the edge capacities are nonnegative. To show that w(AB) > 0,
it suffices to show that o+ 3 > +. This true, because oo+ 3 > a8 = v (a cut separating A from
{B,C}, and B from {4, C} definitely separates C' from {4, B}).

To complete the proof, we have to show that the conditions of Lemma 1 are satisfied. We
have, w(A | BC) = w(AB) + w(AC) = oz—I—g—w + a"";_ﬁ = «a. Similarly, w(B | AC) = 3 and
w(C'| AB) = v. Hence, the conditions of Lemma 1 are indeed satisfied and consequently M (G) is
a mimicking network of . |

Let M be a vector with values [a, b, ¢]. It can be easily verified that these values are realizable
min-cut values of a 3-terminal network iff the following inequalities are satisfied: a+b > ¢, b+¢ > a,
and ¢+ a > b.

4.2 4-terminal networks

Let GG be a network with four terminals A, B,C, D. Note that G has seven distinct min-cuts whose
values are o, 3, v, &, af3, oy, ad.

Theorem 2 A 4-terminal network G with terminal set {A, B,C, D} has a mimicking network
M (G) which is the complete graph on vertices {A, B,C, D, Z}, where Z is an additional vertez,
with the following capacities on its edges:

w(AB) = 290 Ly (AC) = 29T p(AD) = edi=ad

w(BC) = ﬁ-l—w2 ﬁw w(BD) = /3-I—5 55’ w(CD) = w+52—w5’ and

w(ZA) =w(ZB) = w(ZC) = w(ZD) A, where A = (aﬁ+w+a5)2_(a+ﬁ+w+5).

Proof. The capacities on the edges not incident on Z are all nonnegative as it was shown in the
proof of Theorem 1. The nonnegativity of A follows by Lemma 3 with M = {af,avy,ad} and
N ={«a, 3,v,6}. Hence, it remains to show that the conditions of Lemma 1 are satisfied.

It can be easily verified that w(A | BOCDZ) = a, w(B | ACDZ) = 3, w(C | ABDZ) = 7,
w(D | ABCZ) = 6, and that w(AB | CDZ) = w(ABZ | CD) = af, w(AC | BDZ) = w(ACZ |
BD) = ay, w(AD | BCZ) = w(ADZ | BC') = o§. We must also ensure that any other cut that
separates a subset of {A, B,C, D} from the rest of terminals has value greater than or equal to
these values. For example, we must have w(AZ | BCD) > w(A | BCDZ), which is true since
w(AZ | BOCD) = a4 2A > a = w(A | BOCDZ). The rest of the cuts can be checked in a similar
way. Hence, the conditions of Lemma 1 are satisfied and consequently M () is a mimicking network

of G.]

Let M be a vector with values [a,b,¢,d,ab, ac,ad]. 1t can be easily verified that these values
are realizable min-cut values of a 4-terminal network iff the following inequalities are satisfied:

a+b>ab,a+c>ac,a+d>ad,b+c>ad,b+d>bd, c+d>ab,ab+ac+ad>a+b+c+d.

4.3 5-terminal networks

Let G be a network with five terminals A, B, C, D, F/. Note that G has 15 distinct min-cuts whose
values are o, 3, v, 6, €, af3, avy, &b, ag, Gy, 58, e, vé, v& and de.

Theorem 3 A 5-terminal network G with terminal set {A, B,C, D, F'} has a mimicking network
M (G which is the complete graph on 6 vertices {A, B,C, D, E, Z}, where Z is an additional vertez,
with the following capacities on its edges:

(AB) oz-l—ﬁ—oz (AC) oz—I—wz—ow’ w(AD) _ a+5—a5 (AE) — Of+52—0é€’

w(BC) = ﬁ-l—w ﬁw w(BD) = -I-5 55 w(BE) = ﬁ+6 56

w(CD) _ -I—52 W5’ (CE) — w-l—e2 e (DE) (S-l—s2 55’

w(ZA) = Ay = (aﬁ+aw+a5+as)—(2a+ﬁ+w+5+s)’ w(ZB) = Ap = (aﬁ+ﬁw+ﬁ5+ﬁs)—(2ﬁ+a+w+5+s)’

2 2
w(ZC) = A¢ = (aw+ﬁw+w5+%€)—(2w+a+ﬁ+5+s)’ w(ZD) = Ap = (a5+ﬁ5+w5+56);(25+a+ﬁ+w+s)

, and

2
w(ZE) = Ap = (ozs-l-ﬁs-l-ws-l—és);(25+a+5+w+5) .

