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1. Introduction

(a) House mouse

(b) Fruit fly

(c) Paramecium

Figure 1.1.: Pictures of animals. Pictures
downloaded from wikipedia.org.

A striking feature of living organisms is how
diverse they are. They adapted to amazingly
different and hostile environments and exhibit
great variety in shape, size and lifestyles (Figure
1.1). All instructions necessary to generate a liv-
ing organism and maintain its life is encoded in
DNA sequences organized into a genome, which
is transmitted from one generation to the next
to allow new organisms to be formed. Studying
an organism’s genome can thus tell us how this
organism functions. As more and more genomic
sequences are collected and available for analysis,
it is important to understand how genomes are
organized, for example which regions are func-
tional and what that function might be. Study-
ing how genomes evolve through time can help
identifying such regions and also highlight mech-
anisms acting on the evolution of genomes. As
DNA sequences consist of four bases (A, T, G
and C) grouped together in a double stranded
molecule, the most basic property of any DNA
sequence is its base composition, the proportion
in the sequence of As, Ts, Gs and Cs. As such,
genomic base composition has been studied for
a long time and revealed evolutionary forces act-
ing on genome evolution. This thesis presents
analyses of base composition evolution in animal
genomes and of the different mechanisms affect-
ing it.

1



Chapter 1. Introduction

1.1. General introduction

1.1.1. Introduction to DNA and genomes

The genome is the recipe book to an organism: it contains the information needed
to build an organism from a single-cell embryo to a multicellular adult in the case
of multicellular organisms, or more generally to maintain the organism’s function.
The molecule containing all the genome’s information is DNA (short for Deoxyri-
boNucleic Acid).

Figure 1.2.: Right panel: one strand of DNA. The deoxyribose groups are represented in orange and linked together
by phosphate groups form the backbone of the DNA strand. The four types of bases are represented in
green (A), red (C), purple (T) and blue (G). One can observe the 5’ end of the strand formed by the
phosphate group while the 3’ end is formed by the OH residue of the deoxyribose. Left panel: double-
stranded DNA. The DNA bases of each strand pair together through hydrogen bonds. A and T bases
pair with two bonds while G and C bases pair with three. The two strands pair in an antiparallel manner:
the 3’ end of one strand will pair with the 5’ end of the other. Figures adapted from wikipedia.org.

The chemical structure of DNA was determined nearly 60 years ago (Franklin and
Gosling, 1953; Wilkins et al., 1953; Watson and Crick, 1953). One molecule of DNA
consists of a backbone of sugar molecules (in this case deoxyribose) linked together
by phosphate groups (Figure 1.2). Attached to this backbone are nucleobases, which
will constitute the actual sequence of the DNA. There are four nucleobases found in
DNA: cytosine (C) and thymine (T), two pyrimidines, and adenine (A) and guanine
(G), two purines. Such association of sugar, phosphate groups and nucleobases (or
bases for short) form a DNA strand. The bases of this strand will be decoded by the
cell machinery and constitute the genetic information. This strand has an orienta-
tion, which is based on what is at its end: a phosphate group on the so-called 5’ end
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Chapter 1. Introduction

and a hydroxyl group from a deoxyribose on the 3’ end. By convention, a strand is
read and analyzed from the 5’ end to the 3’ end (Figure 1.2).

In living cells, DNA is not single-stranded. Two complement strands pair together
to form a double-stranded DNA (Figure 1.2). This pairing is possible because bases
on opposing strands pair together through hydrogen bonds: A bases pair with T
bases with two hydrogen bonds while C bases pair with G bases with three hydrogen
bonds (Figure 1.2). The two strands pairing up are anti-parallel: one is oriented from
5’ to 3’ while the other is oriented from 3’ to 5’. The end product will form a double
helix structure.

The fact that double-stranded DNA is made of two complement single strands has
important consequences for the transmission of genetic material. During replication
of DNA, the two strands are denatured or separated. Each strand will then serve
as template for the synthesis of its complement strand. We will end up with two
identical double-strands of DNA, which can then be transmitted to daughter cells
during cell division.

The DNA contains the information necessary to the formation of an organism,
either in protein-coding genes or in regions regulating the activity of such genes. The
entire genetic information of an organism constitutes its genome. In eukaryotes, this
genome is usually divided into chromosomes, each containing several million bases.

1.1.2. Introduction to evolution

Molecular evolution can be simply viewed as mutations occurring in the genetic ma-
terial being transmitted from one generation to the next. These mutations happening
in one individual can then affect entire populations and species.

Mutations can be of several types and scales (Figure 1.3). The simplest muta-
tion is one single DNA base being replaced by another. A slightly more complex
mutation occurs when one or several DNA bases which are either inserted in or
deleted from a locus. These are referred to as indels. A segmental duplication oc-
curs when a large region (e.g. several kbp to several Mbp) is copied and inserted
in the same chromosome. Mobile DNA elements or transposable elements are ele-
ments that have the capacity to copy themselves and insert this copy elsewhere in
the genome, thus affecting the locus in which they insert themselves. Finally, large
section of chromosomes (like entire chromosomal arms) can translocate from one
chromosome to another, causing chromosomal translocations or rearrangements. All
these events happen at different rates, the single nucleotide replacements occurring
at much higher frequencies than chromosomal rearrangements.

When a mutation occurs in one individual, it will carry the mutated allele and
possibly transmit this allele to its offspring through reproduction. These offspring
will in turn reproduce and transmit the allele to the following generations. By this
process, the allele will spread in the population. When all individuals in a population
possess the allele, it has reached fixation. The probability of a mutation to become
fixed in a population depends on several things: the population size, the frequency
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Figure 1.3.: Different types of mutations

of the mutated allele in the population (the proportion of individuals carrying this
allele), and its selective coefficient. The latter represents how advantageous or dis-
advantageous an allele is. It is generally computed by comparing the number of
offspring produced by individuals with a mutation to the number of offspring of
individuals without. It is usually denoted s. A mutation without any effect on an
individual’s capacity to produce offspring will have a s of 0 and will be called a
neutral mutation. When considering a population of diploid organisms of size N , we
will have 2N copies of the genome. A newly arising mutations will have a frequency
of

f =
1

2N
. (1.1)

When a mutation occurs at a locus in an individual, there will be several alleles,
or variants, of this locus observable in the population. The original allele present
before any mutation is defined as the ancestral allele whereas the allele arising from
a mutation will be defined as a derived allele. The fixation probability of a neutral
allele will be equal to its frequency in the population (Kimura, 1968; Felsenstein,
2005). Therefore that of a newly arising mutation will be

Pfixation = f =
1

2N
. (1.2)

When the mutation has a selective advantage or disadvantage, its fixation prob-
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ability is then

Pfixation =
1− e−4Nsf

1− e−4Ns
, (1.3)

where s is the allele’s selection coefficient and f its frequency in the population
(Kimura, 1968; Felsenstein, 2005). The sign of s will indicate whether the allele is
deleterious (s is negative) or advantageous (s is positive). The fixation probability
of a newly arising mutation will be

Pfixation =
1− e−2s

1− e−4Ns
. (1.4)

A mutation that has reached fixation in the population will be called a substitution
(Figure 1.4).

Figure 1.4.: Schematized fixation of a mutation in a population. The frequency of the derived allele increases until
it reaches fixation when all individuals have this allele.

When we study the evolution of organisms and genomes, we want to find past mu-
tations in genomic sequences. However, it is impossible to access past species and
DNA sequences. The issue is then to be able to reconstruct past events only from
information about the present. This is resolved by taking a comparative approach.
The principle is to compare DNA sequences from several species of interest, iden-
tify similarities and differences and based on this information, reconstruct ancestral
DNA sequences and changes that occurred between them and present-day sequences
(Figure 1.5).
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Figure 1.5: Comparative approach. By comparing
the sequences of two sister species and
a more distantly related outgroup, one
can try to infer, given some assumptions
on evolutionary processes, 1) the ances-
tral state of the two sister species and 2)
the events in each of their branches.

1.2. Isochore structures

1.2.1. Large-scale variations of GC-content in mammalian
genomes

DNA molecules are studied since the discovery of its double helix structure by Ros-
alind Franklin, Maurice Wilkins, James Watson and Francis Crick about 60 years
ago (Franklin and Gosling, 1953; Watson and Crick, 1953; Wilkins et al., 1953).
The first sequences of nucleic acid sequences (RNA or DNA) were obtained in the
early seventies. Techniques were however costly, time and labor demanding and thus
unpractical for genomic sequences. Thus, early characterizations of DNA sequences
was done using more classical biochemical analyses.

A major property one can determine of DNA sequences is their base composition,
the number or frequency or relative abundance of bases. A bases pair up with T
bases while G and C bases pair together in double-stranded DNA. In a genomic
DNA sequence, the number of G and C bases will be equal, a feature shared by A
and T bases (this is known as Chargaff’s first parity rule). Only the abundance of
AT bases or GC bases needs to be quantified in genomic DNA, which can be further
reduced to the quantification of one of these (the added frequency of all four bases
is always 1). The GC-content was historically chosen as subject of measurement.

The method most widely used to study the GC-content of DNA sequences was
ultra-centrifugation, first described by Meselson et al. (1957). Its principle was to
prepare a density gradient of a certain medium that would separate after a cen-
trifugation step DNA sequences according to their GC-content. Using this method,
it was possible to determine the GC-content of genomic DNA sequences but also
that of smaller fragments to reveal variations in GC-content within the genomic
sequence. After chemically fragmenting genomic DNA, it was possible to charac-
terize the GC-content of these fragments and generate GC-content distributions
for mammalian genomes (Filipski et al., 1973; Macaya et al., 1976; Thiery et al.,
1976; Cortadas et al., 1977; Macaya et al., 1978). These analyses revealed that the
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GC-content distributions of mammalian genomes showed a non-homogeneous dis-
tribution with an excess of GC-rich regions. Moreover, the authors concluded that
mammalian genomes were organized into isochores (Cuny et al., 1981): regions of
approximately 200 kbp having a relatively homogeneous GC-content. More specifi-
cally, mammalian genomes could be divided into several individual and independent
classes of isochores: L1 & 2 (Low), regions of low GC-content and the majority of
mammalian genomes, and H1, 2 & 3 (High), regions with high GC-content and only
a small fraction of mammalian genomes (Bernardi et al., 1985).

The initial sequencing of human and mouse genomes (Lander et al., 2001; Mouse
Genome Sequencing Consortium et al., 2002) allowed for direct analysis of mam-
malian genome sequences. More importantly, the GC-content variations along chro-
mosomes became obvious. Figure 1.6 shows GC-content computed in 10 kbp windows
in a 3 Mbp region of the human genome. One can easily notice how the GC-content
varies along this segment. Several questions are raised when studying such profiles:
is there a simple way to quantify GC-content variations along chromosomes, what
can we expect from random DNA sequences, is there a simple way to quantify GC-
content variations along chromosomes and can we use such method to compare the
genomes of different organisms.
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Figure 1.6.: GC-content profile in 10 and 100 kbp windows along a 3 Mbp segment of the human chromosome 1.

1.2.2. Association of isochore structures with genomic
features

While it became clear that the isochore structure was an important feature of a
genome, the association between GC-content and several genomic features was stud-
ied. Initially, the distribution of a handful of genes with respect to isochore classes
was analyzed (Bernardi et al., 1985). It was found that genes were not homogeneously
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distributed along mammalian genomes with respect to GC-content: GC-rich regions
while representing 8% of the total genomic DNA contained half of the 24 genes
studied at the time (Bernardi et al., 1985). Complete genome sequencing and gene
annotation showed this tendency for genes to lie in GC-rich regions was widespread
in mammalian genomes (Lander et al., 2001; Mouse Genome Sequencing Consortium
et al., 2002; Gibbs et al., 2004). Moreover, it was shown that the length of genes
was also linked to neighboring GC-content, with genes in GC-rich isochores being
on average shorter than genes in other regions (Duret et al., 1995).

Transposable elements, DNA elements that have the ability to move around the
genome (they had been dubbed ’jumping genes’ early on), were found to have their
distribution also linked to GC-content variations. Preliminary sequences of the hu-
man genome showed that different classes of elements were found in regions of dif-
ferent base composition along human sequences (Smit, 1999). Notably, short in-
terspersed elements (hereafter designated as SINEs) like Alu elements were found
mostly in GC-rich regions whereas long interspersed elements (hereafter designated
as LINEs) were mostly found in GC-poor regions of the human genome. Subsequent
analysis of the human and mouse complete genomes confirmed this observation
(Lander et al., 2001; Mouse Genome Sequencing Consortium et al., 2002).

The link between GC-content and other processes, like meiotic recombination (the
exchange of genetic material between homologous chromosomes during meiosis) or
replication-timing (the relative time at which a particular region is duplicated) has
been studied over the years. It has been shown that the number of chiasmata (points
of exchange between two homologous chromosomes) is linked with GC-content in
mammalian genomes (Eyre-Walker, 1993). More detailed measures of meiotic re-
combination in human genomes further confirmed the link between meiotic recom-
bination and base composition variations (Fullerton et al., 2001; Kong et al., 2002).

Furthermore, when measuring timing of replication in mammalian cells, it was
found that whether a regions is replicated early or late is linked with its base compo-
sition (Federico et al., 1998; Watanabe et al., 2002; Touchon et al., 2005; Costantini
and Bernardi, 2008; Hiratani et al., 2008; Ryba et al., 2010).

The association between a number of genomic features and isochores structures
led to the hypothesis that these structures had a level of importance for the genome’s
function. The question of their origin and maintenance was raised and tested, which
led to the identification of evolutionary forces acting on mammalian genomes.

1.3. Origin and evolution of isochore structures

We know there are variations in the GC-content along mammalian and bird chromo-
somes that have been called isochore structures and that these structures are linked
with a number of genomic features. We now ask the question of the origin of such
variations: how did they came into place, what mechanisms were responsible for this
and are these mechanisms still at work today. Three hypotheses have been put for-
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ward to explain these variations: a bias in the mutation process, natural selection or
a neutral process called GC-biased gene conversion (hereafter designated as gBGC).
We will now review these hypotheses.

1.3.1. Mutational bias

According to the mutational bias hypothesis, isochore structures are caused by a
variation along chromosomes of the bias of mutations towards AT or GC nucleotides
(Wolfe et al., 1989; Filipski, 1988). This hypothesis can be tested by looking at
single nucleotide polymorphisms (hereafter designated as SNPs). Such analysis in
human and mouse revealed a weak bias in mutations favoring AT nucleotides and a
strong fixation bias favoring GC nucleotides. These mutations spread more rapidly
in populations than AT mutations (Eyre-Walker, 1999; Spencer et al., 2006).

These studies show that the mutational bias hypothesis alone cannot explain iso-
chore structures along mammalian chromosomes and reveal a fixation bias favoring
G and C alleles. This bias could be caused by natural selection.

1.3.2. Natural selection

Several hypotheses explaining isochore structures by natural selection have been
proposed in the past. The main one confers a selective advantage of GC-rich regions
in warm-blooded organisms like birds and mammals. There are three hydrogen bonds
between a G and a C base whereas there are only two between A and T bases. As the
two strands of DNA separate more easily at higher temperature, GC-rich sequences
thus ensure more stability for DNA and RNA in warm-blooded organisms. Having
a GC-rich genome will therefore be a clear selective advantage for such organisms
(Bernardi, 2000, 2007). The fact that isochore structures were first discovered in birds
and mammals, warm-blooded organisms, was also interpreted as evidence supporting
this hypothesis (Bernardi, 2000).

However, analyses in cold-blooded organisms like crocodiles or turtle revealed
isochore structures comparable to warm-blooded structures (Hughes et al., 1999;
Hamada et al., 2002, 2003). Two conclusions were drawn from these results. First,
as mammals, birds and reptiles share isochore structures, it is very likely that these
appeared once in the ancestor or amniotes about 350 million years ago (Duret et al.,
2002). Second, as cold-blooded organisms do have isochore structures, these do not
bring a selective advantage to warm-blooded organisms. The hypothesis of adapta-
tion to high body temperature therefore has to be rejected.

Finally we should consider the following. If we imagine a region of a certain length
(e.g. 1 kbp) where a GC-changing mutation occurs, the region’s GC-content will
only change marginally. Because of such limited effect, it is very unlikely that this
mutation will be seen by natural selection: the selective advantage of such mutation
will be very low. For this reason, it is hard to imagine how GC-content is effectively
under selective pressure.
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Overall, these studies show that natural selection alone cannot explain the fixation
bias favoring GC alleles nor isochore structures in amniotes. This means that a
neutral process like gBGC was likely to be at the origin of these structures.

1.3.3. GC-biased gene conversion

The GC-biased gene conversion model has first been proposed by Galtier et al.
(2001). This model states that meiotic recombination will increase the fixation prob-
ability of G and C alleles through a biased repair of mismatches occurring during
gene conversion events. Over the years, it has gained substantial supporting evi-
dence.

The GC-biased gene conversion model

The different molecular pathways of meiotic recombination have been well described
in eukaryotes (Figure 1.7, see Marais, 2003 and Coop and Przeworski, 2007 for
reviews).

Figure 1.7.: Meiotic recombination. The repair of the double strand break will form Holliday junction which will be
repaired into crossover or non-crossover events.

This process starts with a double strand break (hereafter designated as DSB) in
one chromosome of a chromosomal pair, which product is digested and then repaired
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by the invasion of the homologous region of the sister chromosome. This region will
be used as a template for DNA synthesis and repair by gene conversion, the copy
and paste of one DNA fragment into another (de Massy, 2003; Chen et al., 2007).