Proof. As before, the capacities of the edges not incident on Z are all nonnegative as it was shown
in the proof of Theorem 1. Hence, it remains to show that Ay > 0, Ag > 0, A¢g > 0, Ap > 0,
and Ag > 0. The first inequality follows immediately by Lemma 3 with M = {af, ay, ad, e} and
N ={a,a,,7,6,¢}. The rest of the inequalities can be proved similarly.

Now, we have to satisfy the conditions of Lemma 1. Observe that w(A | BOCDEZ) = « (as
required) and w(AZ | BCDE) = a — As + A + Ac + Ap + Ag. Since it must hold that
w(AZ | BOCDE) > w(A| BCDEZ), we have to show that

Ap+Ac+Ap+Ap>Ay (1)

Also, notice that w(AB | CDEZ) = af (as required) and w(ABZ | CDE) = a8 + (Ac + Ap +
Ag) — (A4s+ Ap). We have to guarantee that w(ABZ | CDE) > w(AB | CDEZ), i.e., we have
to show that

Ac+Ap+Ap > A4 +Ag (2)

Note that (2) implies (1). By considering the rest of the cuts, we get a total of 10 inequalities
symmetric to (2) (and which can be all proved in a similar way). Hence, to complete the proof of the
theorem, it suffices to show that (2) holds. As before, this follows by Lemma 3 with M = {~§, ve, d¢}
and N = {af,v,6,€}. |

Let M be a vector with 15 values [a,...,e,ab, ... ;ae be, ... be,cd, ce,de]. Tt can be easily
verified that these values are realizable min-cut values of a 5-terminal network iff the following
inequalities are satisfied:

a+b > ab AL+ A+ AL > A+ Af
at+c > ac BHAp+ AL > A+ AL
a+d > ad A+ AL+ AL, > A+ A
at+e > ae .
b+c¢ > be
b+d > bd
b+e > be
c+d > «d
c+e > ce .
d+e > de A+ AR+ AL > AR+ AL
Al >0, Al > 0,AL > 0,A] > 0,A% >0
where A/A _ (ab—I—ac—I—ad—I—ae)2—(2(1—|—b—|—c—|—d—|—e)7 o and A/E _ (ae—l—be—l—ce—l—de);(26—|—a—|—b—|—c—|—d))

4.4 Optimality

We now show that the preceding constructions of mimicking networks are optimal. All we have to
show is the next lemma.

Lemma 4 There exists a k-terminal network for which the mimicking network must have at least
one vertexr in addition to the k terminals, for any k > 3.

Proof. Assume that the network GG to be mimicked is a star (i.e., a tree of depth one) where all
vertices but the center Z (root of the tree) are the k > 3 terminals. Let () denote the terminal set
and let all k edges have capacity 1. Hence, every min-cut in GG has a non-zero value.

Now assume contrary to the lemma that there is a mimicking network G’ for G without additional
vertices. Since there are no additional vertices in G’, we must have that G’ contains exactly k
vertices, where each vertex is a terminal. Take any two vertices (terminals) in G, say A and B.
Then, w(AB | Q\{A,B}) = w(A | Q\ {4}) + w(B | @\ {B}) — 2w(AB), and since ¢’ is a
mimicking network, this gives that af = o+ 8 — 2w(AB), or w(AB) = a""ﬁzi_aﬁ Since k > 3,
af = w(AZ) + w(BZ) = 2. Hence, w(AB) = 141=2 = 0.