During this process, strands from two sister chromosomes are paired together,
which may result in mismatches occurring if the corresponding locus is heterozy-
gote. It has been shown that in mammals the mismatch repair mechanism is biased
towards G and C bases: it will repair for example a G:T mismatch more often into
G:C than into A:T (Figure 1.8, Brown and Jiricny, 1988; Bill et al., 1998).

Figure 1.8.: Two cases of mismatch repair. Left: in the case of a T:T mismatch, the repair process is unbiased, both
resolutions will have the same frequency. Right: in the case of a T:G mismatch, the biased repair process
will lead to this mismatch being repaired more often into C:G than into A:T.

This biased repair will have important implications for population genetics as it
will lead to an unequal segregation of alleles, G and C alleles segregating at higher
frequencies than A and T alleles. This will result in a fixation bias (Nagylaki, 1983)
favoring G and C alleles and disfavoring A and T alleles, which increases with
meiotic recombination (for a review on gBGC, see Duret and Galtier, 2009). How
much gBGC will affect substitution rates and genome evolution will depend on the
length of gene conversion tracts, how often an A or T base is converted into a G
or C base, and on the effective population size (Lynch, 2007). This model predicts
a positive link between meiotic recombination and GC-content as well as a positive
influence of meiotic recombination on substitutions that increase GC-content.

Evidence of GC-biased gene conversion affecting mammalian genomes

The link between GC-content and meiotic recombination has been put forward in
various studies. First, a positive correlation between local rates of recombination and
GC-content has been found in the human genome (Fullerton et al., 2001). Second,
studies on the Fxy gene in mouse have shown an increase of GC-content associated
with high recombination rates (Montoya-Burgos et al., 2003; Galtier and Duret,
2007). The 3’ side of the gene underwent a translocation in the pseudoautosomal
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region of the X chromosome (a region which experiences very high levels of meiotic
recombination) about 1 to 3 million years ago in the Mus musculus musculus (or
Mus m. musculus for short) lineage. This 3’ side of the Fxy gene accumulated an ex-
tremely high number of non-synonymous substitution, all AT to GC, over this short
period of time, whereas the same gene in different species where no translocation oc-
curred only experienced a handful of non-synonymous substitutions, all distributed
along the entire coding sequence (Montoya-Burgos et al., 2003; Galtier and Duret,
2007). These results highlight a positive link between meiotic recombination and
GC-content, which is a prediction of the gBGC model.

The second prediction of the gBGCmodel is the influence of meiotic recombination
on substitution patterns. These can be inferred by comparing homologous sequences,
either orthologous sequences from closely related species or repeated elements such
as transposable elements.

Studies of substitution patterns in non-coding regions of the human genome have
shown a positive correlation between substitution patterns and crossover rates, a
proxy measure of meiotic recombination (Meunier and Duret, 2004; Duret and
Arndt, 2008). Similar studies of substitution patterns in retropseudogenes in hu-
man, rat and human (Khelifi et al., 2006) as well as in Alu retroelements in human
(Webster et al., 2005) show a similar correlation. These studies analyze equilibrium
GC-content or future GC-content (hereafter designated as GC*), a value computed
from substitution patterns which represents the final GC-content value the sequences
of interest evolve to, provided substitution patterns stay constant over time. This
value is proportional to the ratio of A or T (Weak or W) to G or C (Strong or S)
substitution rates divided by the sum of S → W and W → S substitution rates. It
represents the relative importance of W→S rates compared to S→W rates:

GC∗ =
(W→ S)

(W→ S) + (S→W)
. (1.5)

Crossover rates are positively correlated with both GC-content and GC*. How-
ever, these rates are more strongly correlated with GC* than with GC-content. As
GC* values are computed from substitution patterns and not from current GC-
content, these results show that meiotic recombination influences GC-content evolu-
tion through the influence of substitution patterns, which is predicted by the gBGC
model.

GC-biased gene conversion and natural selection

The GC-biased gene conversion process is a fixation bias: when meiotic recombina-
tion is high, G and C alleles spread more easily through the population than A and
T alleles and thus will get fixed more rapidly. This fixation bias is neutral (it does
not affect an organism’s fitness, its ability to reproduce) but will look like natural
selection: first evidence of a fixation bias favoring G and C alleles was interpreted
as resulting from natural selection (Eyre-Walker, 1999). More recently, this process
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was mistaken for positive selection in fast evolving regions of the human genome.
Pollard et al. (2006b) scanned the human genome for regions that were conserved
in a number of organisms but showed human-specific substitutions. These regions
were called human accelerated regions (or HARs for short) as they showed a signifi-
cant acceleration of evolutionary rates specific to the human lineage. Their functions
were tested and some were found to code for RNA genes expressed during cortical
development (Pollard et al., 2006b). However, most changes in these HARs are W
to S changes (Pollard et al., 2006a), a clear signature of gBGC, which questioned
the fact that natural selection was the sole factor influencing the evolution of HARs.
Subsequent analyses confirmed that the most accelerated regions were enriched for
A or T to G or C substitutions and showed that these regions were more likely
to be found near recombination hotspots, regions of the genome experiencing ex-
tremely high amounts of recombination (Berglund et al., 2009). This suggested that
gBGC had a strong role in affecting fast-evolving regions of the human genome. It
also showed that signatures of gBGC can easily be identified as positive selection,
and disentangling signatures of gBGC and positive selection is an issue that was
addressed very recently (Kostka et al., 2012).

One can ask whether a neutral process like gBGC can be stronger than natu-
ral selection in some cases. Recombination is not homogeneously distributed along
mammalian genomes, but is concentrated in hotspots, regions of 1 to 2 kbp experi-
encing high amounts of recombination (Myers et al., 2005; Paigen and Petkov, 2010).
Clear and strong signatures of gBGC have been shown inside meiotic recombination
hotspots (Spencer et al., 2006; Katzman et al., 2011). It is possible that inside these
hotspots gBGC is strong enough to promote the fixation of deleterious alleles (i.e.
alleles that are a disadvantage for the individuals possessing them). When analyzing
different primates lineages for deleterious amino-acid changes caused by A or T to G
or C substitution, it has been shown that such changes happened at the same time as
an increase of GC-content in both synonymous positions and introns of the studied
genes (Galtier et al., 2009), which was interpreted as gBGC promoting the fixation
of deleterious alleles in primates. Furthermore, by studying the frequency of various
alleles known to cause diseases, it was shown that these alleles segregate at higher
frequencies when they lie close to recombination hotspots (Necşulea et al., 2011).
Both examples show that gBGC can be stronger than natural selection and promote
the spread and fixation of deleterious alleles, especially in regions experiencing high
amounts of recombination.

Finally, evidence of gBGC affecting substitution patterns has been found in a
wide number of organisms: mammals (Romiguier et al., 2010), drosophila and other
metazoans (Galtier et al., 2006; Capra and Pollard, 2011), yeast (Harrison and
Charlesworth, 2011) and other eukaryotes like angiosperms (Escobar et al., 2011).
This indicates that gBGC is an important process in eukaryote genome evolution.
Overall, it is now clear that gBGC is a major process influencing mammalian genome
evolution.

However, some questions about gBGC and GC-content evolution are still unan-
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swered despite recent discoveries. First, can we quantify and compare GC-content
variations across different animal species. Second, gBGC has been well characterized
only in primates. Measuring in detail the influence of gBGC on substitution pat-
terns across the mouse genome will give us a more complete picture of how gBGC
works in mammals. This could be completed by a measure of the relative influence
of different processes on substitution patterns in mouse and human. Third, what
is the fine-scale signature of gBGC inside meiotic recombination hotspots in mouse
and human. What can this signature tell us about how meiotic recombination is
working in mammalian genomes.
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1.4. Thesis outline

In this thesis, we study the base composition of organisms, focusing on mammalian
genomes. We try to first identify and then quantify processes affecting its evolu-
tion. Chapter 2 lists and details the experimental procedures used in subsequent
chapters, notably the different sets of alignments and datasets used, as well as the
maximum likelihood framework used to infer substitution patterns in different sets
of alignments. The third chapter presents a detailed quantification of GC-content
variations along a wide range of genomes. We determine GC-content variations for
random DNA sequences and compare these results to those for the human genome.
We then characterize GC-content for different groups of organisms like mammals,
primates or amniotes. Chapter 4 presents analyses of substitution patterns and GC-
content evolution in both mouse and human genomes. We measure substitution
patterns from triple alignments in these lineages to compare GC-content evolution
as well as the activity of GC-biased gene conversion. We also compute the relative
influence of various genomic features on substitution patterns, highlighting major
differences between the two lineages. Chapter 5 analyzes GC-content evolution and
substitution patterns in the context of meiotic recombination hotspots in both hu-
man and mouse genomes. We determine GC-content evolution in a wide range of
mouse lineages. We then measure the fine-scale evolutionary signature of meiotic
recombination in both human and mouse genomes. Finally, from these signatures,
we derive characteristics of meiotic recombination in mammalian genomes.

Publications Parts of Chapter 4 appeared in a publication in Genome Biology and
Evolution (Clément and Arndt, 2011).
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2. Materials & Methods

2.1. GC-content variance

We present here methods used in Chapter 3. Base composition of genomes was
analyzed in several groups of species. In primates, the following genomes: human
(Homo sapiens, version hg19), chimpanzee (Pan troglodytes, version panTro3 ) go-
rilla (Gorilla gorilla, version gorGor3 ), orangutan (Pongo abelii, version ponAbe2 ),
macaque (Macaca mulatta, version rheMac2 ) and marmoset (Callithrix jacchus, ver-
sion calJac3 ); in rodents, mouse (Mus m. musculus, version mm9 ) and rat (Rattus
norvegicus, version rn4 ); in mammals, horse (Equus caballus, version equCab2 ),
dog (Canis lupus familiaris, version canFam2 ), pig (Sus scrofa, version susScr2 ),
cow (Bos taurus, version bosTau6 ), opossum (Monodelphis domestica, version mon-
Dom5 ) and platypus (Ornithorhynchus anatinus, version ornAna1 ); in birds, chicken
(Gallus gallus, version galGal3 ), zebra finch (Taeniopygia guttata, version taeGut1 )
and turkey (Meleagris gallopavo, version melGal1 ) were analyzed. This was com-
pleted by the study of an amniote with anole lizard (Anolis carolinensis, version
anoCar2 ), and with the study of zebrafish (Danio rerio, version Zv9 ) and drosophila
(Drosophila melanogaster, version dm3 ).
For each genome, sequences for autosomes and sex chromosomes were downloaded

from the Ensembl database (version 65, Flicek et al., 2012).
For each species of interest, the genomic sequence was first divided into non-

overlapping windows of different sizes (hereafter designated as tiling): 1, 2, 5, 10, 20,
50, 100, 200, 500 kbp and 1 Mbp. For some genomic intervals the precise nucleotide
sequence cannot be determined (e.g. centromeric or telomeric regions). To ensure
that windows contain enough information to compute GC-content, only those con-
taining at least 50% of nucleotides (e.g. 50 kbp of nucleotides in a 100 kbp window)
were kept for analysis. The GC-content was then computed in each window. For each
tiling the variance for the GC-content values of all windows was finally computed.
At the same time, GC-content distributions for 10 kbp tiling were plotted.

2.2. Substitution patterns in primates and rodents

We present here methods used in Chapter 4. The link between substitution patterns
and genomic features was studied in human and mouse genomes. To do so, we took
a whole-genome approach. For each species the reference genome was divided into
non-overlapping windows, then in each of these substitution patterns were computed
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from multiple alignments available online. At the same time we measured in each
window genomic features from publicly available datasets.

2.2.1. The maximum likelihood framework

Computing substitution rates in different lineages is done using a comparative ap-
proach, for example by studying sequence alignments of a region of interest. As se-
quence alignments only represent present-day states, the methodological challenge
is to reconstruct past events from these alignments.

The simplest, most intuitive method to infer substitution rates in different lineages
is maximum parsimony: finding the lowest number of substitutions to explain the
data. However, using such simple method will cause some problems, specifically in
cases where the base composition is not at equilibrium (Felsenstein, 1978; Eyre-
Walker, 1998). Using a maximum likelihood-based method will yield better results
(Felsenstein, 1981). In a maximum likelihood framework, one wants to estimate a
model (M) that best explains data (D). The following function gives the likelihood
(L): the probability of observing the data given the model.

L = P (D|M) (2.1)

The goal is to estimate the model that maximizes the likelihood. In our case, the data
consists of multiple alignments of DNA sequences and the model is parameterized by
substitution frequencies along different branches of a tree. Substitution probabilities
are usually represented by a rate matrix (denoted Q) where every entry Qβα is the
α → β transition probability for an infinitesimal time interval and α and β are
nucleotides. Below is an example of a rate matrix for the simple one parameter
Jukes-Cantor model (Jukes and Cantor, 1969).

Q =


A C G T

A −3q q q q
C q −3q q q
G q q −3q q
T q q q −3q

 (2.2)

Rate matrices are constrained to ensure the conservation of the total probability:
every column sums up to 0. The probability of change for all nucleotides over a time
interval t can be then described by the following differential equation

∂

∂t
ρ(t) = Qρ(t) , (2.3)

where ρ is a vector of all 4 nucleotides. The solution to this differential equation is
then

ρ(t) = P (t)ρ(0) , (2.4)
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where P (t) is the matrix of transition probabilities over the time interval t. It is
given by

P (t) = exp(Qt) =
∞∑
k=0

1

k!
(Qt)k . (2.5)

In the equation above, one can see that when k is superior to 1, this will represent
cases for which more than one substitution per site are observed. This is the main
advantage of using a maximum likelihood based method over maximum parsimony
as the latter can only infer one change per site per branch, which will lead to false
estimations of substitution rates. Each entry of the matrix P (t)βα will then represent
the probability of a α → β during the time interval t. The matrix of transition
probabilities in the case of a Jukes-Cantor model will be

P (t) =


A C G T

A 1− 3p p p p
C p 1− 3p p p
G p p 1− 3p p
T p p p 1− 3p

 , (2.6)

where p = (1− exp(−4qt))/4.
In this case, p is the parameter that needs to be estimated to maximize the

likelihood function. The likelihood is then the product of the probabilities for each
site of our alignment. Traditionally, the logarithm of the likelihood is used, in order
to sum over all sites of the alignment.

2.2.2. Inferring substitution patterns from multiple
alignments

Substitution patterns were computed in both human and mouse genomes as follows.
Whereas similar methods were used for both genomes, they were analyzed sepa-
rately. All human and mouse autosomes were divided into 1 Mbp non-overlapping
windows. Endero-Pecan-Ortheus (hereafter designated as EPO) 10 eutherian mam-
mals multiple alignments available at the Ensembl database (version 56, Hubbard
et al., 2009) corresponding to each window were downloaded and restricted to the
analysis of the following species: human, chimpanzee and macaque for the analysis
of the human lineage, mouse, rat and human for the analysis of the mouse lineage.
For both analyses, all exons were masked from our alignments using the Ensembl
database annotation (version 56, mouse genome version mm9, human genome ver-
sion hg19 ). Repeated elements were not masked from our alignments.
The method used to infer substitution patterns from multiple alignments is based

on maximum likelihood (Arndt et al., 2003a; Arndt and Hwa, 2005; Duret and Arndt,
2008). It does not assume that the substitution process is time-reversible, nor that
sequence composition has yet reached equilibrium. It also takes into account the
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fact that the methylated cytosine of a CpG dinucleotide is hypermutable: C→T and
G→A mutations occur approximately ten times more frequently in CpGs than in
non CpGs (Bird, 1978; Giannelli et al., 1999). Not taking this into account can lead
to the inference of incorrect substitution patterns (Duret, 2006). The method adds
an additional rate parameter to represent this CpG substitution process. Finally,
this method computes an individual substitution matrix for each branch of the tree.
The parameters that are estimated are then substitution rates for each branch of
the tree as well as the nucleotide frequencies at the root of the tree.

In this analysis of substitution patterns in 1 Mbp windows, complementary rates
are assumed to be equal (A→G = T→C, denoted AT→GC) for simplicity. As
a result, 2 transition rates (AT→GC, GC→AT), 4 transversion rates (AT→CG,
AT→TA, GC→TA, GC→CG) and 1 CpG rate (CpG→TpG/CpA) were computed.
The rate matrix computed in each branch of the tree is shown below (columns are
constrained to sum up to 0).

Q =


A C G T

A • rGC→TA rGC→AT rAT→TA
C rAT→CG • rGC→CG rAT→GC
G rAT→GC rCG→CG • rAT→CG
T rAT→TA rGC→AT rGC→TA •

 (2.7)

Furthermore, AT→GC and AT→CG substitution rates were grouped together
as Weak (W) → Strong (S) substitution rates (G and C bases on complementary
strands are bound by 3 hydrogen bonds whereas A and T bases only by 2). Similarly,
GC→AT and GC→TA substitution rates were grouped together as S→W substitu-
tion rates. A total substitution rate was also computed as the weighted sum of all
substitution rates. A substitution pattern consists of all substitution rates. For each
substitution pattern an equilibrium GC-content or future GC-content was computed
(later designated as GC*), which is the expected final GC-content if the sequence
evolves with a constant substitution pattern through time. It can be viewed as both
the summary value of the substitution pattern and a proportional value to the ratio
between W→S and S→W substitution rates.

2.2.3. Retrieving genomic features

The following genomic features were computed in each window: GC-content, the
distance to the telomere, the CpG dinucleotide odds ratio (the observed CpG fre-
quency divided by the expected CpG frequency, later designated as CpGodds), exon
density (proportion of base pairs occupied by exons in a window, later designated
as Exons) as well as SINE, LINE and LTR transposable element densities (later
designated as SINEs, LINEs and LTRs). Crossover rates (hereafter designated as
CO) were extracted from high quality genetic maps available for the human genome
(International HapMap Consortium et al., 2007) and the mouse genome (Shifman
et al., 2006). These rates were computed as the weighted average of crossover rates
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of chromosomal regions that overlap the window. It was possible to extract sex-
averaged crossover rates in the human genome and sex-averaged as well as male and
female-specific crossover rates in the mouse genome. Because in the mouse lineage
the crossover rates and the distance to the telomere exhibit a non-normal distribu-
tion (Figure A.1), the logarithms of crossover rates (hereafter designated as LCO) as
well as the distance to the telomere (hereafter designated as LDT) were computed.
Replication-timing values (hereafter designated as RepTime) were computed from
high resolution replication-timing profiles available for mouse embryonic stem cells
(Hiratani et al., 2008) and human embryonic stem cells (Ryba et al., 2010), as the
weighted median of replication-timing values of chromosomal regions that overlap
the window. All genomic positions in the genetic maps and replication-timing pro-
files were converted to the versions of the human genome (hg19 ) and mouse genome
(mm9 ) from which the alignments were computed using the liftOver tool available
at UCSC (http://genome.ucsc.edu/cgi-bin/hgLiftOver).

Finally, windows were filtered as follows: Windows with less than 100 kbp of
sites where all three species have an aligned nucleotide were discarded, as well as
those which overlapped centromeric regions and those without enough information
to compute crossover rates or other genomic features (for example, windows with
no genomic markers for crossover rates).

2.2.4. Multivariate analysis

To investigate the link between substitution patterns and genomic features, multi-
variate analysis was performed using both the Relative Contribution to Variability
Explained (hereafter designated as RCVE ) method and Principal Component Re-
gression (hereafter designated as PCR). In both cases, the goal was to see how much
all features together predict substitution patterns and how much each individual
feature predicts substitution rates compared to the others.

Relative Contribution to Variability Explained

The RCV E method is based on linear modeling. For each substitution rate, a linear
model was first built, where the substitution rate is explained by 9 genomic fea-
tures (GC-content, crossover rates, distance to telomeres, replication-timing, exons’
density, transposable elements (SINEs, LINEs and LTRs) densities and CpG odds
ratio).

For all methods described below, each variable was normalized such that its mean
is equal to 0 and its standard deviation is equal to 1. For each of the following
variables (GC*, W→S, S→W, W→W, S→S, CpG rate and Total substitution rate),
a linear model was built where we investigated the relationship between the variable
Y (the substitution rate) and the 9 genomic features

Y = β0 + β1X1 + β2X2 + ...+ β9X9 , (2.8)
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where Y is the dependent variable, Xk is the kth feature and βk the slope of the re-
gression line between Y and the kth feature. The coefficient of determination (R2) of
this full model (where all 9 features are included, designated as R2

full) was extracted.
The relative contribution to variability explained (RCVE ) was then computed for
each feature as follows. The goal is to find out how much a feature contributes to
the model by measuring how much taking out (or shuffling) this feature will affect
the model. The feature was first shuffled. The linear model was then rebuilt by re-
placing the original feature with the shuffled feature. The R2 of this modified model
(designated as R2

reduced(k)
) was extracted. The RCVE value of the kth feature was

finally computed using the following formula

RCVEk =
R2

full −R
2

reduced(k)

R2

full
. (2.9)

Also, in each full linear model the slope between the variable Y and the kth feature
was extracted.

Principal Component Regression

The link between substitution patterns and genomic features was further investi-
gated using principal component regression (principal component analysis followed
by linear regression) as described below. First, principal component analysis was
carried out in both human and mouse genomes on the 9 genomic features. The goal
of principal component analysis is to transform feature variables into new uncor-
related variables containing exactly the same amount of variance. It first builds a
covariance matrix of all 9 features as follows:

M =


X1 X2 · · · X9

X1 var(X1) cov(X1, X2) · · · cov(X1, X9)
X2 cov(X2, X1) var(X2) · · · cov(X2, X9)
...

...
... . . . ...

X9 cov(X9, X1) cov(X9, X2) · · · var(X9)

 , (2.10)

where each entry Mij represents the covariance of the two features Xi and Xj. Such
matrix is a representation of all variance contained in these 9 features. The eigen-
vectors and associated eigenvalues of this matrix are then computed. Eigenvalues
represent how much of the total variance the associated eigenvector explains. Eigen-
vectors are all orthogonal with respect to each other and are ranked based on their
eigenvalues, the first explaining most of the variance. Entries of eigenvectors are
normalized such as the sum of squared values of each vector is equal to 1. The 9
genomic features are then transformed into new variables by projecting them onto
the eigenvectors. The end result will be 9 variables called principal components
(PC1 to PC9), which are linear combinations of the 9 genomic features and are all
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independent from each other.
Two independent projections were performed for the mouse and human lineages.

As components are independent from each other, linear regressions were then per-
formed, using the principal components previously computed as features and sub-
stitution rates computed in each lineage as variables.

Y = β0 + βkPCk (2.11)

We finally extracted the R2 for each linear regression.
All statistics were performed using R (http://www.r-project.org/). The R package

pls was used to perform principal component regression (Mevik and Wehrens, 2007).
The R code of Drummond et al. (2006) was used to generate figures and tables for
principal component regression.

2.3. GC-content evolution and meiotic
recombination hotspots

We present here methods used in Chapter 5.

2.3.1. Mouse Lineage

Double strand break hotspots

Recently, genomic locations of double strand breaks (hereafter designated as DSB)
hotspots were determined in the mouse genome using chromatin immuno-precipitation
follow by next-generation sequencing (ChIP-seq). This methods identifies regions of
the genome where proteins of interest are bound. DSB hotspots coordinates that
were recently mapped in the Mus m. musculus genome were downloaded (Smag-
ulova et al., 2011).

Substitution patterns across the Mus m. musculus genome

Substitution patterns across the Mus m. musculus genome were analyzed as follows.
The genome was divided into 1 Mbp non-overlapping windows. For each window,
Mus m. musculus - Mus musculus castaneus (or Mus m. castaneus for short)- Mus
spretus triple alignments were built as follows. First, the genomic consensus se-
quences of Mus spretus and Mus m. castaneus that were recently sequenced and
mapped to the reference Mus m. musculus genome were downloaded (version mm9,
Keane et al., 2011). Genomic sequences of these two species have the same coor-
dinates than Mus m. musculus, which allows for direct sequence comparison. For
each window, the corresponding sequence of the reference Mus m. musculus genome
was then obtained from the Ensembl database (version 62, Flicek et al., 2011, the
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corresponding sequences of Mus m. castaneus and Mus spretus were extracted. Fi-
nally, all exons were masked from the Mus m. musculus reference sequence (Ensembl
annotation).

Substitution rates were computed from these alignments using the same maximum
likelihood-based method as in previous sections (Arndt et al., 2003a; Arndt and Hwa,
2005; Duret and Arndt, 2008). Similarly, 7 substitution rates: 2 transition rates and
4 transversion rates as well as 1 CpG rate were computed. A or T → G or C
substitution rates were grouped together as Weak (W) → Strong (S) substitution
rates, and G or C→ A or T substitution rates as S→W substitution rates. Similarly
to previous analyses, a GC* value was finally computed for each window.

The divergence time of Mus m. musculus and Mus spretus is estimated to be
around 2 million years (Veyrunes et al., 2005), that of Mus m. musculus and Mus
m. castaneus around 500,000 years (Geraldes et al., 2008). Moreover, the nucleotide
divergence (number of positions where bases are different in both species divided by
number of positions where both species have a nucleotide) of Mus m. musculus and
Mus m. castaneus is about 0.010, that of Mus m. musculus and Mus spretus about
0.022 and that of Mus m. castaneus and Mus spretus about 0.021 (for comparison,
the nucleotide divergence of human and chimpanzee is around 0.013). Substitution
rates were therefore computed by comparing both the Mus m. musculus and Mus
m. castaneus lineages and using Mus spretus as an outgroup.

In each window, crossover rates as well as DSB hotspot density were computed
as follows. Sex-averaged as well as male and female-specific crossover rates were
extracted from high-quality genetic maps available for the Mus m. musculus genome
(Shifman et al., 2006; Cox et al., 2009). Crossover rates were computed in each
window as the weighted average of crossover rates of chromosomal regions that
overlap the window. At the same time, DSB hotspot density values were calculated
as the proportion of the windows overlapping a DSB hotspot. These density values
were used as a proxy measure of DSB activity. Windows containing less than 100 kbp
of sites where the three species have a nucleotide as well as windows not containing
enough information to compute crossover rates or DSB density values (for example,
windows not overlapping any genetic marker in genetic maps nor overlapping any
DSB hotspot) were filtered out.

All analyses were done using R (http://www.r-project.org/). Because almost all
DSB hotspots have identical length, DSB hotspot density will not behave like a
fully continuous variable but like a discrete variable. This makes the computation
of p-values unreliable for correlation coefficients. To solve this issue, s linear model
was computed where DSB hotspot density is the explanatory variable, the p-value
of the slope between the explanatory variable and the response variable was then
extracted.
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Substitution patterns around double strand break hotspots

Substitution patterns around DSB hotspots were analyzed as follows. First, all DSB
hotspots were merged together using the hotspot center position as a reference posi-
tion. Then, sequences around middle points were divided into 2,000 non-overlapping
windows of 100 bp, 1,000 on the 5’ side and 1,000 on the 3’ side of middle points. For
each window, Mus m. musculus - Mus m. castaneus - Mus spretus triple alignments
were built using the same methodology as described above. Similarly, substitution
patterns were computed using the same maximum likelihood-based method as de-
scribed above. This time we wanted to compare complement rates, 14 rates were
computed: 4 transition rates, 8 transversion rates as well as 2 CpG rates. The rate
matrix computed in each branch of the tree is shown below (columns are constrained
to sum up to 0).

Q =


A C G T

A • rC→A rG→A rT→A
C rA→C • rG→C rT→C
G rA→G rC→G • rT→G
T rA→T rC→T rG→T •

 (2.12)

To visualize trends in substitution patterns around DSB hotspot middle points,
local polynomial regression were performed as follows. First, all windows on the 5’
side or on the 3’ side of reference positions were grouped into two separate groups.
A local polynomial regression was then fitted in each group of windows, using the
windows’ positions as predictor values and GC*, W→S or S→W substitution rates
as response values, giving us fitted values. The smoothing was done over 25 neighbor
windows, which corresponds to a span parameter of 0.025 (25/1000 = 0.025) for the
local polynomial regression.

2.3.2. Human Lineage

Recombination hotspots

Genomic coordinates of meiotic recombination hotspots were defined in the human
genome as follows. The HapMap genetic map available for the human genome was
downloaded (Homo sapiens, version hg19, International HapMap Consortium et al.,
2007). Inside this map, any genomic interval between two markers having a recom-
bination rate of at least 10 cM/Mb was considered as a recombination hotspot.
Adjacent intervals fulfilling this criterion were merged together. More than 25,000
hotspots were obtained this way.

PRDM9 binding sites

Each hotspot was scanned for the consensus PRDM9 binding motif (CCNCCNTNNC-
CNC, Myers et al., 2008, 2010) on both + and − strands. Hotspots containing no
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motif or more than one motif were filtered out, keeping only hotspots containing
one binding motif. More than 6,000 recombination hotspots were kept this way.
All these hotspots were finally pooled together, using PRDM9 binding sites as a
reference position, and using the same orientation as the binding site.

Alignments and substitution patterns

Substitution patterns around PRDM9 binding sites were analyzed as follows. First,
sequences around binding sites were divided into 2,000 non-overlapping windows of
100 bp, 1,000 both on the 5’ end and on the 3’ end of binding sites. In each window,
all human - chimpanzee - gorilla alignments from EPO primates multiple alignments
were then downloaded from the Ensembl database (version 62, Flicek et al., 2011).
All exons were masked in the human alignments (Ensembl annotation). Substitution
patterns were finally computed in both the human and chimpanzee lineages using
the same method as in the mouse lineage by comparing human and chimpanzee and
using gorilla as an outgroup.

Trends in substitution patterns around PRDM9 binding sites were visualized by
performing the same analysis as around DSB hotspots middle points in Ms m.
musculus (see section 2.3.1 for more details).
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3. Isochore structures and
GC-content variation

3.1. Introduction

Until recently and the complete sequencing and publication of mammalian genomes,
direct statistical study of base composition in genomes was not possible. Instead,
this was done indirectly through biochemical methods like ultracentrifugation or
by using the GC-content of synonymous positions in genes as a proxy measure.
As more and more species have their genome sequenced, it is possible to measure
genome-wide features of base composition like how much it varies within a genome.
Furthermore, we can also compare several organisms with each other, thus revealing
how base composition evolves in different lineages.

3.2. GC-content along one human chromosome

The simplest way to study base composition in one genome is to look at how it varies
along one chromosome. Figure 3.1 shows GC-content values in a 3 Mbp segment of
the human chromosome 1 for different tilings (10 kbp and 100 kbp), as well as values
for the same segment after shuffling nucleotides in the segment.
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Figure 3.1.: GC-content profile along a 3 Mbp segment of the human chromosome 1.

27



Chapter 3. Isochore structures and GC-content variation

We first observe that GC-content variation changes with the tiling: it varies less
for larger tilings. Second, we notice more variation in the genomic GC-content than
in that of the shuffled sequence.

We conclude several things from these observations. First, as GC-content of ge-
nomic sequences varies more than that of random sequences, it seems that there is
a position-dependent process acting on GC-content evolution. Second, as the GC-
content variation of shuffled sequences changes with tiling, it seems there is a link
between GC-content variance and tiling. We ask ourselves what is the random ex-
pectation for GC-content variance and its link with tiling.

3.3. GC-content variance in random sequences

3.3.1. Analytical solution

Generating a random DNA sequence of specific length and base composition can be
modeled as a binomial process. In this case, we represent success by adding a G or
C base to the sequence and failure by adding an A or T base. Likewise, N will be
the sequence’s length and fGC the probability of adding a G or a C to the sequence
(this parameter will then represent the frequency of G & C in the sequence or GC-
content). According to the properties of a binomial process, the mean number of G
and C bases (NGC) in the sequence will then be

E(NGC) = NfGC , (3.1)

the variance of the number of G and C bases will be

V ar(NGC) = E(NGC − E(NGC))
2

= E(N2
GC)− E(NGC)

2 .
(3.2)

According to the properties of the binomial process, this variance can be rewritten

V ar(NGC) = NfGC(1− fGC) . (3.3)

The observed frequency of G & C bases f̂GC can be rewritten as follows: f̂GC =
NGC

N
. The mean of f̂GC is now

E(f̂GC) =
E(NGC)

N
. (3.4)
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The variance of f̂GC can be decomposed as follows:

V ar(f̂GC) = E
[
f̂GC − E(f̂GC)

]2
= E

[
NGC

N
− E(NGC)

N

]2
= E

[
N2

GC

N2
− 2NGCE(NGC)

N2
+
E(NGC)

2

N2

]
= E

[
1

N2
(N2

GC − 2NGCE(NGC) + E(NGC)
2)

]
=

1

N2
E[N2

GC − 2NGCE(NGC) + E(NGC)
2]

=
1

N2
E[NGC − E(NGC)]

2

=
1

N2
V ar(NGC)

=
1

N2
NfGC(1− fGC)

= fGC(1− fGC)N
−1 .

(3.5)

We therefore conclude that for random DNA sequences GC-content variance depends
both on the inverse of the sequence’s length (N−1) and on its GC-content (fGC).

The fact that N is to the power −1 makes this a power law. Such law can be rep-
resented as follows: y = exp(α)×xβ or log(y) = α+β log(x), the base composition’s
variance can thus be viewed as a power law: V ar(f̂GC) = fGC(1 − fGC) × N−1 or
log(V ar(f̂GC)) = log(fGC(1 − fGC)) − log(N), where y is the GC-content variance,
α is log(fGC(1− fGC)), x is the sequence’s length and β is −1.

These equations allow us to compare observations for genomic sequences to ran-
dom sequences exhibiting identical base compositions.

3.3.2. Comparison with human genomic sequence

Historically, the human genome was the first mammalian genome to be fully se-
quenced (Lander et al., 2001), we therefore analyzed this genome first. We down-
loaded the latest available genomic sequence for human (Homo sapiens, version
hg19 ) and analyzed all chromosomes. Figure 3.2 shows the GC-content variance
and distribution for this genome as well as that of shuffled genomic sequence.

Yves Clément 29



Chapter 3. Isochore structures and GC-content variation

1e+03 5e+03 5e+04 5e+05

5
e

−
0

7
5

e
−

0
6

5
e

−
0

5
5

e
−

0
4

5
e

−
0

3

window size (bp)

va
ri

a
n
c
e

genomic sequence

shuffled sequence

analytical solution

0.3 0.4 0.5 0.6 0.7

0
.0

0
0

.0
2

0
.0

4
0

.0
6

0
.0

8

GC−content

fr
e
q
u
e
n
c
y

genomic sequence

shuffled sequence

Figure 3.2.: Left panel: GC-content variance plotted against tiling for human genomic or shuffled sequences, as well
as the analytical solution for a GC-content of 0.41. Right panel: GC-content distribution for human
genomic shuffled sequences for a tiling of 10 kbp.

We first see that human GC-content is more variable than what is expected by
chance. These variations are called isochore structures (Bernardi, 2000; Eyre-Walker
and Hurst, 2001). Second, GC-content variance decreases as tiling increases. How-
ever, this decrease is weaker than what is expected by chance: we see more variance
in large tilings than in small ones compared to random sequences.

We can now analyze and compare several genomes with each other.