But since A and B are any two terminals, this implies that every edge of the mimicking network
has capacity zero, which, in turn, implies that the value of every cut in G’ is also zero; this
contradicts the fact that all min-cuts in G’ have non-zero value. |

5 Bounded Treewidth Networks

Let G be a network of bounded treewidth and (X,7) its augmented binary tree decomposition.
For a subtree T” of T', we define the subgraph G’ spanned by T, as follows. The vertices of G’ are
the vertices in the sets associated with the vertices of 7', i.e., V(G') = Usev(r)Xi. The edges of
G’ are those edges that the augmenting function maps to vertices in 77, i.e., F(G') = {e € E(G):
h(e) € V(T')}. Tt is easy to check that vertex-disjoint subtrees span edge-disjoint subgraphs. (In
fact it is only to ensure this property that we introduce the augmenting function.)

Theorem 4 Let G be a n-vertex network of treewidth t. Let Q C V(G) be the terminals of G and

let |Q| = k. Then, a mimicking network for G at terminals) has size at most 222

Proof. We use induction on k. If & < 3(t + 1), then the theorem follows from the result in [10].
Assume the theorem holds for &' < k. We will show that it holds for networks with & terminals.

Let (X, T) be an augmented binary tree decomposition of G. Root T" at some arbitrary vertex
of degree less than 3. We define the following notation. For a vertex v € V(T'), let T denote the
subtree of T rooted at v, including the vertex v, and let T;F denote the subtree T\T, . Define G,
and G to be the subgraphs spanned by T, and T\ respectively. Let w be the parent of v. Define
Qr =QNV(Gy) and QF = QNV(GY).

Suppose we have a vertex, v € V(T), such that |QF] < k and |Q,| < 3(t +1). Let w be the
parent of v. The continuity condition of tree decompositions ensures that X, N X, is a separator.
Split the graph at X, N X, into G;f and G . By induction, we construct a mimicking network
of size at most (k — 1)223(t+1) for G at terminals QF. Using the algorithm of [10], we construct

a mimicking network of size at most 22 for G, at terminals (), . Glueing the two networks
together yields a mimicking network for G at terminals @ of the required size.

To complete the proof, we only have to describe how to find such a vertex, v. Let w be a vertex
in T', with children [and r, such that |Q,| > 3(t+1) (such a vertex must exist, since k£ > 3(t+1)).
Let v = |Q N (V(G)\V(G))], that is, = is the number of terminals of & that appear in G but
not in G Similarly, define y = |Q N (V(G7)\V(G))|. Without loss of generality, assume & > y.
Observe that + y + | Xy > |Qy] > 3(t+1). Since | X <t 41, and = > y, we have & > ¢ + 1.
This implies that |Qf| < &, since |Q]| < k — 2+ |X;| <k — 2+t + 1. Hence, if |Q;] < 3(t + 1),
then [is the vertex v that we are seeking. Otherwise, we just repeat the argument with [and its
children. This defines an algorithm to find the required vertex v. |

The above construction holds for both directed and undirected bounded treewidth networks.

6 Outerplanar networks

Outerplanar graphs have treewidth 2. Theorem 4 promises a mimicking network of size 22k for an
outerplanar network with k£ terminals. In this section, by arguing more carefully for outerplanar
networks, we give a different construction for mimicking networks of much smaller size.

6.1 The general case

For simplicity, we start with the case of undirected outerplanar networks. The basic idea is as
follows. Consider an embedding of the outerplanar network. Then, the endpoints of any edge not
adjacent to the outer face are a separator. The proof shows how to split the network at a number
of such separators to obtain O(k) subgraphs with the property that each has either 3 or 4 terminals
(including its separator vertices). The size upper bound follows by glueing together the mimicking
networks for these subgraphs.

Theorem 5 Let G be an n-vertex undirected outerplanar network with terminal set @, where |Q] =
k. Then, in O(n) time we can construct: (i) a mimicking network of G at Q with at most 10k — 6
vertices; (ii) an outerplanar mimicking network of G at () with at most 31k — 27 vertices.

Proof. We start with the case where GG is biconnected and treat later the non-biconnected case. Fix
an outerplanar embedding of G and triangulate its interior faces by adding edges of zero capacity.
Associate each edge of G with a single face of the embedding that is not the outer face. One way
to do this is to number the faces, giving the outer face the highest number and associate each
edge with the smaller numbered of the two faces adjacent to it. Let D be the dual graph of this
embedding. Deleting the vertex in D corresponding to the outer face yields a binary tree (since
each interior face is a triangle), which we call 7. A subtree S, of T', defines a subgraph G(S) of G
in a natural way; G/(5) is the union of the edges associated with the faces that are the duals of the
vertices of 5.

Let (u,v) be an edge of T', and let T, and T}, be the subtrees obtained by deleting (u,v). We say
(u,v) is an effective edge if, Vo € {u, v}, it holds that G/(1};) contains a terminal of G that G(T\T)
does not contain. For a vertex v of T, define its effective degree to be the number of effective edges
it is adjacent to. As an example, consider Figure 1(a) which shows an outerplanar network with 5
terminals (black vertices) and its associated binary tree T' (the edges of T" are shown with dashed
lines). The number next to a vertex in 7" denotes its effective degree.

We form groups of maximal connected subtrees of T' that do not contain any vertices of effective
degree 3. Shrinking each group into a single vertex by contracting edges yields a binary tree we
call 7. We will show that in 7”: (i) there are at most k leaves; and (ii) no two vertices of degree
less than 3 are adjacent.

To see (i), notice that a leaf, [, of T’ corresponds, in T, to a maximal subtree with effective
degree less than 3. Call this subtree T;. The parent of [must have effective degree 3, which implies
that G'(17) contains a terminal of G not contained in G'(T\17). Since the number of terminals of ¢
is k, (i) follows. The condition (ii) follows directly from the maximality of the groups.

Conditions (i) and (ii) ensure that 7" has at most k — 2 degree 3 vertices, at most k — 2 — 1
degree 2 vertices and at most k leaves.

For S, a subtree of T’ let F(S) denote the subtree of T corresponding to the vertices of S.
Define H(S) = G(F(5)). Figure 1(b) shows the tree 17" for the tree T" of Figure 1(a). The dotted
lines denote the subgraphs H(u) and H(z) of G which include terminals g5 and ¢ respectively.

Since T” is obtained from T by shrinking edges, there is a correspondence between the edges
of T and a subset of the edges of T, i.e., those that were not contracted. We split G into the

Figure 1: Computing a mimicking network for an outerplanar network.

10

following subgraphs: H(v), Vv € V(T'). For a subgraph, H(v), we define the terminals to be the
endpoints of the duals of the edges adjacent to v. We consider two cases: if F(v) is a vertex of
T with effective degree three, then H(v) is a face of G with three terminals. Otherwise, we will
split H (v) further to ensure that each resulting subgraph has at most four terminals. Let m be the
number of terminals of G contained in H (v) that are not contained in H (T\v). Then, we will split
H (v) into at most m + 1 subgraphs.

If m = 0, then there is nothing to be done. Hence assume m is at least one. Construct a
new subgraph as follows. F(v) is connected to the rest of 7' by one or two effective edges, by
construction. Start at the endpoint of one of these edges, e. The effective edges of F(v) form a
path, since each vertex of F'(v) has at most two such edges adjacent to it. Walk along this path
until you encounter an edge f such that one of the endpoints of its dual is a terminal of G and is
different from the two endpoints of the dual of e. Let 7T; denote the subtree in between e and f
(not including either edge). Define (1) to be a new subgraph whose terminals are the endpoints
of the duals of e and f, which ensures that the subgraph has at most 4 terminals. Start the process
again with the next vertex, i.e., the other endpoint of f. Notice that we create a new subgraph only
when we encounter a new terminal, or when we exhaust the subtree F'(v). Since we can encounter
at most m new terminals, by hypothesis, we create at most m -+ 1 subgraphs.

Let us illustrate this process on the tree T” of Figure 1(b). There are two vertices with effective
degree 3 resulting into a face of G with three terminals; there are three leaves (whose dual faces
contain the terminals ¢z, ¢3 and ¢4), all of which have m = 0; and there are two vertices u and z
such that both H(u) and H(z) contain a terminal, and consequently have to be split once. Figure
1(c) shows the resulting subnetworks after splitting. The bold edges show where the splits occurred
and their endpoints are the terminals of the subnetworks.