3.4. GC-content variance & distribution in
genomic sequences

We first want to have a global view of base composition across different major
lineages in animals. To do so, we analyzed the following groups: mammals with
human (Homo sapiens, version hg19 ), birds with chicken (Gallus gallus, version
galGal3 ), reptiles with anole lizard (or lizard, Anolis carolinensis, version anoCar2 ),
fish with zebrafish (Danio rerio, version Zv9 ) and insects with drosophila (Drosophila
melanogaster, version dm3 ). Figure 3.3 shows phylogenetic relationships as well as
divergence times for these species.

One can clearly see that different groups show very different base compositions, for
both variance and distribution, for example, the human genome shows the highest
GC-content variance values whereas the lizard genome shows the lowest (Figure
3.4). In subsequent sections, we first compare base composition within different
clades (primates, mammals, birds) to precisely characterize these groups and then
compare them. Doing so, we hope to highlight major evolutionary forces acting in
different lineages and how they influence GC-content evolution.
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Figure 3.3.: Phylogenetic tree of all species studied in this chapter. The Dendroscope program was used to draw the
tree (Huson et al., 2007). Divergence time were downloaded from TimeTree.org (Hedges et al., 2006;
Kumar and Hedges, 2011).
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Figure 3.4.: Left panel: GC-content variance plotted against tiling used for the analysis. Right panel: GC-content
distribution for a tiling of 10 kbp.

3.4.1. Primates

We describe GC-content variance and distribution in six primate genomes: human
(Homo sapiens, version hg19), chimpanzee (Pan troglodytes, version panTro3 ), go-
rilla (Gorilla gorilla, version gorGor3 ), orangutan (Pongo abelii, version ponAbe2 ),
macaque (Macaca mulatta, version rheMac2 ) and marmoset (Callithrix jacchus, ver-
sion calJac3 ). Figure 3.5 shows GC-content variance plotted against tiling (left
panel) as well as GC-content distributions (right panel) for these genomes.
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Figure 3.5.: Left panel: GC-content variance plotted against tiling used for the analysis. Right panel: GC-content
distribution for a tiling of 10 kbp.

32 Yves Clément



Chapter 3. Isochore structures and GC-content variation

GC-content variance and distribution results show that primates’ genomes are
extremely similar with respect to base composition. We note that orangutan GC-
content variance is slightly lower than other primate species. We also note that
gorilla has an excess of regions with a GC-content of 0.35 relative to other primates.
This similarity is expected as primate species have short divergence times, there is
not enough time for base composition to change radically between species (Figure
3.3, Fabre et al., 2009). However, even marmoset, the most distantly related species
to human (40 Myrs, Figure 3.3, Fabre et al., 2009), GC-content variance and distri-
bution are indistinguishable from other primates, meaning base composition stayed
stable during primate evolution.

We next looked at GC-content distributions. Again, GC-content profiles are very
similar with two exceptions, gorilla showing an excess of sequence at 0.36 and
orangutan showing a slight excess of sequences from 0.40 to 0.43.

3.4.2. Rodents and mammals

We describe here results for the mouse (Mus m. musculus, version mm9 ) and rat
(Rattus norvegicus, version rn4 ) genomes. Figure 3.6 shows the results for these
genomes.
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Figure 3.6.: Left panel: GC-content variance plotted against tiling used for the analysis. Right panel: GC-content
distribution for a tiling of 10 kbp.

GC-content distribution and variance are very similar between mouse and rat
genomes, which is expected as these two species diverged about 20 Myrs ago (Figure
3.3, Poux et al., 2006; Huchon et al., 2007). Similar to primates, base composition
did not experience much changes in rodents.

We compared the human and mouse genomes to the following: horse (Equus ca-
ballus, version equCab2 ), dog (Canis lupus familiaris, version canFam2 ), pig (Sus
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scrofa, version susScr2 ), cow (Bos taurus, version bosTau6 ), opossum (Monodelphis
domestica, version monDom5 ) and platypus (Ornithorhynchus anatinus, version or-
nAna1 ). Figure 3.7 shows GC-content variance (left panel) and distribution (right
panel) for these genomes
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Figure 3.7.: Left panel: GC-content variance plotted against tiling used for the analysis. Right panel: GC-content
distribution for a tiling of 10 kbp.

We first observe that with the exception of the cow genome, all eutherians have a
higher GC-content variance than human, regardless of tiling. The cow GC-content
variance is slightly lower than that of human, the dog genome has the highest vari-
ance. Second, both platypus and opossum have lower GC-content variance than
mouse, platypus having the lowest values. It is possible that low variance in platy-
pus is due to the fact that GC-content variance is computed over fewer windows
in platypus compared to opossum (439 and 3578 1 Mbp windows respectively). In-
terestingly, in both these genomes GC-content variance decreases more as tiling
increases compared to other mammalian genomes.

GC-content distributions show that pig, dog, horse and human have similar pro-
files. Interestingly, the dog genome shows relative to other genomes an excess of
regions with a GC-content of 0.50 and 0.56 whereas the pig genome shows a slight
excess of regions with a GC-content of 0.52. Overall, the cow genome shows a pro-
file similar to mouse. Both platypus and opossum have a more homogeneous GC-
content distribution compared to eutherians, opossum having a much lower mean
GC-content than platypus (0.39 and 0.43 respectively).

To study the evolution of base composition in mammals, one might ask first
whether its ancestral state can be determined. Several studies did find that the mam-
malian ancestral isochore structure is very close to the human structure (Galtier and
Mouchiroud, 1998; Romiguier et al., 2010). We therefore hypothesize here that the
base composition variance and distribution observed in the human genome represent
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that of the mammalian common ancestor, and base compositions observed in other
lineages represent derived states. As a result, we ask what caused base composition
to evolve in different mammalian lineages.

There are three major evolutionary processes that can affect base composition:
base substitutions, insertion and deletion events (hereafter designated as indels) and
transposable elements (hereafter designated as TE) dynamics. It has been shown
that base substitutions are affected by a neutral process linked with meiotic recom-
bination called GC-biased gene conversion (hereafter designated as gBGC) which
favors the fixation of mutations from A or T (weak or W) bases to G or C (strong
or S) bases and disfavors the fixation of mutations from S to W (Galtier et al., 2001;
Duret and Galtier, 2009): regions experiencing high levels of recombination will have
increased rates of W→S substitution and decreased rates of S→W substitution. Fur-
thermore, a link between chromosomal organization and meiotic recombination has
been found: as a minimum of one crossover per chromosomal arm per meiosis is nec-
essary to ensure correct migration of chromosomes (Petronczki et al., 2003), short
chromosomal arms will experience more recombination than long chromosomal arms
(Kaback, 1996; de Villena and Sapienza, 2001; Coop and Przeworski, 2007). Changes
in chromosome size and number will therefore affect base composition evolution.

The mouse genome has 19 autosomes that are all telocentric (i.e. the centromere
is located at one of the telomeres) whereas the human genome has 22 autosomes
with the majority of them being metacentric (i.e. the centromere is located in the
middle of the chromosome). As a result, mouse has fewer chromosomal arms and
experiences less recombination than the latter (Jensen-Seaman et al., 2004; Li and
Freudenberg, 2009). Furthermore, chromosome-wide recombination rates (the total
recombination rate for each chromosome) vary more in human than in mouse or rat
(the variance for these rates is 0.100, 0.017 and 0.033 for these genomes respectively,
Jensen-Seaman et al., 2004). It is then possible to explain difference in genome-wide
GC-content variance by differences in chromosome-wide recombination rates vari-
ance: base composition variance will increase with chromosome-wide recombination
rates (Eyre-Walker, 1993). Agreeing with this prediction, dog has more variable re-
combination rates than human (0.125, Wong et al., 2010) whereas recombination
rates variance for cow is between mouse and human (0.039, Arias et al., 2009). How-
ever, chromosomes are divided into one or two arms and one crossover is required
for each arm of each chromosome. Chromosome-wide observations have to be taken
cautiously as chromosomal arms have not been characterized for genomes other than
mouse, rat and human.

The precise study of substitution patterns or TE dynamics across genomes can
show us how GC-content is evolving in different lineages. Results in human show that
GC-rich regions see their GC-content decreasing while GC-poor regions are close to
equilibrium (Arndt et al., 2003b; Meunier and Duret, 2004; Khelifi et al., 2006; Duret
and Arndt, 2008), which might cause base composition to depart from its ancestral-
like structure. However, this will happen very slowly as GC-content is evolving slowly
in primates (Duret and Arndt, 2008; Romiguier et al., 2010). Substitution patterns
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in mouse show that GC-content is also globally decreasing (Khelifi et al., 2006;
Clément and Arndt, 2011): the GC-content in both GC-poor and GC-rich regions
is decreasing whereas GC-medium regions are close to equilibrium. Transposable
elements dynamics is different for both human and mouse genomes. Whereas in
the mouse genome both GC-rich SINE elements and GC-poor LINE elements are
preferentially inserted in GC-rich regions, in human both classes of elements are
inserted mostly in GC-poor regions (Yang et al., 2004).

3.4.3. Birds

We compared the human and mouse genomes to three genomes of birds: chicken
(Gallus gallus, version galGal3 ), zebra finch (Taeniopygia guttata, version taeGut1 )
and turkey (Meleagris gallopavo, version melGal1 ). Figure 3.8 show the results for
these genomes.
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Figure 3.8.: Left panel: GC-content variance plotted against tiling used for the analysis. Right panel: GC-content
distribution for a tiling of 10 kbp.

All bird genomes have their GC-content variance above mouse and below human,
regardless of tiling. Chicken and zebra finch have similar variance, slightly lower
than human whereas turkey variance is lower.

GC-content distributions show similar trends: chicken and zebra finch have very
similar GC-content distributions, different from turkey. This is surprising as chicken
and turkey are more closely related to each other (49 Myrs divergence time, Pereira
and Baker, 2006) than with zebra finch (122 Myrs divergence time, Figure 3.3,
Pereira and Baker, 2006). We can interpret this in two different ways. First, the
base composition shared between chicken and zebra finch represents the ancestral
bird composition and that of turkey evolve differently since its divergence with
chicken. Second, the turkey base composition represents the bird ancestral composi-
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tion with chicken and zebra finch evolving independently towards an identical base
composition. To test these possibilities, one might have to study features influencing
GC-content evolution in different bird lineages.

Birds differ from other mammals in their chromosomal organization as birds chro-
mosomes are grouped into long macrochromosomes and small microchromosomes,
the latter experiencing much higher amounts of recombination compared to the for-
mer (Groenen et al., 2009). As a result, the chromosome-wide recombination rates’
variance is extremely high compared to mammalian genomes (41.62, Groenen et al.,
2009). Moreover, the GC-content of GC-poor regions is decreasing whereas that of
GC-rich regions is increasing (Webster et al., 2006). These facts would suggest a high
GC-content variance in bird genomes, something that we do not observe. As GC-
rich CR1 elements are found in both GC-rich and GC-poor regions of the chicken
genome and GC-rich MIR elements in GC-medium regions of the genome (Abrusán
et al., 2008), transposable elements dynamics do not provide an explanation for the
fact that birds genomes have lower GC-content variance than expected.

3.4.4. Amniotes & Reptiles

Using the recently sequenced genome of the anole lizard (Alföldi et al., 2011), we
finally compared the human, mouse, dog, opossum, platypus and chicken genomes
to the anole lizard genome (Anolis carolinensis, version anoCar2 ). Figure 3.9 shows
results for these genomes.
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Figure 3.9.: Left panel: GC-content variance plotted against tiling used for the analysis. Right panel: GC-content
distribution for a tiling of 10 kbp.

Compared to other amniotes (bids and mammals), the anole lizard has a very
different base composition. First, it has less variance compared to other genomes. We
note that this variance decreases much more as tiling increases than other genomes.
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Second, the lizard has a much more homogeneous GC-content distribution compared
to other amniotes. Its mean GC-content, however, is similar to eutherian and birds
(0.40).

The anole lizard genome represents the only sequenced genome of an amniote
that is neither a mammal nor a bird. Base composition in this genome shows unex-
pected trends. Despite a mean GC-content close to human (0.40), the GC-content
variance is much lower than other genomes studied here, especially at large tilings.
As its variance is lower than that of xenopus (Fujita et al., 2011) or zebrafish or
drosophila (Figure 3.4), this feature seems to be specific to the lizard genome rather
than representing an ancestor state of amniotes. Moreover, there is very little cor-
relation between base composition and both intergenic and intron length whereas
inverse correlations are found in mammals and birds (Fujita et al., 2011). Finally,
the evolution of the GC-content at third positions of codons (GC3) in different am-
niote lineages shows that the base composition of the lizard genome is decreasing
but not as much as other amniotes like opossum (Fujita et al., 2011). What causes
this decline of base composition variance in lizard is still unknown, however a decline
in strength of gBGC in the lizard lineage is one of the likeliest causes.

The base composition in the lizard genome appears to be an exception among
reptiles as shown by GC3 analysis in turtles and crocodiles (Hughes et al., 1999,
2002; Janes et al., 2010). The low number of reptile full genome sequences prevents
us from studying base composition evolution in detail, although the sequencing of
several crocodile genomes will make comparative studies possible in this group (John
et al., 2012).

3.5. Conclusion

In this chapter we described base composition variations along mammalian chro-
mosomes. We first found that for random sequences GC-content, its variance and
window size are mathematically linked, which enabled us to compute expectations
for GC-content variance for sequences of a particular GC-content We then com-
pared these random expectations to genomic sequences of various animal taxa to
find that generally mammalian genomes have more GC-content variance than ran-
dom sequences. Moreover, we showed that different taxa exhibit isochore structures,
with mammalian and bird genomes having the most variable structures whereas am-
niotes like anole lizard have the least variable base composition. Finally, we linked
differences in base composition between species to changes in genomic features such
as chromosomal organization and meiotic recombination.
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4. Substitution patterns in
primates and rodents

4.1. Introduction

The analysis of GC-content showed major differences across mammalian genomes,
notably between human and mouse, indicating the GC-content is evolving differ-
ently in both species. Of all three major evolutionary forces influencing GC-content
evolution, base substitution are the most widely studied and can help us understand
how GC-content evolved. We aim here to first measure substitution patterns across
human and mouse lineages and then identity the different forces influencing sub-
stitution patterns. We also aim to discover if the same forces are at work in both
lineages and if so, how important are these different relative to each other.

4.2. GC-content evolution and GC-biased gene
conversion in human and mouse lineages

It is now known that GC-biased gene conversion (hereafter designated as gBGC) is
a major factor affecting substitution patterns in the human lineage (Galtier et al.,
2009; Duret and Arndt, 2008; Pozzoli et al., 2008; Tyekucheva et al., 2008; Arndt
et al., 2005; Webster et al., 2005; Meunier and Duret, 2004). As most studies on
gBGC focused on primates, one can ask how much this process influences substitu-
tion patterns in the mouse genome. As murid rodents and primates differ greatly in
their chromosomal organization as well as their recombination profiles (see Chapter
3 for more details), we expect gBGC to have a different impact in both lineages
leading to a different GC-content evolution.

4.2.1. GC-content is decreasing in the mouse genome

We computed substitution patterns and GC* (equilibrium GC-content) in both hu-
man and mouse lineages in 1 Mbp windows using triple alignments (see the Materials
and Methods chapter for more details). After filtering out windows without at least
100 kbp of sites where all three species of the triple alignments share a nucleotide
and those overlapping centromeric regions, we obtained 1527 windows containing
more than 479 Mbp of analyzable sites in the mouse genome and 2570 windows

39



Chapter 4. Substitution patterns in primates and rodents

containing more than 1800 Mbp of analyzable sites in the human genome. Results
show that human and mouse GC-content is evolving very differently (Figure 4.1).
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Figure 4.1.: GC* plotted against GC-content for the human (left panel) and the mouse (right panel) lineages. Dashed
lines represent the x = y relationship.

We found a linear relationship between GC-content and GC* in the human lin-
eage. In GC-rich regions, GC-content is decreasing (GC* is lower than GC-content)
whereas in GC-poor regions, GC-content is at equilibrium (GC* is equal to GC-
content). In the mouse lineage, the relationship between GC-content and GC* is
not linear, illustrated by the fact that the local LOWESS regression and the lin-
ear regression between the two variables do not match (Figure 4.1). We see that
the GC-content is decreasing in GC-rich regions but also in GC-poor regions. The
GC-content in GC-intermediate regions (GC-content equal to 0.42) is at equilibrium.

Our results show that both human and mouse lineages exhibit different modes
of GC-content evolution. We also show that the GC-content of GC-rich regions
is decreasing in both lineages, confirming previous results which called this phe-
nomenon the erosion of GC-rich isochores (Duret et al., 2002; Belle et al., 2004;
Smith and Eyre-Walker, 2002). Moreover, it has been suggested that this murid shift
was caused by meiotic recombination rates being less variable in the mouse genome
(Eyre-Walker, 1993). We do indeed observe that mouse crossover rates (a proxy
measure of meiotic recombination rates) are less variable than human crossover rates
(variance = 0.50 and 0.69 for mouse and human crossover rates respectively). These
previous studies have shown, however, that the GC-content of GC-poor regions is
increasing in murid rodents, whereas we show that the GC-content is decreasing in
these regions. We can explain these differences by the small number of genes these
studies relied on, analyzing the GC-content at synonymous positions (GC3).

It has been hypothesized that the decline of GC-rich isochores in primates and
murid rodents has been caused by chromosomal fusions at the time of mammalian
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radiation, more than 80 Myrs ago (Duret et al., 2002). However, since this decline
is not shared across all mammals (Romiguier et al., 2010), it is likely that differ-
ent factors influenced GC-content evolution in both human and mouse lineages.
We therefore have to specifically compare primate and murid rodent GC-content
evolution and substitution patterns.

4.2.2. gBGC is weaker in the mouse lineage compared to the
human lineage

We applied the same methodology as previous studies and analyzed the link between
GC-content, GC* and crossover rates (hereafter designated as CO) (Meunier and
Duret, 2004; Duret and Arndt, 2008). As crossover rates are not normally distributed
in both human and mouse genomes (Figure A.1), we used the logarithm of crossover
rates (hereafter designated as LCO) for the remainder of the chapter.

We observe a positive correlation between GC-content and crossover rates in both
lineages (Tables 4.1 & 4.2). The cause and effect relationship between these two
features cannot be inferred from this correlation alone: GC-content could influence
recombination (as it has been shown in yeast, Gerton et al., 2000), recombination
could influence GC-content or there could be no cause and effect relationship between
the two. To solve this issue, we calculated correlation coefficients between GC* and
crossover rates. We see that these correlations are stronger than between GC-content
and crossover rates (Tables 4.1 & 4.2).

We draw two conclusions from these results. First, since GC* values are computed
from substitution patterns and not from current GC-content, these results show
that in the mouse lineage, as well as the human lineage, meiotic recombination
has an effect on GC-content evolution by acting on substitution patterns. This is
consistent with the influence of gBGC on substitution patterns. We repeated this
analysis in the mouse lineage for male and female-specific crossover rates (Table
4.2), as well as using Spearman’s correlation coefficients, and obtained similar results
(Tables A.1 & A.2). We also obtained similar results when using the logarithm of
the distance to telomeres (hereafter designated as LDT) as it is known to be a proxy
measure of meiotic recombination rates (Tables 4.1, 4.2, A.1 & A.2, Duret and Arndt,
2008). The correlation between LDT and recombination is negative, accordingly
we observe negative correlations between LDT, GC-content and GC*. Second, our
results suggest that the influence of meiotic recombination on substitution patterns is
weaker in the mouse lineage than in the human lineage, since correlation coefficients
are lower in the mouse lineage. Also, in the mouse lineage, the correlation coefficients
between crossover rates and GC-content and between crossover rates and GC* are
much closer than in the human lineage (Table 4.1 & 4.2). One possible explanation
is that the mouse genome has lower meiotic recombination rates than the human
genome (human median crossover rate = 1.16 cM/Mb, mouse median sex-averaged
crossover rate = 0.65 cM/Mb, Figure A.1).
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Sex-averaged LDT
R R

GC-content 0.354∗∗∗ -0.453∗∗∗
GC* 0.631∗∗∗ -0.604∗∗∗

Table 4.1.: Pearson correlation coefficients between substitution rates, crossover rates and LDT in human. ∗∗∗p-value
< 10−10

Sex-averaged Male-specific Female-specific LDT
R R R R

GC-content 0.186∗∗∗ 0.240∗∗∗ 0.085∗ -0.304∗∗∗
GC* 0.196∗∗∗ 0.275∗∗∗ 0.110∗ -0.305∗∗∗

Table 4.2.: Pearson correlation coefficients between substitution rates, crossover rates and LDT in mouse. ∗p-value
< 0.05; ∗∗∗p-value < 10−10

Furthermore, in the mouse lineage we can see that male-specific crossover rates
correlate more strongly with current GC-content or GC* than sex-averaged or female
crossover rates do (Tables 4.2 & A.2). This indicates that male recombination has
more influence on substitution patterns than female recombination in the mouse
lineage, as well as was previously observed in the human lineage (Duret and Arndt,
2008; Webster et al., 2005). We therefore focused on male-specific crossover rates in
the mouse lineage for the remainder of the chapter.

The effective population size (Ne) of mice is around 30 times greater than that
of humans: it is estimated to be around 20,000 in humans and around 600,000
in mouse (Keightley et al., 2005). gBGC should therefore be stronger in the mouse
lineage compared to the human lineage because gBGC has a bigger impact in species
with larger effective population sizes (Nagylaki, 1983). However, the effect of gBGC
appears to be weaker in mouse lineage compared to the human lineage. We cannot
claim, however, that gBGC is generally absent in the mouse lineage as there are
reported cases showing clear evidence of gBGC inside the mouse genome (Montoya-
Burgos et al., 2003).

There are 4 possible explanations for the fact that gBGC is weaker in the mouse
lineage compared to the human lineage. First, recombination rates are lower in the
mouse genome compared to the human genome (Jensen-Seaman et al., 2004; Li
and Freudenberg, 2009), which will cause gBGC to be weaker in the mouse lineage
compared to the human lineage. Second, it cannot be excluded that recombination
events are repaired more often into crossovers than non-crossovers in the human
genome compared to the mouse genome. This can cause crossover rates to be a
less accurate proxy of meiotic recombination in the mouse genome compared to the
human genome. Third, it is possible that the heteroduplex length that forms during
gene conversion is shorter in mouse than in human. This will cause gBGC to affect
fewer bases in mouse compared to human. Finally, the mismatch repair mechanism
can be less biased towards G and C bases in the mouse genome compared to the
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human genome. This will cause the fixation bias favoring G and C bases to be lower
in mouse compared to humans. Unfortunately, we currently cannot test the last
three hypotheses.

We would like to point out that the fact that recombination rates evolve rapidly
in mouse species (Dumont et al., 2011) could affect our results. One way to solve this
issue would be to study substitution patterns in the mouse lineage by comparing two
closely related mouse species, using rat as an outgroup. The recent publication of the
genomic sequence of several mouse laboratory strains, including the two subspecies
Mus m. castaneus and Mus spretus (Keane et al., 2011) can help solve this issue.
Chapter 5 presents results obtained using these new genomic sequences.

4.2.3. Substitution patterns are under the influence of
male-specific recombination

Our results show that, in the mouse lineage, male-specific crossover rates are a better
predictor of substitution patterns than female-specific crossover rates. This might
imply that male-specific recombination have more impact on substitution patterns
than female-specific recombination does. This has been previously reported in the
human lineage (Duret and Arndt, 2008; Webster et al., 2005) and appears to be
shared with dog and sheep whereas in pig and opossum female-specific recombina-
tion has more impact on substitution than male-specific recombination (Popa et al.,
2012). We can put forward two hypotheses to explain these observations. First,
the distribution of recombining regions along chromosomes is different for male
and female-specific recombination, both in the human genome and in the mouse
genome (Myers et al., 2005; Paigen et al., 2008). Female recombining regions are
more numerous and more homogeneously distributed along chromosomes than male
recombining regions. On the other hand, male recombination hotspots are more ac-
tive. This more heterogeneous distribution of recombination in males may lead to
the fact that male-specific recombination rates predict substitution patterns bet-
ter than female-specific recombination rates. Second, meiotic recombination events
cause the formation of Holliday Junctions which are resolved either into crossovers
(COs) or non-crossovers (NCOs) (Smith and Nicolas, 1998; de Massy, 2003; Baudat
and de Massy, 2007). Genetic maps available for the human and mouse genomes
do not have enough resolution to show non-crossovers. It is possible that crossovers
represent a greater proportion of recombination in males than in females. One alter-
native is to measure the frequency of double strand breaks in genomic regions and
use these as a proxy measure of meiotic recombination. The recent publication of
double strand breaks hotspots (Smagulova et al., 2011) enables us to perform such
analysis, which is presented in Chapter 5.

Pink and Hurst (2011) reported a more complex relationship between substi-
tution rates, crossover rate, GC-content and replication-timing in mouse introns.
They showed a correlation between replication-timing and meiotic recombination
that is negative for male-specific recombination but positive for female-specific re-
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combination. They argue that this different sign of correlation is responsible for an
underestimation of the influence of female-specific recombination on substitution
rates. However, these authors measured total substitution rates but not rates affect-
ing GC-content evolution (W→S and S→W substitution rates). Thus, it is unclear
how the correlation between female-specific crossover rates and replication timing
will affect measures of the influence of female-specific recombination on GC-content
evolution.

4.3. Multiple genomic features influence
substitution patterns

Several studies have shown a link between substitution rates and genomic features,
such as replication-timing (Pink and Hurst, 2010; Chen et al., 2010) or CpG con-
tent (Walser et al., 2008; Walser and Furano, 2010). Thus, crossover rates are not
the sole feature influencing substitution patterns in mouse and human. We inves-
tigated the link between the 9 following features and substitution patterns in both
mouse and human lineages: GC-content (hereafter designated as GC), LCO (loga-
rithm of crossover rates), LDT (distance to telomeres), replication-timing (hereafter
designated as RepTime), exon density (fraction of a window occupied by exons, here-
after designated as Exons), transposable elements densities (hereafter designated as
SINEs, LINEs and LTRs) and CpG odds ratio (the observed CpG frequency nor-
malized by the expected CpG frequency, hereafter designated as CpGodds). Male
crossover rates were used in the mouse lineage. We used the logarithm of all densities
(Exon, LINEs, SINEs and LTRs) in both lineages.

We first computed correlation coefficients between each feature and substitution
rates (Tables A.3 & A.4). However, since genomic features are also correlated with
each other, this can affect correlations between genomic features and substitution
rates as follows. Let’s imagine two features A and B which are strongly correlated.
A correlation between A and substitution rates for example will thus be affected
by the correlation between A and B. As a result, we will not be able to decisively
conclude whether there is a link between A and substitution rates. For example,
we see that in the mouse lineage GC* and SINEs density are strongly correlated
(R = 0.734, p-value < 10−15). However, since both are strongly correlated with
Exons (R = 0.625 and 0.711 respectively, both p-values < 10−15), this can affect
correlations with substitution rates. Indeed, the correlation between GC* and SINEs
density controlling for Exons is lower (R = 0.528, p-value < 10−15) (the R code
used to compute partial correlation is taken from Drummond et al. (2006)). We
therefore analyzed the link between substitution patterns and genomic features using
a multivariate approach to be able to take all links between features into account.
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4.3.1. Relative Contribution to Variability Explained

The first approach to study how much individual genomic features influence substi-
tution patterns is based on linear modeling. The idea is to build a linear model where
a variable (the substitution rate) is explained by the 9 genomic features listed above,
and then to measure the individual contribution of each feature to the model. We
applied this method in both the human and mouse lineages for GC* values, W→S,
S→W, W→W and S→S substitution rates as well as the CpG→TpG/CpA sub-
stitution rate (hereafter designated as CpG Rate) and the total substitution rate
(here after designated as Total Rate). This method, named RCVE (for Relative
Contribution to Variability Explained), has been used before to analyze substitu-
tion patterns as well as transposable elements dynamics in primates (Kvikstad et al.,
2007; Tyekucheva et al., 2008; Kvikstad and Makova, 2010).

For each substitution rate, we built a linear model where the substitution rate
is the response variable and the 9 genomic features the explanatory variables. We
extracted the coefficient of determination (R2) from this model (named R2

full). In
order to assess the significance of each feature in the model, we then shuffled the
labels of the feature of interest and recomputed the linear model using this shuffled
feature. We extracted the coefficient of determination of this reduced model (named
R2

reduced). This value was finally normalize by the R2
full of the full model to compute

the RCVE value corresponding to the feature (See the Material & Methods chapter
for more details)

RCVE =
R2

full −R
2

reduced
R2

full
. (4.1)

Results for the human and mouse lineages are shown in Tables 4.3 and 4.4 re-
spectively. The RCVE values for all genomic features in both lineages are plotted
in Figure 4.2.

GC LCO LDT RepTime Exons SINEs LINEs LTRs CpGodds R2

GC* NA 0.248 0.084 0.008 0.002 NA 0.006 0.027 0.006 0.597
W→S 0.014 0.208 0.086 0.008 0.037 0.024 NA 0.001 0.036 0.598
S→W 0.018 0.005 0.001 0.028 0.086 0.029 0.003 0.048 0.024 0.581
W→W 0.063 0.040 0.009 0.016 0.122 0.014 NA 0.017 0.049 0.458
S→S 0.047 0.095 0.067 0.019 0.085 0.012 NA 0.004 0.094 0.354

CpG Rate 0.006 NA NA 0.013 0.054 0.004 NA 0.028 0.011 0.658
Total Rate NA 0.094 0.039 0.028 0.078 0.032 NA 0.021 0.079 0.570

Table 4.3.: RCVE results for the human lineage. NA: RCVE < 0.001

We see that the W→S substitution rate is predicted by different features in the
mouse lineage and the human lineage. In the human lineage, crossover rates (des-
ignated as LCO) is the strongest predictor of the W→S substitution rate (RCVE
= 0.208, Figure 4.2, Table 4.3). The slope of the regression line between this sub-
stitution rate and LCO is positive (Slope = 0.424, Figure A.3, Table A.7), which
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can be interpreted as a positive influence of meiotic recombination on substitution
rates, possibly mediated by gBGC. In contrast, in the mouse lineage, this rate is not
predicted by LCO nor by LDT (RCVE < 0.001 for both features, Table 4.4): the
strongest predictor of this substitution rate is the CpG odds ratio (designated as
CpGodds, RCVE = 0.767, Figure 4.2, Table 4.4). The association between the CpG
odds ratio and this substitution rate is positive as the slope of the regression line
is positive (Slope = 1.076, Figure A.3, Table A.8). This confirms that in the mouse
lineage, gBGC is weak and has a small impact on substitution rates compared to
other features.

GC LCO LDT RepTime Exons SINEs LINEs LTRs CpGodds R2

GC* 0.021 NA NA 0.004 NA 0.004 0.005 NA 0.248 0.860
W→S 0.005 NA NA 0.006 0.022 0.034 NA 0.023 0.767 0.541
S→W 0.056 NA NA 0.010 0.009 0.038 0.014 0.009 0.061 0.791
W→W 0.126 0.001 0.003 0.038 0.019 0.096 0.028 0.011 NA 0.596
S→S 0.113 NA NA 0.009 0.041 0.091 0.022 0.017 0.041 0.608

CpG Rate 0.013 NA NA 0.006 0.045 0.008 0.003 0.005 0.029 0.456
Total Rate 0.022 NA NA 0.005 0.059 0.148 0.007 0.061 0.178 0.409

Table 4.4.: RCVE results for the mouse lineage. NA: RCVE < 0.001
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Figure 4.2.: RCVE results for substitution patterns in the human (left panel) and mouse (right panel) lineages.
Total R2 values for each linear model is indicated below.

Other substitution rates are also predicted by different features in both the mouse
human lineages. In the human lineage, exons density is the best predictor of S→W
substitution rates as well as the CpG→TpG/CpA rate (RCVE = 0.086 and 0.054 re-
spectively, Figure 4.2, Table 4.3). This can be interpreted as an effect of transcription
and gene expression on mutation patterns: more highly expressed genes will have
lower mutation rates. However, in the mouse lineage, the S→W rate is most strongly
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predicted by CpG odds ratio and GC-content (RCVE = 0.061 and 0.056 respec-
tively, Figure 4.2, Table 4.4). Finally, like in the human lineage, the CpG→TpG/CpA
rate is most strongly predicted by exon density in the mouse lineage (RCVE = 0.045,
Figure 4.2, Table 4.4).

Results obtained using the RCVE method have to be tempered by the fact that
this method does not perform well if genomic features are inter-correlated. We expect
the sum of all RCVE values for one substitution rate to be equal to 1. It is, however,
very rarely the case (for example, RCVE values sum up to 0.197 for the S→W
substitution rate in the mouse lineage, which indicates that genomic features are
highly correlated, Table 4.4). We therefore have to use another method to analyze
the relative influence of genomic features on substitution patterns in both the human
and mouse lineages.

4.3.2. Principal Component Regression

As the genomic features studied are correlated in both the human and mouse
genomes (Tables A.5 & A.6), results coming from methods based on linear mod-
eling such as RCVE have to be taken cautiously and improved. One way to solve
this issue is to de-correlate the features before doing any analysis.

Principal component analysis (hereafter designated as PCA) provides an interest-
ing tool to perform such task: this method will project each variable on the same
number of axes, decomposing the data into an identical number of principal com-
ponents, each being orthogonal from one another and being a linear combination of
the different features. We can then study the correlation between each component
and variables of interest (such as substitution patterns) individually using linear
modeling. We therefore merged principal component analysis and linear regression
into principal component regression (hereafter designated as PCR).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
GC -0.406 0.110 -0.041 0.123 -0.032 0.335 -0.098 0.632 -0.534
LCO -0.149 0.585 -0.539 -0.544 -0.033 -0.138 0.009 0.077 0.154
LDT 0.197 -0.606 -0.294 -0.412 0.153 0.400 0.018 0.302 0.249

RepTime 0.326 0.357 0.285 -0.115 -0.358 0.633 -0.341 -0.114 0.123
Exons -0.335 -0.237 -0.355 0.173 -0.721 0.158 0.234 -0.270 0.053
SINEs -0.390 -0.190 -0.163 -0.013 0.195 0.003 -0.790 -0.350 -0.012
LINEs 0.383 -0.083 -0.171 0.198 -0.419 -0.451 -0.440 0.443 0.097
LTRs 0.307 0.196 -0.569 0.593 0.324 0.275 0.033 -0.098 0.019

CpGodds -0.403 0.117 0.185 0.292 0.089 0.068 0.006 0.301 0.776
% of variance 0.544 0.171 0.072 0.062 0.049 0.038 0.025 0.023 0.017

Table 4.5.: Entries of the eigenvectors for all 9 principal components in the human genome. Features that contribute
for at least 20% of the component are indicated in bold. Entries of each eigenvector were normalized
such as

∑
entries2 = 1.

We first carried out one PCA in each lineage on the 9 genomic features listed
above, in order to transform them into 9 independent (or orthogonal) principal
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components (designated as PC, see the Materials & Methods chapter for more de-
tails). Figure A.4 shows the eigenvectors of the first two principal components in
the human and mouse lineages, Tables 4.5 and 4.6 detail the eigenvectors for each
principal component.