When we perform this process on all degree 2 vertices and leaves of T’, we increase the number
of subgraphs by at most k. Hence the total number of subgraphs that we split GG into is at
most : k — 2 subgraphs (that are faces) with 3 terminals, for the effective degree 3 vertices, and
k—2—1+4k+ k= 3(k— 1) subgraphs with at most 4 terminals each for the other vertices. (In
our example of Figure 1 we get a total of 9 subnetworks: 2 from the two vertices with effective
degree 3, 3 from the leaves, and 4 from the splitting of H(u) and H (z); cf. Figure 1(c).) Construct
mimicking networks for each subgraph with 3 terminals using Theorem 1 and for each subgraph
with 4 terminals using either Theorem 2, or Lemma 5 (Section 6.2) which states that such a special
4-terminal subgraph has an outerplanar mimicking network of at most 12 vertices. Glueing the
different mimicking networks together yields the desired mimicking network.

To bound the number of vertices in the resulting network, think of the glueing process sequen-
tially. That is, we start with one mimicking network at glue to it another that shares separator
terminals with it. We continue in this manner. Then, since each separator has two vertices, every
time we glue a new mimicking network with & vertices, we increase the number of vertices by x — 2.
The first network has at most 5 vertices, after which we add one vertex for each 3-terminal mimick-
ing network and (a) either three vertices for every 4-terminal mimicking network (Theorem 2), or
(b) 10 vertices for every 4-terminal mimicking network (Lemma 5, Section 6.2). This yields a total
of 5+ (k—2)43(3k—3) = 10k —6 for the former case, and a total of 5+ (k—2)+10(3k—3) = 31k—27
for the latter case. It is easy to verify that the whole process takes O(n) time.

We now discuss the case where GG is not biconnected. First identify the articulation vertices
of G (the vertices shared by two biconnected components). Let v be an articulation vertex. If v
is a terminal, then do nothing. If v is not a terminal, then replace v by two vertices v; and vy
connected by an edge of infinite capacity, and appropriately divide the edges incident on v between
vy and vy such that outerplanarity is preserved. Now, proceed as before, i.e., start by finding the
dual graph of G excluding the outer face. Since there may be still articulation vertices in GG (which

11

are terminals), 7 is a forest. In this case, work with every tree of 7" and find a mimicking network
for the biconnected component it represents. Finally, glue together these mimicking networks at
the articulation vertices which are terminals to get a mimicking network for . Clearly, neither the
size of the resulting mimicking network is affected, nor the time. |

In the case of directed outerplanar networks, we proceed in a similar fashion except that now we
have to use the directed version of Lemma 5 (Section 6.2), and a new 4-vertex mimicking network
for a 3-terminal directed network. The need for the latter is shown by the counterexample below.

As before, let A, B and C' be the terminals of a 3-terminal directed network. Observe that there
are six distinct min-cuts whose values are a, 3,7, af3, oy and .

Counterezample: Assume that a 3-terminal directed network has as a mimicking network the
complete (directed) graph on vertices {A, B,C'}. Then, we must have that a + 4+ v = w(4AB) +
w(AC)+w(BA)+w(BC)+w(CA)+w(CB) = af+ay+pFy. Let the input 3-terminal directed net-
work be a 4-vertex network with vertex set {A, B,C, 7} and edge set {AZ, BZ,CZ, ZA, ZB, ZC'}
with capacities w(AZ) = w(BZ) = w(CZ) = 2 and w(ZA) = w(ZB) = w(ZC) = 3. Then,
a+f+7=6#9=af+ay+py.

Hence, a mimicking network for a 3-terminal directed network must have at least 4 vertices.
Such a 4-vertex network is described next (it seems that this construction was known before [9],
but never published). It has vertex set {A, B,C, 7}, where 7 is an additional vertex, and edge set
{AZ,BZ,CZ, ZA, ZB, ZC} with capacities: w(AZ) = o, w(BZ) = 3, w(CZ) = v, w(ZA) = By,
w(ZB) = ary, and w(ZC) = af. It can be easily verified (using Lemma 1) that this is indeed the
required mimicking network.

Now, to find a mimicking network for a directed outerplanar network we follow the method of
Theorem 5, with the exception that when we need to glue together mimicking networks we use a 28-
vertex mimicking network (directed version of Lemma 5) for a 4-terminal network, and a 4-vertex
mimicking network for a 3-terminal one. This yields a mimicking network which is outerplanar and
has a total of 5 + 2(k — 2) + 26(3k — 3) = 80k — 77 vertices. We have established the following.

Theorem 6 Let G be an n-vertex directed outerplanar network with terminal set), where |Q| = k.
Then, in O(n) time we can construct an outerplanar mimicking network of G at Q with at most
80k — 77 vertices.

6.2 A special case

To complete the proofs of Theorems 5 and 6, recall that we have to find mimicking networks of
4-terminal outerplanar networks that have a special structure. That is, two of the terminals, say
A, D, are in the same interior face, they are connected by an edge, and one of them is of degree 2.
Similar conditions hold for the other two terminals, B, (', too. Let G be such a network and let
Q = {A,B,C, D}. Based on the approach of [2] and on a new property that we prove below, we
can show the following.

Lemma 5 Let GG be the above defined special 4-terminal outerplanar network with n vertices. Then,
in O(n) time we can construct: (i) an outerplanar mimicking network for G of at most 12 vertices,
if G is undirected; (ii) an outerplanar mimicking network for G of at most 28 vertices, if G is
directed.

Proof. For convenience, assume that the vertices of G are numbered 1,2, ...,n in clockwise order
along the boundary of the outer face f, of G. (W.lo.g., assume that A < B < C' < D in this
numbering.) Then, with [¢, j] we shall denote the interval of vertices in clockwise order along f,
from vertex ¢ to vertex j, i.e., [i,j] denotes the set {i,i 4 1,...,j} of vertices, if i < j, and it

12

denotes {¢,i4+ 1,...,n,1,...,7},if i > j. Let a chain be the set of vertices determined by some
interval [¢, j]. We shall say that an interval [ig, jo] is between two intervals [iy, 71] and [is, j3] for
which 1 < j3, if j1 <15 and jy < 13. The case where ¢; > j3 is defined similarly.

As observed in [2], any coloring of the vertices of G with green and red colors defines a cut,
namely, the cut separating the green vertices from the red ones. For a subset R C () of terminals,
let (Sg, %) be a minimum R-separating cut. Color the vertices of Sg green and those of Si red. A
green unit is defined to be a maximal chain of green vertices, and a red unit is defined analogously.
Define the support of a green unit to be a green terminal such that some (and therefore every) vertex
in the unit has an undirected path, consisting only of green vertices, to this terminal. Similarly,
define the support of a red unit. We say a green unit is unsupported if no vertex in the unit has an
undirected path, consisting only of green vertices, to a green terminal. Define an unsupported red
unit analogously. A collection of unsupported units is connected if there is an undirected path, not
including a vertex from any supported unit, between any two units of the collection.

In [2] it is proved that the cut obtained by changing the color of any maximal monochromatic
connected collection of unsupported units is also a minimum R-separating cut. Hence, these un-
supported units can be “absorbed” by a neighboring monochromatic supported unit. To apply the
linear-time method of [2], we need the following property.

Proposition 1 If G does not contain any unsupported units, then the defining set Sp of any
minimum R-separating cutl induces at most 2 units in G.

Proof. 1t suffices to prove that each terminal in Sg supports one unit in each of [A, B] and [C, D].

Assume on the contrary that there are two units Uy, Us in [A, B] supported by a terminal in
Sr. W.lo.g., assume that this is terminal A and also assume that A € Uy. This implies that there
is a path p (consisting only of vertices in Sgr) from some vertex u; € Uy to some vertex ug € Us.
Since there are no unsupported units in (&, there must be at least one unit U’ between U; and Us
that is supported by a terminal X € Sg, i.e., there is a path p’ (consisting only of vertices in Sg)
from X to some vertex v’ € U’. However, the subgraph of (G induced by the boundary of the outer
face and the paths p and p’ is homeomorphic to the complete graph on the 4 vertices uy, v, us and
X, which contradicts the outerplanarity of G. Hence, there is at most one unit supported by A in
[A, B]. Similarly, we can prove that there is at most one unit in [C, D]. |

Now, we construct the mimicking network of G using the above Proposition and the approach
in [2]. Let m be the (distinct) minimum R-separating cuts in (7, each one defining at most 2 units
from the proposition above, and whose intersection defines a partition of the vertex set of V into
2m chains. Contract (repeatedly) the edges between two vertices in the same chain and replace
multiple edges by a single edge of capacity equal to the sum of the capacities of the edges it replaces.
The resulting network is clearly outerplanar and has at most 2m vertices. The construction can
be done in time O(mn), where n is the number of vertices in (. Note that if (is directed, then
m = 2% — 2 =14. If (G is undirected, then m = 24! — 1 = 7 which can be further reduced to 6, as
we show next.