The percentage of variance in both tables indicates the proportion of the total
variance of all genomic features contained in the corresponding principal compo-
nent. We see that while some components do not have major contributors (like the
first components), others are dominated by one or two features (for example PC6 in
the mouse genome, dominated by the CpG odds ratio, Table 4.6). It is interesting
to note that the first two components are quite similar in both genomes. No feature
truly dominates the first component whereas both LCO and LDT are major con-
tributors to the second component. However, the second component differs in both
genomes with LTRs being a major contributor in the mouse lineage, unlike in the
human genome. On the other hand, other components differ greatly between the
two genomes.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
GC -0.418 -0.030 0.009 0.097 -0.302 0.265 -0.397 -0.378 -0.595
LCO -0.150 0.485 0.493 -0.703 -0.026 0.060 0.032 -0.009 -0.001
LDT 0.159 -0.612 -0.253 -0.644 -0.267 -0.174 -0.136 -0.034 -0.019

RepTime 0.387 0.235 -0.009 0.021 0.078 -0.116 -0.779 0.396 -0.103
Exons -0.355 -0.265 -0.033 -0.152 0.791 0.217 -0.273 -0.076 0.163
SINEs -0.419 -0.132 -0.060 -0.030 -0.088 0.138 0.176 0.828 -0.242
LINEs 0.415 -0.101 0.148 -0.059 0.416 -0.058 0.307 -0.021 -0.722
LTRs 0.036 -0.483 0.816 0.225 -0.115 -0.048 -0.118 0.065 0.122

CpGodds -0.391 0.059 0.015 0.054 0.107 -0.901 -0.040 -0.049 -0.116
% of variance 0.529 0.140 0.108 0.080 0.045 0.035 0.034 0.018 0.009

Table 4.6.: Entries of the eigenvectors for all 9 principal components in the mouse genome. Features that contribute
for at least 20% of the component are indicated in bold. Entries of each eigenvector were normalized
such as

∑
entries2 = 1.

We then used these components to build multivariate linear regressions for W→S
and S→W substitution rates as well as GC* values, where the substitution rate is the
response variable and the components are the predictors, and computed how much
of the variable’s variance each principal component predicts (see the Materials and
Methods chapter for details). It should be noted that we used principal component
analysis only to de-correlate different genomic features. As such, we took all principal
components into account in the linear modeling, even components that explain an
almost insignificant proportion of all features’ total variance.

4.3.3. CpG odds ratio is the main predictor of W→S
substitution rates in the mouse lineage

We observe that in both human and mouse lineages, substitution patterns are pre-
dicted by different features. In the human lineage, the W→S substitution rate is
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most strongly predicted by PC2, which is mostly composed of LCO and LDT, two
proxy measures of meiotic recombination (R2 = 0.555, Figure 4.3, Tables 4.5 &
4.7). This result reflects the influence of gBGC on W→S substitution. In the mouse
lineage, PC6, which is dominated by CpG odds ratio rather than by measures of mei-
otic recombination, most strongly predicts the W→S substitution rate (R2 = 0.380,
Figure 4.3, Tables 4.6 & 4.8) This result reflects the fact that gBGC only has a
very limited impact on W→S substitutions in the mouse lineage. Other principal
components like the first component, also explain a small proportion of the variance
of the W→S substitution rate in the mouse lineage (R2 = 0.10, Figure 4.3, Table
4.8). All these results confirm results obtained with the RCVE method.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 Total
R2 R2 R2 R2 R2 R2 R2 R2 R2 R2

GC* 0.290∗∗∗ 0.243∗∗∗ 0.006∗ 0.010∗∗ 0.011∗∗ 0.037∗∗∗ NA 0.001 0.001 0.598∗∗∗
W→S 0.007∗ 0.555∗∗∗ 0.002 0.001 0.001 0.013∗∗ 0.002∗ NA 0.018∗∗∗ 0.600∗∗∗
S→W 0.373∗∗∗ 0.148∗∗∗ 0.012∗∗ 0.002∗ 0.026∗∗∗ 0.003∗ 0.003∗∗∗ NA 0.016∗∗ 0.583∗∗∗
W→W 0.209∗∗∗ 0.177∗∗∗ 0.013∗∗ NA 0.029∗∗∗ 0.002∗ 0.001 NA 0.029∗∗∗ 0.460∗∗∗
S→S 0.025∗∗∗ 0.275∗∗∗ 0.014∗∗ NA 0.007∗ 0.006∗ NA NA 0.029∗∗∗ 0.356∗∗∗

CpG Rate 0.605∗∗∗ 0.036∗∗∗ 0.002∗ NA 0.014∗∗ NA NA 0.001 0.001 0.659∗∗∗
Total Rate 0.002∗ 0.513∗∗∗ 0.011∗∗ 0.004∗ 0.010∗∗ 0.001 0.001 0.013∗∗ 0.017∗∗∗ 0.572∗∗∗

Table 4.7.: Results of principal component regression on substitution patterns in the human lineage. ∗p-value < 0.05;
∗∗p-value < 10−5; ∗∗∗p-value < 10−10

NA: R2 < 0.001

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 Total
R2 R2 R2 R2 R2 R2 R2 R2 R2 R2

GC* 0.713∗∗∗ 0.001 0.001 0.001 0.002 0.118∗∗∗ 0.008∗ NA 0.018∗∗ 0.861∗∗∗
W→S 0.100∗∗∗ 0.023∗∗ 0.024∗∗ 0.006∗ 0.001 0.380∗∗∗ 0.003∗ 0.006∗ NA 0.544∗∗∗
S→W 0.724∗∗∗ 0.001 0.003∗ NA 0.003∗ 0.007∗ 0.014∗∗ 0.004∗ 0.036∗∗∗ 0.792∗∗∗
W→W 0.468∗∗∗ 0.009∗ 0.003∗ 0.003∗ 0.001 0.019∗∗ 0.031∗∗∗ 0.012∗ 0.053∗∗∗ 0.598∗∗∗
S→S 0.441∗∗∗ 0.015∗∗ 0.007∗ 0.001 0.002 0.082∗∗∗ 0.013∗∗ 0.009∗ 0.040∗∗∗ 0.611∗∗∗

CpG Rate 0.439∗∗∗ 0.004∗ 0.001 NA 0.012∗ 0.001 NA NA 0.003∗ 0.459∗∗∗
Total Rate 0.205∗∗∗ 0.023∗∗ 0.030∗∗∗ 0.006∗ 0.004∗ 0.117∗∗∗ 0.002 0.017∗∗ 0.008∗ 0.412∗∗∗

Table 4.8.: Results of principal component regression on substitution patterns in the mouse lineage. ∗p-value < 0.05;
∗∗p-value < 10−5; ∗∗∗p-value < 10−10

NA: R2 < 0.001

Our results show that in the mouse lineage, CpG odds ratio (the observed CpG
frequency divided by the expected CpG frequency) is the main predictor of W→S
substitution rates, unlike in the human lineage.

One might be tempted to interpret these results as due to CpG odds ratio being a
proxy measure of meiotic recombination. A link between DNA methylation (which
occurs on cytosines of CpG dinucleotides) and meiotic recombination has already
been described in the human genome (Sigurdsson et al., 2009). Moreover, in the
mouse lineage, we observe an association between male crossover rates and CpG odds
ratio (partial correlation = 0.14, p-value < 10−7 when controlling for GC-content).
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However, our results show us that CpG odds ratio predicts W→S substitution rates
independently of meiotic recombination.
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Figure 4.3.: Principal component regression for W→S substitution rates in the human (left panel) and the mouse
(right panel) lineages. The height of each bar represents how much of the variable’s variance is explained
by the corresponding component. Each colored area is proportional to the relative importance of the
corresponding feature inside a component.

There are two explanations for our results. First, it is possible that recombination
decreases the CpG→TpG/CpA rate by protecting CpG dinucleotides from decaying
into TpG or CpA dinucleotides. If this was the case, one should see a negative
influence of meiotic recombination on the CpG rate. Since meiotic recombination is
not the strongest predictor of the CpG →TpG/CpA substitution rate (Table 4.8),
meiotic recombination does not seem to protect CpG dinucleotides.

Second, meiotic recombination could occur mostly in CpG-rich regions, e.g. CpG
islands. However, no link between recombination hotspots and CpG islands has
been proposed in the mouse or the human genome (Paigen et al., 2008; Myers
et al., 2005). Also, the consensus DNA motif associated with hotspot activity is
not CpG-rich (Myers et al., 2008). Furthermore in the mouse lineage, the PCA
results show that meiotic recombination and CpG odds ratio contribute to two
independent components, and only the latter component predicts W→S substitution
rates (Tables 4.6 & 4.8). This shows that in the mouse lineage, CpG odds ratio
predicts substitution patterns independently from meiotic recombination.

We cannot tell, however, if CpG content has a direct influence on W→S substi-
tution rates or if CpG content serves as a proxy measure for genomic features we
did not include in our model or if there is no cause and effect relationship between
CpG content and W→S substitution rates. Authors have proposed that, in the hu-
man lineage, CpG content and substitution rates are associated through different
mechanisms such as chromatin opening linked to gene expression or error-prone re-
pair of T:G mismatches by different DNA polymerases (Walser and Furano, 2010).
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Moreover, they have found no evidence that this association is mediated through
fixation probabilities of mutations. The relationship between CpG content, substi-
tution rates and other genomic features needs to be further investigated in both
human and mouse lineages.

We have found that unlike in the human lineage, gBGC is weak in the mouse
lineage and that CpG odds ratio, not meiotic recombination is the strongest predictor
of W→S substitution rates. This reveals that isochore structures evolve differently
in both human and mouse lineages and seems to indicate that this is the result of
substitution patterns being under different influences in those lineages.

4.3.4. S→W substitution rates are predicted by a combination
of features in both human and mouse lineages

In the human lineage, the S→W substitution rate is most strongly predicted by
the first two principal components (R2 = 0.373 and 0.148 respectively, Figure 4.4,
Tables 4.7). In contrast, in the mouse lineage, the S→W substitution rate is most
strongly predicted by the first principal component (R2 = 0.724, Figure 4.4, Table
4.8).
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Figure 4.4.: Principal component regression for S→W substitution rates in the human (left panel) and the mouse
(right panel) lineages. The height of each bar represents how much of the variable’s variance is explained
by the corresponding component. Each colored area is proportional to the relative importance of the
corresponding feature inside a component.

Principal component regression results show that S→W substitution rates in both
lineages are mostly predicted by a component which is a combination of different fea-
tures (GC-content, exon density, replication-timing, transposable element densities).
These results can be interpreted in different ways. First, it is possible that natural
selection affects the fixation probabilities for the substitution rates we computed.
Because we masked regions affected by natural selection in our windows (exons),

Yves Clément 51



Chapter 4. Substitution patterns in primates and rodents

we assume that it does not play a role on substitutions and that nucleotides are
evolving neutrally in our windows.

It is also possible that meiotic recombination influences the fixation probabilities of
substitution rates through gBGC. However, because meiotic recombination is not the
strongest predictor of these substitution rates and it constitutes only a small fraction
of this component, we assume that meiotic recombination has a low impact on
fixation probabilities for S→W substitution rates and that these substitution rates
are equal to mutation rates and therefore interpret these results as the influence of
mutation on substitution patterns. We cannot tell, however, if the features predicting
S→W substitution rates have a direct impact on substitution patterns or if the
associations we observe are not cause and effect associations.

4.3.5. Comparison of RCVE and PCR results

We compared results obtained with the RCVE and PCR methods.
We first see that results for W→S substitution rates in both human and mouse

lineages are similar, with meiotic recombination being their best predictor in the
former whereas CpG odds ratio being their best predictor in the latter. We can
clearly see both features standing out as best predictors in both lineages in RCVE
methods as well as PCR results.

On the other hand, we see that results disagree for other substitution rates at
a first glance. Notably, whereas according to RCVE exons density and GC-content
best predict S→W substitution rates in the human and mouse lineages respectively, a
combination of features best predicts these rates in both lineages according to PCR.
We notice that even though the aforementioned features have the best RCVE values,
other features have close if not similar values. These results already hint towards a
complex relationship between S→W substitution rates and genomic features. PCR
results clearly show such complex relationships, as the components used in linear
regressions are linear combinations of genomic features.

In the light of these results, it appears that RCVE and PCR methods complement
each other quite well. When a genomic feature clearly best predicts substitution
rates, it will be spotted by both methods. On the other hand, in the case of complex
relationships, no clear predictor will appear in RCVE results when at the same
time a component comprising of several features will appear as the best predictor in
PCR results. Using both methods will yield best results when investigating the links
between genomic features and evolutionary rates like insertion and deletion rates or
substitution rates.

4.3.6. The effect of replication-timing on substitution
patterns

Chen et al. (2010) reported a link between substitution patterns and genomic fea-
tures such as meiotic recombination, GC-content and replication-timing. Their re-
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sults differ significantly from ours as they report replication-timing as a strong pre-
dictor of substitution rates, notably S→W rates. These differences can be explained
by the following reasons.

First, Chen et al. (2010) use replication-timing data based on massively parallel
sequencing of replicating DNA labeled with BrdU, a fluorescent marker of newly
synthesized DNA, whereas we used timing data from a microarray-based compari-
son of early and late replicating DNA (Ryba et al., 2010). Second, although based
on linear regressions, our multivariate methods also differ. Third, these authors ana-
lyzed substitution rates and features in 100 kbp long windows, whereas we analyzed
1 Mbp long windows. Finally, their analysis comprised of 4 genomic features (GC-
content, crossover rates, distance to telomeres and replication-timing) whereas we
added 5 other features to our study (exons density, transposable elements density
and CpG odds ratio).

The different results could then easily be interpreted as different influences of
features on substitution rates at different scales, replication-timing having a stronger
effect when studying small window sizes. The different number of features could
also be a good explanation for these differences. It should be noted that R2 values
associated with substitution rates where replication-timing has a strong effect (S→W
substitution rates notably) are quite low, whereas R2 values we obtained for similar
substitution rates are relatively higher (around 0.20 and 0.58 respectively). This can
be explained mainly to the fact that we included more features in our study and
therefore were able to obtain a more complete picture of how much different features
influence substitution rates. The differences in window size can also explain this, as
substitution rates inferred in smaller windows will tend to be more variable and
therefore decrease R2 values in linear models.

4.3.7. Outgroup choice

The method we use to infer substitution rates in one lineage uses triple alignments:
it compares two sister species and uses an outgroup to infer the two sister’s ancestral
state. We compared human to chimpanzee and used macaque as an outgroup for
the analysis of the human lineage. As at the time of analysis the only two rodents
genomes fully sequenced were mouse and rat, we compared these two species and
used human as an outgroup to study substitution patterns in the mouse lineage.
The mouse - rat - human divergence time is between 85 and 95 million years (Myrs),
whereas that of mouse and rat is between 16 and 19 Myrs (Poux et al., 2006; Huchon
et al., 2007). Although using human as an outgroup may lead to incorrect inference of
substitution rates in the mouse lineage, this was chosen as an outgroup as it was the
closest available high coverage genome to mouse and rat. One of the closest related
species to mouse and rat, whose complete genome was published and aligned to
other placentals at the time of the analysis, was the guinea pig (Cavia porcellus). It
is however a 6.79x low coverage genome (Ensembl version 56, Hubbard et al., 2009).
Furthermore, the divergence time between mouse, rat and guinea pig is around 60
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Myrs (Poux et al., 2006; Huchon et al., 2007), which is close to the mouse, rat and
human divergence time. Preliminary results obtained using guinea pig or kangaroo
rat as outgroups were very similar to results obtained using human as an outgroup
(data not shown). Moreover, mouse rat human triple alignments are much cleaner
and contain more sites where the three species share a nucleotide than alignments
with guinea pig or kangaroo rat. We therefore used mouse - rat - human triple
alignments to infer substitution patterns in the mouse lineage. Also, the method
we used to infer substitution rates (Arndt et al., 2003a; Arndt and Hwa, 2005;
Duret and Arndt, 2008) is based on maximum likelihood, which makes it robust to
long lineage as it allows multiple substitutions at each site. It also does not imply
that the substitution process is time-reversible nor that it is at a stationary state,
both assumptions that can bias the inference of substitution patterns (Squartini and
Arndt, 2008). Finally, it infers one substitution pattern for each of the four branches
of the rooted tree ((sister 1, sister 2), outgroup).

4.3.8. Differences in branch length and genetic map
resolutions

Our results could be affected by the different time-spans that substitution patterns
reflect in both human and mouse lineages: human and chimpanzee diverged around
6 Myrs ago whereas mouse and rat diverged between 16 and 19 Myrs ago. Crossover
rates computed in the mouse genome may not well reflect past recombination as
mouse and rat genomes underwent frequent chromosomal rearrangements, which af-
fected their chromosomal recombination patterns. Moreover, the outgroup for the
analysis of the mouse lineage (human) is very distant whereas the outgroup for the
analysis of the human lineage (macaque) is much closer: mouse and human diverged
between 85 and 95 Myrs ago whereas human and macaque diverged between 27 and
33 Myrs ago (Poux et al., 2006; Huchon et al., 2007). Another potential source of bias
is the different densities of genetic maps available for human an mouse: the mouse
maps contain between 10,000 and 11,000 markers on autosomes (approximately one
marker every 250 kbp, Shifman et al., 2006) whereas the human map contains more
than 3 million markers (International HapMap Consortium et al., 2007). To control
for all these sources of bias, we performed the following analyses. We computed sub-
stitution patterns in the branch between the human-macaque ancestor and human
(hereafter designated as the HCM branch), using mouse as an outgroup. At the
same time, we computed new crossover rates as follows: we generated a low-density
human genetic map by sampling 11,000 random markers from the original map and
re-computed crossover rates as described in the Materials & Methods chapter.