Define a cut (SR,§) to be connected in G, if both Sg and Sg are connected. Otherwise,
(SR, Sg) is called disconnected. Call a minimum R-separating cut a singleton cut, if R is a singleton.
Consider the 3 minimum R-separating cuts in (G for which R contains 2 terminals. Observe that
(Sap,Sap) is always connected and (Sac,Sac) is always disconnected. To prove that m = 6, it
suffices to show that (SAC,%) can be expressed in terms of two singleton cuts.

Assume w.l.o.g. that S4¢ is disconnected. Let 5}10 and wa be the two parts of S, where

the first contains A and the second contains C'. Note that (S}, SY,) is a cut separating A
from {B,C, D}. Hence, w(S4,]Sh,) > o = w(S4|S4). Similarly, (5%, 5%) is a cut separating

13

C from {A, B,D}. Hence, w(S%.|S%.) > v = w(Sc|Sc). Therefore, ay = w(Sac|Sac) =
w(ShclShe) + w(ShelShc) > at+ 7.

On the other hand, we know that ay < a + v, since (Sac,Sac) is a min-cut. Consequently,
oy = « + 7, which implies that (S4c,Sac) consists of the two singleton min-cuts (S4,S54) and
(Sc, Scr). This completes the proof of the lemma. |

7 Extensions of Our Results

Another important area of research is to mimic the cut properties of a hypergraph H by a graph G.
This is called modeling of a hypergraph by a graph with the same min-cut properties [11, 12] and is of
particular importance on partitioning circuits in layout problems. In this case, circuits are modeled
as hypergraphs and the task is to partition them according to a minimum cut of the hypergraph.
However, the existing partitioning algorithms are usually designed for (ordinary) graphs and become
very inefficient when applied to hypergraphs [15], mainly because all interesting variants of the
partitioning problem involving hypergraphs are NP-hard. Moreover, no approximation algorithm
exists for any of the hypergraph partitioning problems. For this reason, an elegant and general
method is to model hypergraphs by graphs with the same min-cut properties and then apply the
graph partitioning algorithms to the resulting model [12, Sec. 6.1.5]. Note that in this case, it
suffices to examine the existence of graphs that model a single hyperedge with capacity 1. For if
this is true, then we can construct a model for an arbitrary hypergraph with positive hyperedge
capacities by multiplying the edge capacities by appropriate factors and putting together the models
for all the hyperedges.

A graph G = (VU D, F), where |V| = k and |D| = d > 0, is called a min-cut model for a
hyperedge with capacity 1 and vertex set V’, which is in 1-1 correspondence with V, if for every
non-empty U C V the capacity of any min-cut with defining subset S D U is equal to 1. If U/ = 0,
then the capacity of the min-cut should be 0.

In [11] it is shown that there is no min-cut model for & > 4 if negative capacities on the edges
of G are not allowed. But one can hope to find an approximate min-cut model with positive edge
capacities that is as balanced as possible, i.e., the quotient between the capacity of the largest and
the smallest min-cut that partitions V' is as small as possible. More formally:

A graph G = (VU D, F), where |V| = k and |D| = d > 0, with positive edge capacities is
called a b-approzimate min-cut model for a hyperedge with capacity 1 and vertex set V', which is
in 1-1 correspondence with V, if the quotient between the capacity of the largest and the smallest
min-cut separating a proper and non-empty subset U of V from V' \ U is b. The quotient b is called
the balance of the model.

Lengauer conjectures in [12, Sec. 6.1.5] (see also [11, Conjecture 6]) that cliques without addi-
tional vertices (i.e., d = 0) are the best balanced approximate min-cut models. In the next theorem
we show that Lengauer’s Conjecture is true.