Results obtained for this HCM branch are very similar to results obtained with
the branch between the human-chimpanzee ancestor branch (hereafter designated as
the HC branch). First, even though correlation coefficients between crossover rates,
GC-content and GC* are slightly lower for the HCM branch than for the HC branch,
the correlation between crossover rates and GC* is stronger than the correlations
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between crossover rates and GC-content (Table 4.9). Moreover, LDT correlates more
strongly with GC-content and GC* in the HCM branch than in the mouse lineage
(Table 4.9). Second, principal component regression results of the HC branch and
the HCM branch were very similar: in this branch, the second component is the
main predictor of W→S substitution rates, whereas the first component is the main
predictor of S→W substitution rates (Figures A.6 to A.8, Table A.9). We therefore
conclude that our results are not affected by the different time-spans between human
and mouse lineages nor by different density of genetic maps.

HC Branch HCM Branch
Crossover rates LDT Crossover rates LDT

GC-content 0.416∗∗∗ -0.453∗∗∗ 0.340∗∗∗ -0.436∗∗∗
GC* 0.676∗∗∗ -0.604∗∗∗ 0.389∗∗∗ -0.582∗∗∗

Table 4.9.: Pearson correlation coefficients (R) between crossover rates, distance to telomeres, GC-content and GC*
in the HC and HCM branches. Crossover rates in the HC branch were computed using the original
HapMap genetic map. Crossover rates in the HCM branch were computed using the low-density genetic
map as described in the main text. All crossover rates are sex-averaged crossover rates. ∗∗∗p-value
< 10−10

4.3.9. Cryptic variations of mutation rates

It has been shown that the mutation process is not homogeneous: mutations rates
vary along the human genome. This has been called the cryptic variation of the
mutation process (Hodgkinson et al., 2009) and can cause a bias in our substitution
pattern inference and affect our results. We tested this possibility by conducting
sequence evolution simulations and comparing evolution of three classes of sequences
(GC-rich, GC-medium and GC-poor) in the presence or absence of hypermutable
sites (see the Materials & Methods chapter for more details).

Inferring substitution patterns in the presence of cryptic variations of
mutation rates

Random sequences of 500 kbp were generated, with a GC-content of either 0.25
(GC-poor), 0.50 (GC-medium) or 0.75 (GC-rich). 25,000 hypermutable sites were
randomly chosen within these sequences, which have a total mutation rate 10 times
higher than normal sites. These sequences served as the root sequences and were
made evolve along each of the four branches of the following rooted tree: ((sister1,
sister2), outgroup), Figure 4.5).
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Figure 4.5.: Rooted tree used for sequence evolution simulation.

A Jukes-Cantor model was used to compute transition probabilities (see the ma-
trix of transition probabilities P (t) in section 2.2.1).

Within each branch, transition probabilities were computed for hypermutable sites
and normal sites such as transition probabilities in hypermutable sites are ten times
higher than in normal sites and the total divergence is equal to 0.15 in branch 1
and to 0.075 in branches 2, 3 and 4. By doing so, both sisters and the outgroup are
simulated to evolve for the same amount of time (d/2 + d/2 = d, Figure 4.5). Sub-
stitution patterns were then inferred in branches 3 and 4 using the same maximum
likelihood-based method as before using sequences obtained in the simulations. The
GC-content of GC-rich, GC-medium and GC-poor regions evolved to mean values
of 0.70, 0.50 and 0.30 respectively in both sister species.

Cryptic variations of mutation rates do not affect our interpretations

In the absence of hypermutable sites, we observe that for all three categories of
sequences, the GC* is correctly inferred to be of 0.50 (Figure 4.6). In the presence of
hypermutable sites, we observe that if the GC-content is at equilibrium, there is no
effect on GC* inference. However, GC* values are under-estimated if the GC-content
is lower than the GC* and over-estimated if the GC-content is higher than the GC*:
given our simple Jukes-Cantor mutation model, all sequences should evolve towards
a GC* of 0.50. The method we use computed a GC* of 0.60 for GC-rich regions and
a GC* of 0.40 for GC-poor regions (Figure 4.6).

This bias due to cryptic variation of the mutation rate is linear with respect
to GC-content. However, the linear transformation of a variable does not affect
correlation coefficients. Also, we observe that the relationship between GC-content
and GC* is non linear in the mouse lineage (Figure 4.1). At the light of this, we
believe that correlations coefficients between GC-content, GC* and crossover rates
are not affected by cryptic variation of the mutation rate and that this process alone
therefore cannot explain results obtained in the mouse lineage.

4.4. Conclusion

In this chapter, we investigated substitution patterns and GC-content evolution in
both human and mouse lineages and were able to highlight major differences be-
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Figure 4.6.: GC* estimations after sequence evolution simulation in the presence or absence of cryptic variation in
mutation rates in two sister lineages.

tween these two lineages. We first showed that despite having different GC-content
evolution dynamics, both lineages have the GC-content decreasing in GC-rich re-
gions. Also, we showed using multivariate analysis that substitution patterns are
under different influences in both lineages. GC-biased gene conversion has a major
influence on A or T to G or C substitution rates in human. In the mouse lineage,
this process is active but not a major influence of substitution rates: CpG odds ratio
is the major predictor of A or T to G or C substitution rates.
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5. GC-content evolution and
meiotic recombination hotspots

5.1. Introduction

Fine-scale characterizations of meiotic recombination in human and mouse genomes
have shown that this process is unevenly distributed along genomes. Most recom-
bination events are localized in short regions of 1 to 2 kbp, which have been called
recombination hotspots. In this chapter, we investigate the link between these re-
combination hotspots and substitution patterns. We studied substitution patterns
inside recombination hotspots in both human and mouse lineages and derived from
these properties of meiotic recombination.

5.2. Double strand breaks and GC-content
evolution across mouse genomes

5.2.1. Double strand breaks predict GC-content evolution in
Mus m. musculus

The influence of meiotic recombination through gBGC on substitution patterns and
GC-content evolution has been shown in both the human and the Mus m. muscu-
lus lineages (see previous chapter and Meunier and Duret, 2004; Duret and Arndt,
2008; Clément and Arndt, 2011). However, these analyses were done using crossover
rates as a proxy measure of meiotic recombination. Double strand breaks (hereafter
designated as DSBs) and recombination lead to the formation of Holliday Junc-
tions, which can be repaired into non-crossover or crossover events (the swapping
of chromosomal arms between the two chromosomes of each pair) (de Massy, 2003;
Baudat and de Massy, 2007). As a result, crossover events represent only a fraction
of all recombination events (Baudat and de Massy, 2007), and it is possible that the
influence of gBGC on substitution patterns in mammals is stronger than previously
measured. Since DSB is a better proxy measure of meiotic recombination, it allows
us to test whether both crossover and non-crossover events lead are associated with
gBGC. This can help us reevaluate the influence of meiotic recombination and gBGC
on substitution patterns across the Mus m. musculus genome.

We took advantage of the recent mapping of DSB hotspots in the Mus m. muscu-
lus genome using chromatin immunoprecipitation followed by sequencing (hereafter

59



Chapter 5. GC-content evolution and meiotic recombination hotspots

designated as ChIP-Seq) (Smagulova et al., 2011). This study identified more than
9,000 regions of approximately 3 kbp that experience high levels of DSB. We also
took advantage of the recent sequencing of the genome of several mouse strains,
including Mus m. castaneus and Mus spretus, two subspecies of Mus m. muscu-
lus (Keane et al., 2011). As these sequences were mapped on the Mus m. musculus
genome, this allowed direct comparison of genomic sequences of different subspecies.
Moreover, as recombination evolves rapidly in mouse species (Dumont et al., 2011),
studying the link between recombination and substitution patterns using closely
related mouse subspecies represents a clear advantage.

Substitution patterns in 1 Mbp windows across the Mus m. musculus genome
were computed from Mus m. musculus - Mus m. castaneus - Mus spretus triple
alignments. From these substitution patterns, GC* values, or future GC-content
values, were computed which can be considered as final GC-content values providing
substitution patterns stay constant over time. At the same time, for each window
crossover rates from high density genetic maps available for the Mus m. musculus
genome were extracted, as well as DSB hotspot density (proportion of a window
covered by a DSB hotspot, see the Materials & Methods chapter for more details).
The logarithm of both crossover rates and DSB hotspot density was used. 1580
windows were obtained, containing on average more than 960 kbp of sites where all
three species have a nucleotide (e.g. none of the tree species have a gap).

First, we observe that DSB hotspot density correlates more with GC* than with
current GC-content in the Mus m. musculus lineage (Table 5.1). As GC* values are
computed from substitution patterns, we conclude that DSB hotspot density influ-
ences GC-content evolution by influencing substitution patterns in Mus m. musculus,
something which is reminiscent of previous studies (see previous chapter as well as
Meunier and Duret, 2004; Duret and Arndt, 2008; Clément and Arndt, 2011). Sec-
ond, DSB density correlates more with GC-content or GC* values than sex-averaged
or sex-specific crossover rates do (Table 5.1), showing that DSB density is a better
proxy measure of meiotic recombination than crossover rates.

Sex-averaged Male Female DSB Density
R R R R

GC-content 0.244∗∗∗ 0.276∗∗∗ 0.088∗ 0.298∗∗∗
GC* 0.310∗∗∗ 0.300∗∗∗ 0.152∗∗ 0.404∗∗∗

Table 5.1.: Pearson correlation coefficients between GC-content, GC* and crossover rates or DSB density in the Mus
m. musculus lineage. ∗p-value < 0.05; ∗∗p-value < 10−5; ∗∗∗p-value < 10−10

It is possible that these differences in correlation coefficients reflect different levels
of noise in crossover rates and DSB hotspot density and not the fact that DSB den-
sity is a better proxy measure of recombination than crossover rates. To evaluate the
differences in noise level between crossover rates data and DSB data, we estimated
how much noise needs to be added to DSB hotspot density to decrease the correla-
tion coefficient to that of male crossover rates. GC*, male crossover rates and DSB

60 Yves Clément



Chapter 5. GC-content evolution and meiotic recombination hotspots

density variables were first normalized such that their mean is 0 and their standard
deviation is 1. A noisy DSB density variable was then created (hereafter designated
as noisyDSB) by simply adding random noise to DSB density. The random noise was
generated from a normal distribution of mean 0 and of standard deviation x. This
standard deviation was optimized such that the correlation of noisyDSB and GC*
was on average equal to that of male crossover rates and GC*. This procedure was
repeated 10,000 times. Results show that noisyDSB variance has to be 1.45 times
higher than that of DSB hotspot density in order for its correlation coefficient with
GC* to be equal to that of male crossover rates and GC* (Figure B.1). Overall, it
is possible that differences in correlation coefficients are due to both different levels
of noise between DSBs data and crossover rates, or to the fact that both NCOs and
COs influence GC-content evolution through gBGC.

These results show that gBGC is likely to be associated with both crossover and
non-crossover events and that the influence of gBGC in the Mus m. musculus lineage
is much more important than previously estimated, something that we expect to
be true also in the primate lineage. It should be noted that DSB hotspot density
correlates better with male-specific crossover rates than with sex-averaged or female-
specific crossover rates, which is expected since DSBs were mapped in male cells
(Smagulova et al., 2011).

5.2.2. Different substitution patterns at different timescales
in Mus m. musculus

The influence of gBGC on genome evolution was recently shown in the Mus m. mus-
culus genome by analyzing substitution patterns (see previous chapter and Clément
and Arndt, 2011). Substitution patterns are usually computed by comparing 2 sister
species with an outgroup. Until recently, the closest sister species of Mus m. muscu-
lus with its genome sequenced was Rattus norvegicus, from which Mus m. musculus
diverged about 19 million years (Myrs) ago (Veyrunes et al., 2005; Poux et al., 2006).
Therefore rates computed in the Mus m. musculus lineages summarize events that
occurred between Mus m. musculus and its last common ancestor with rat. As a
result, rates computed in this long branch might not represent modern evolution in
Mus m. musculus. The recent sequencing and mapping of Mus m. castaneus and
Mus spretus genomes, two mouse subspecies, gives us the opportunity to measure
substitution rates on a very short timescale (Keane et al., 2011). Furthermore, it
allows us to compute rates in several mouse lineages and reveal possible changes in
substitution patterns in different mouse species.
We compared the evolution of GC-content in the Mus m. musculus genome for

two different time-scales by analyzing substitution rates in two different sets of
triple alignments: Mus m. musculus - Rattus norvegicus - Homo sapiens (see previ-
ous Chapter) and Mus m. musculus - Mus m. castaneus - Mus spretus (see before).
When we plot GC* values over current GC-content values, we observe that, across
the Mus m. musculus genome, GC-content is globally decreasing, as GC* values are
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lower than GC-content values (Figure 5.1). One striking observation is that GC*
values computed in the branch between the Mus m. musculus - Mus m. castaneus
ancestor (hereafter designated as MC, Figure 5.2 and Mus m. musculus are much
lower than values computed in the branch between the Mus m. musculus - Rat-
tus norvegicus ancestor (hereafter designated as MCSR, Figure 5.2) and Mus m.
musculus (Figures 5.1 and 4.1, Clément and Arndt, 2011). However, two confound-
ing effects can influence the differences in substitution patterns between different
timescales.
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Figure 5.1.: GC* values plotted against genomic GC-content values in the Mus m. musculus genome for the branch
leading to Mus m. musculus in Mus m. musculus - Mus m. castaneus - Mus spretus alignments (black)
or Mus m. musculus - Rattus norvegicus - Homo sapiens (red) triple alignments. Curves represent
LOWESS local regressions. The straight line represents the x = y relationship.

First, as rates in the branch between MCSR and Mus m. musculus are computed
using Homo sapiens as an outgroup, it is possible that such a distant outgroup
can lead to biases in substitution patterns estimation. Second, as fewer positions in
the Mus m. musculus genome share a nucleotide with Rattus norvegicus and Homo
sapiens than with Mus m. castaneus and Mus spretus, it is possible that this first
category of positions evolve differently than the second.

To resolve these issues, we built Mus m. musculus - Mus m. castaneus - Mus
spretus - Rattus norvegicus - Homo sapiens multiple alignments for each 1 Mbp
window across the Mus m. musculus genome as follows. For each window, we first
retrieved the corresponding EPO 12 amniotes multiple alignments available at the

62 Yves Clément



Chapter 5. GC-content evolution and meiotic recombination hotspots

Ensembl database (version 62, Flicek et al., 2011) and restricted these to the analysis
of Mus m. musculus, Rattus norvegicus and Homo sapiens (Figure 5.2). For each
alignment, we then mapped the corresponding Mus m. castaneus and Mus spretus
sequences onto the alignments. After filtering out windows containing less than 100
kbp of sites where all 5 species have a nucleotide as well as windows for which there
was not enough information to compute crossover rates or DSB hotspot density, we
obtained 1463 windows containing on average more than 300 kbp of sites where all
5 species have a nucleotide.

Figure 5.2.: Phylogenetic relationships between Mus m. musculus, Mus m. castaneus, Mus spretus, Rattus norvegicus
and Homo sapiens. Divergence times are extracted from Veyrunes et al. (2005), Poux et al. (2006),
Huchon et al. (2007) and Geraldes et al. (2008).

To control for the choice of outgroup, Mus m. musculus were compared to Mus m.
castaneus sequences, using either Mus spretus or Homo sapiens as an outgroup, in
multiple alignments built above. Results show that, although GC* values obtained
using Homo sapiens as an outgroup are more variable than those obtained using
Mus spretus (1.89 × 10−3 and 7.47 × 10−4 respectively), GC* values from both
outgroups are within the same range (Figure B.2a). This shows that the use of a
distant outgroup does not explain the observed differences in GC* values.

We further controlled whether different classes of sites evolve differently in the
Mus m. musculus genome. We computed substitution rates by comparing Mus m.
musculus and Mus m. castaneus using Mus spretus as an outgroup in both Mus m.
musculus triple alignments and in 5 species alignments mentioned above.
Results show that, although GC* values obtained with multiple alignments are

also more variable than GC* values obtained with triple alignments (7.47 × 10−4
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and 5.52×10−4 respectively, something that can be explained by the fact that using
fewer sites to infer substitution rates will increase the amount of random noise),
those values are in the same range (Figure B.2b). This demonstrates that sites for
which Homo sapiens or Rattus norvegicus have a nucleotide do not evolve differently
than other sites in the Mus m. musculus genome.

5.2.3. Substitution patterns changed recently in mouse
lineages

We propose that different substitution patterns for long and short timescales in Mus
m. musculus reflect recent shifts in substitution patterns in mouse lineages. In order
to detect such shifts, one has to analyze substitution not only in terminal lineages
but also in internal branches. To do this, we computed substitution patterns in all
branches of the following 5 species tree: ((((Mus m. musculus, Mus m. castaneus),
Mus spretus), Rattus norvegicus), Homo sapiens). This enables us to study branches
between different ancestors of mouse species (Figure 5.2). Results are shown in
Figure 5.3.
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Figure 5.3.: GC* values against Mus m. musculus GC-content for selected branches of Mus m. musculus - Mus
m. castaneus - Mus spretus - Rattus norvegicus - Homo sapiens multiple alignments (see Figure 5.2
for color coding). Curves represent LOWESS local regressions. The straight line represents the x = y
relationship.

We observe that all three mouse species (Mus m. musculus, Mus m. castaneus and
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Mus spretus) have low GC* values in the same range, although Mus m. castaneus
has slightly higher values than the other two species. Second, we see that both
Rattus norvegicus and the branch between the Mus m. musculus - Rattus norvegicus
ancestor (hereafter designated as MCSR) and the Mus m. musculus - Mus spretus
ancestor (hereafter designated as MCS ) have very high GC* values, comparable to
values observed for Mus m. musculus in Mus m. musculus - Rattus norvegicus -
Homo sapiens alignments (Figure 5.1). Finally, we observe that the branch between
MCS and the Mus m. musculus - Mus m. castaneus ancestor (hereafter designated
as MC ) also exhibits high GC* values, though slightly lower than the previous 2
branches.