Theorem 7 (Lengauer’s Conjecture) For a hyperedge with capacity 1 and k vertices, there is
no b-approximate min-cut model having a balance b smaller than that achieved by the complete
graph on k vertices and all edge capacities equal to 1/(k —1).

Proof. Take a best approximate min-cut model, i.e., a graph with & + d vertices and positive edge
capacities such that the quotient between the capacity w(L) of the largest min-cut and the capacity
w(S) of the smallest min-cut is minimum.

k
Let M be the set of @ min-cuts separating k/2 of the terminals from the rest. Let N be

the multiset of the & min-cuts separating a single terminal from the rest, where each one of the

14

k k
min-cuts is taken with multiplicity 8((5121)). Now, invoke Lemma 3 with these two sets. It is not

hard to verify that the conditions of Lemma 3 are fulfilled.

(x72)

This implies that the capacity of the ~—=5= min-cuts in M is greater than or equal to the capacity

B2 (5
of the (1) min-cuts in N. Hence, the capacity of the largest min-cut in M, say w(m), must be

8(k—1)
RO5)/S-1) g

at least

(kljz)/Q Ak - 1)

times larger than the capacity of the smallest min-cut in N, say w(n). Consequently, %(% >

4(5—:). But it can be easily verified that this is exactly the quotient achieved by a clique

w(m)
w(n) =
on k vertices and all edge capacities equal to 1/(k — 1), since the smallest min-cut in such a clique

cuts £ — 1 edges and hence has capacity 1, while the largest min-cut cuts % X % edges and hence
2

has capacity ﬁ. [|

Acknowledgements. We are grateful to the anonymous referees for carefully reading the manuscript
and making several valuable comments and suggestions.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows Prentice-Hall, 1993.

[2] S. Arikati, S. Chaudhuri, and C. Zaroliagis, All-Pairs Min-Cut in Sparse Networks, Jour-
nal of Algorithms, to appear; preliminary version in Found. of Software Technology and
Theor. Comp. Science — FSTTCS95, Lecture Notes in Computer Science Vol. 1026, Springer-
Verlag, 1995, pp.363-376.

[3] S. Arnborg, Efficient Algorithms for Combinatorial Problems on Graphs with Bounded De-
composability - A Survey, BIT, 25 (1985), 2-23.

[4] H. Bodlaender, A Linear Time Algorithm for Finding Tree-decompositions of Small Treewidth,
in Proc. 25th ACM Symposium on Theory of Computing (STOC’93);, ACM, 1993, pp.226-234.

[5] H. Bodlaender, A Tourist Guide through Treewidth, Acta Cybernetica, 11:1-2 (1993), 1-21.

[6] C.K. Cheng and T.C. Hu, Maximum Concurrent Flows and Minimum Cuts, Algorithmica, 8
(1992), 233-249.

[7] D. Gusfield, Very Simple Methods for All Pairs Network Flow Analysis, SIAM Journal on
Computing, 19 (1990), 143-155.

[8] R.E. Gomory and T.C. Hu, Multi-terminal network flows, Journal of SIAM, 9 (1961), 551-570.
[9] T. Hagerup, private communication, 1997.

[10] T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde, Characterizations of k-Terminal
Flow Networks and Computing Network Flows in Partial k-Trees, in Proc. 6th ACM-STAM
Symposium on Discrete Algorithms (SODA’95) ACM-SIAM, 1995, pp. 641-649.

[11] E. Thler, F. Wagner, and D. Wagner, Modeling hypergraphs by graphs with the same mincut
properties, Inform. Proc. Lett., 45 (1993), 171-175.

15

[12] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Teubner, Stuttgart and
Wiley, Chichester, UK, 1990.

[13] N. Robertson and P. Seymour, Graph Minors II: Algorithmic Aspects of Treewidth, Journal
of Algorithms, 7 (1986), 309-322.

[14] M.T. Shing and T.C. Hu, A Decomposition Algorithm for Multi-terminal Network Flows,
Discrete Applied Mathematics, 13 (1986), 165-181.

[15] A. Vanneli and S.W. Hadley, A Gomory-Hu cut tree representation of a netlist partitioning
problem, IEEE Trans. Circuits and Systems, 37 (1990), 1133-1139.

16