5.2.4. Possible effects of polymorphisms and incomplete
lineage sorting

Several processes can affect these results. First, it is possible that the low GC* value
we observe are due to segregating polymorphism: a fraction of the differences we
observe between Mus m. musculus, Mus m. castaneus and Mus spretus correspond
to polymorphic SNPs that are segregating in populations but that eventually will not
get fixed. The average nucleotide diversity in mice is estimated to be between 0.0005
and 0.005 (Ideraabdullah et al., 2004; Keightley et al., 2005; Harr, 2006; Salcedo
et al., 2007). Because of gBGC, S→W SNPs have a lower fixation probability than
W→S ones. Thus, the estimate of GC* will tend to be lower for SNPs than for fixed
positions. In our results, most changes observed in internal branches are likely to
be fixed (because they are more ancient), whereas a significant fraction of changes
observed in short terminal branches may be due to SNPs. This effect is therefore
expected to contribute to the decrease in GC* in short terminal branches compared
to internal branches. To control for this effect, we masked all SNP positions in
Mus m. musculus (Ensembl version 65) and recomputed substitution patterns from
these alignments. This procedure removes about 1% of analyzable sites (2,200 sites
on average per window). Results show that, although GC* values are slightly higher
in Mus m. musculus after masking SNPs, indicating segregating SNPs do affect
GC*, this effect is very limited as GC* values are low for all three terminal branches
(Figures B.4a & B.5a).
Second, it is possible that the phylogeny of sequences does not always correspond

to the phylogeny of species. This process is known as incomplete lineage sorting (or
ILS for short) and is expected to be stronger for short branches and in taxa with
large effective population sizes. Indeed, about 12% of loci in Mus spretus do not
place this species as an outgroup of Mus m. musculus or Mus m. castaneus (Keane
et al., 2011).
To test the effect of ILS on GC* estimations, the following simulations were per-

formed. First, random DNA sequences of length 300 kbp and of GC-content 0.25
(GC-poor), 0.50 (GC-medium) and 0.75 (GC-rich) were generated. Then, these se-
quences were evolve along all branches of the following tree: ((sister 1, sister 2),
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outgroup), using a simple Jukes-Cantor model of parameter d for the branch to the
outgroup and d/2 for the other branches (see Figure 4.5 and section 4.3.9 for more
details). In these sequences, ILS was then performed on 14% of randomly chosen
sites by replacing the nucleotide in one of the sister species by the nucleotide in
the outgroup. Substitution patterns were finally in these sequences as well as in
sequences not affected by ILS.
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Figure 5.4.: GC* values computed in 2 sister lineages after simulating sequence evolution with a simple Jukes-
Cantor model for GC-poor (blue), GC-medium (white) and GC-rich (red) sequences, with and without
incomplete lineage sorting.

Results show that when GC-content is not at equilibrium, ILS does affect GC*
estimations: it is underestimated when GC* is higher than GC-content and overes-
timated when GC* is lower than GC-content (Figure 5.4). As in our results, GC*
values are lower than GC-content in the terminal branches, we argue that our com-
puted GC* values are a conservative estimate and expect the ’real’ GC* values to
be lower than what we observe. In short, ILS cannot explain the low GC* values we
observe in mouse subspecies.

5.2.5. Comparison of rates between branches

We interpret these results as follows. First of all, it is clear that, since different
branches exhibit different substitution patterns, these changed in mouse species since
the split with Rattus norvegicus. Because GC* values are much higher in the branch
between MCS and MC than in the three mouse species, we infer that at least two
independent shifts in substitution patterns are inferred to have occurred in mouse
species: one before the split between Mus m. musculus and Mus m. castaneus and
one in the Mus spretus lineage.
By comparing substitution rates in the MCSR to MCS branch to rates in other

branches, we can determine what caused these shifts in GC*. To do so, substitution
rates in the former were first plotted to rates in different lineage. Linear regression
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for each rates were then computed. As the minimum value for substitution rates is
necessarily 0, an intercept of 0 was forced for each linear regression (Figure B.3). In
such analysis, as AT→TA and GC→CG substitution rates are neutral with respect
to gBGC, changes in these rates are considered to reflect changes that are indepen-
dent from this process. Substitution rates in both Rattus norvegicus and MCS to
MC branches are very similar to rates in the MCSR to MCS branch, something that
is expected given that GC* are also similar in these branches (Figures 5.3 and B.3a).
Mus m. castaneus and Mus spretus branches exhibit similar changes. W (A or T)
→ S (G or C) substitution rates decreased substantially in both branches whereas
S→W rates remained stable (Figures B.3d and B.3e). In the Mus m. musculus
branch, it appears that both W→S and S→W rates changed, the former decreasing
and the latter increasing (Figure B.3c). Despite these differences, all three branches
have similar GC* values (Figure 5.3). Additionally, the differences in rates in Mus
m. musculus - Mus m. castaneus - Mus spretus alignments and Mus m. musculus -
Rattus norvegicus - Homo sapiens alignments are explained by the fact that rates in
the large branch (MCSR to Mus m. musculus are dominated by rates in the MCSR
to MCS branch (17 out of 19 Myrs).

5.2.6. Shifts in substitution patterns and isochores

A global increase in GC3 (the GC-content of codons’ third positions) along the mouse
and rat branches, notably for GC-poor genes has been reported (Romiguier et al.,
2010), which does not agree with our results. This may be due to the fact that these
authors did not take CpG hypermutability into account to estimate ancestral GC.
To test whether this could explain the differences between our results and theirs,
substitution patterns were computed in all branches of the 5 species tree shown in
Figure 5.2 without taking CpG hypermutability into account. Results show that
GC* estimations do increase in the absence of CpG hypermutability (Figures B.4b
& B.5b). However, this effect seems to be stronger for GC-rich regions. Differences
between results of Romiguier et al. (2010) and ours therefore cannot be explained
by CpG hypermutability alone.
It has been shown that GC-rich isochores are declining in mammalian genomes

(Duret et al., 2002; Belle et al., 2004). We previously showed that in Mus m. mus-
culus, the GC-content of both GC-rich and GC-poor regions is decreasing, and that
GC-medium regions are at base composition equilibrium (see previous chapter and
Clément and Arndt, 2011). In this chapter, using newly available genomic data, we
however show that substitution patterns changed in mouse species, with GC* values
being much lower as a result, and that this change occurred very recently. It is likely
that this was caused by a decrease of gBGC’s strength in mouse species. However, as
it is impossible to retrieve past recombination rates, this cause cannot be precisely
identified.
These genome-wide results show how DSBs and recombination influence substi-

tution patterns and GC-content evolution across the Mus m. musculus genome. We
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investigate in the next section how this influence is mediated in the close vicinity of
DSBs.

5.3. Characterization of gene conversion in DSB
hotspots in mouse

Characteristics of meiotic recombination associated gene conversion (such as length
of gene conversion tracts) have been determined only for a handful of recombination
loci in mouse and human (Guillon and de Massy, 2002; Jeffreys and Neumann, 2002;
Jeffreys and May, 2004; Paigen et al., 2008; Webb et al., 2008; Wu et al., 2010). It is
known that gene conversion tracts exhibit large variability in length, with an average
length of several hundred base pairs (bp). The recent high-throughput mapping of
DSB hotspots in the mouse genome (Smagulova et al., 2011) enables us to do large-
scale detection and characterization of gene conversion around DSBs as well as
measure the evolutionary traces of recombination and gene conversion.

We investigated which regions around DSBs are affected by gene conversion by
looking for traces of gBGC, a neutral process favoring the fixation of G and C
alleles: regions experiencing gene conversion will be under the influence of gBGC.
This was done by first pooling all DSB hotspots using their middle points as a
reference position, and then computing substitution rates in 2,000 non-overlapping
windows of 100 bp using Mus m. musculus - Mus m. castaneus - Mus spretus triple
alignments (for more details, see the Materials and Methods chapter). These pooled
windows contain a total of more than 1,800 Mbp of analyzable sites (sites where
all three species have a nucleotide), with an average of 900 kbp per window. From
substitution patterns, GC* values (equilibrium GC-content) were computed in each
window, a quantity which is correlated to the strength of gBGC.

5.3.1. Gene conversion is centered on DSB hotspots’ middle
points in mouse

Results show an increase of GC* relative to the background in the Mus m. mus-
culus lineage, which is centered on DSB hotspots’ middle points (Figure 5.5). This
increase affects a region of approximately 1.5 kbp. Since DSB products are repaired
through gene conversion, which will lead to a biased repair of mismatches occurring
in heteroduplexes (Duret and Galtier, 2009), we infer that this increase of GC* is
due to gBGC around DSB hotspot middle point. We also infer this 1.5 kbp region
to represent gene conversion tracts in Mus m. musculus.
This increase of GC* affects only a small fraction of the 200,000 kbp that were

analyzed, GC* values remain stable outside of this 1.5 kbp region (Figure 5.5). To
increase resolution, we did further analyses by zooming in on this region (Figure
5.6).
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Figure 5.5.: GC* around DSB hotspots middle points in the Mus m. musculus lineage (black), the Mus m. casta-
neus lineage (red) and around Mus m. musculus DSB coldspots (blue). Lines represent one-sided local
regressions computed over 25 neighboring windows.

We controlled if this increase was specific to DSB hotspots inside the Mus m. mus-
culus lineage as follows. First, we computed substitution patterns and GC* values in
10,000 randomly chosen regions not overlapping DSB hotspots (hereafter designated
as DSB coldspots), using the same method as for DSB hotspots. Results showed no
increase of GC* in DSB coldspots (Figures 5.6 and 5.5). We then compared GC*
values in DSB hotspots in the Mus m. musculus lineage to values in the Mus m. cas-
taneus lineage. We did not observe an increase of GC* inside the Mus m. castaneus
lineage (Figures 5.6 and 5.5), and therefore concluded that the observed increase of
GC* is specific to DSB hotspots in the Mus m. musculus lineage. This increase is
mainly due to an increase of W→S substitution rates (Figures 5.7 and B.6a). This
is expected, as recombination increases, the fixation bias favoring G & C alleles is
stronger than the fixation bias favoring A & T alleles (see following section).

Furthermore, this increase of GC* cannot be explained by the fact that GC-
content is very high close to DSB middle points in Mus m. musculus (Figure B.6b):
as the Mus m. musculus and Mus m. castaneus divergence time is only 500,000
years, GC-content profiles are very similar between the two species (Figure B.6b).
If the increase of GC* in DSB hotspots was caused solely by an increase of GC-
content, high GC* values should be seen in the Mus m. castaneus lineage. The
absence of such increase rules out GC-content as a potential confounding variable.
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Figure 5.6.: GC* around DSB hotspots’ middle points in the Mus m. musculus lineage (black), the Mus m. casta-
neus lineage (red) and around Mus m. musculus DSB coldspots (blue). Lines represent one-sided local
regressions computed over 25 neighboring windows.

It is also noteworthy that GC* values for Mus m. musculus are in general lower than
for Mus m. castaneus. This phenomenon cannot be explained. However, low GC*
values were observed in the Mus m. musculus lineage compared to its sister species
for two different sets of triple alignments (Mus m. musculus - Rattus norvegicus
- Homo sapiens or Mus m. musculus - Mus spretus - Rattus norvegicus, data not
shown). This suggests that this observation represents a genome-wide elevation of
GC* in the Mus m. musculus lineage rather than being caused by a technical bias.

5.3.2. gBGC affects W→S substitution rates more than S→W
substitution rates

Our results show that the increase of GC* around DSB hotspots’ middle points in
Mus m. musculus is mainly due to an increase of W→S substitution rates rather
than a decrease of S→W substitution rates. This can be explained by the following
facts. gBGC can be likened to natural selection as it is a fixation bias (Nagylaki,
1983). The fixation probability of an allele in a diploid genome can be therefore
written as

Pfixation =
1− e−4Nesf

1− e−4Nes
, (5.1)
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Figure 5.7.: W→S (red) and S→W (black) substitution rates around DSB hotspots’ middle points in the Mus m.
musculus lineage. Lines represent one-sided local regressions computed over 25 neighboring windows.

where s is the strength of gBGC, Ne the effective population size and f the allele
frequency in the population (Kimura, 1962). s will be positive for W→S mutations
and negative for S→W mutations and can be considered to be proportional to the
rate of recombination (Duret and Arndt, 2008). When considering a newly occurring
mutation in a diploid genome, its allele frequency f will be 1/2Ne. Its fixation
probability will then be

Pfixation =
1− e−2s

1− e−4Nes
. (5.2)

Figure B.10 shows a plot of the fixation probabilities for S→W, W→S as well
as W→W and S→S mutations. When s increases, the fixation probability of S→W
mutations is much closer to the fixation probability of an S→S or W→W mutation
(1/2Ne) than the fixation probability of W→S mutations. This means that meiotic
recombination will affect more W→S substitutions than S→W substitution.

5.3.3. Characteristics of gene conversion tracts

Results show that the region affected by gene conversion in Mus m. musculus has
an average length of approximately 1.5 kbp, centered around DSB hotspots’ middle
points. Furthermore, GC* values peak around DSB hotspots’ middle points and
decrease with distance. We interpret this as regions closer to hotspots’ middle points
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experiencing more gene conversion than regions more distant to hotspots’ middle
points and conclude that these results indicate that gene conversion tracts take
variable lengths around DSBs. This agrees with previous observations for a handful
of recombination hotspots in Homo sapiens and Mus m. musculus (Guillon and
de Massy, 2002; Jeffreys and Neumann, 2002; Jeffreys and May, 2004; Paigen et al.,
2008; Webb et al., 2008; Wu et al., 2010).

5.3.4. No evidence for recombination associated
strand-specific mutations

A base composition skew has been reported around DSB hotspots’ middle points in
mouse (Smagulova et al., 2011) (Figure B.6c). As this skew was interpreted as being
the result of strand-specific mutations caused by the recombination process, strand
asymmetries in substitutions were examined around DSB hotspots’ middle points.

For each pair of symmetric rates (2 pairs of transition rates, 4 pairs of transversion
rates and one pair of CpG rates), the log of the ratio of the two rates was computed
in each window. For example, for A→G and T→C substitution rates, the following
value was computed: log2(A→G

T→C ) around DSB hotspots’ middle points for both the
Mus m. musculus and Mus m. castaneus lineages.

Results show that strand asymmetries are very weak (Figure B.7). Furthermore,
strand asymmetries observed in the Mus m. musculus lineage are of the same mag-
nitude as those observed in the Mus m. castaneus lineage. This shows that strand-
specific mutations are not causing observed base composition skews.

Furthermore, the base composition skews are reverse complement symmetric with
respect to DSB hotspots’ middle points: higher A frequencies on the 5’ end but
higher T frequencies on the 3’ end of DSB hotspots are observed, as well as higher
G frequencies on the 5’ end but higher C frequencies on the 3’ end (Figure B.6c).
Base composition skews are therefore independent of the strand orientation of the
hotspots (when computing these skews by randomly choosing the + or − strand for
DSB hotspots, the resulting profiles are identical to analyzing only the + strand).
As a result, we argue that if they cause the observed base composition skews,
strand asymmetries will also be reverse complement symmetric with respect to DSB
hotspots’ middle points: they will be observable regardless of whether the + or −
strand is studied for the hotspots. This makes our results robust to the fact that
all DSB hotspots are oriented in the same manner: the chromosome’s centromere is
located at the 5’ end while the telomere is located at the 3’ end of DSB hotspots.
We therefore conclude that there are no strand-specific mutations around DSBs in
Mus m. musculus, either caused by meiotic recombination or other processes, such
as transcription (Polak and Arndt, 2008) or replication (Chen et al., 2011). Overall,
our results suggest a possible association between base composition skews observed
around DSB hotspots in Mus m. musculus and recombination.

How these skews emerged is still unknown. Nonetheless, there is a bias for DSBs
to occur in regions exhibiting such skews. One simple possibility is that regions
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exhibiting base composition skews are preferentially recruited as DSB hotspots,
either directly or indirectly through chromatin opening.

5.3.5. DSB locations are evolving rapidly

By analyzing substitution patterns around DSB hotspots in Mus m. musculus and
comparing them with those in corresponding regions in sister species, we can study
the evolution of DSBs through time. GC* values increase around DSB hotspots’
middle points, which is specific to Mus m. musculus. Because DSBs and their sub-
sequent repair will lead to gBGC and an increase of GC* values, the fact that no
increase of GC* at the corresponding locations in Mus m. castaneus can be observed
shows that there is no DSB and recombination occurring at the corresponding loca-
tions in Mus m. castaneus. DSBs locations therefore are different between these two
species. Since the Mus m. musculus - Mus m. castaneus divergence time is about
500,000 years (Geraldes et al., 2008), it shows that this evolution happens quite fast.

Such an observation is reminiscent of the fact that meiotic recombination hotspots
are poorly conserved in primates (Ptak et al., 2004, 2005; Winckler et al., 2005; Coop
and Myers, 2007; Jeffreys and Neumann, 2009; Auton et al., 2012). Furthermore,
it has been shown that meiotic recombination is controlled in Mus m. musculus
and Homo sapiens by a gene called Prdm9 (Baudat et al., 2010; Myers et al.,
2010; Parvanov et al., 2010). This gene is under very strong positive selection in
metazoans, especially at the DNA binding residues of its zinc finger domains (Oliver
et al., 2009). Models have been proposed to link the fast evolution of Prdm9 with
the fast evolution of recombination hotspots and of binding motifs in the human
genome (Hochwagen and Marais, 2010; Ponting, 2011). The fast evolution of DSB
hotspots locations in Mus m. musculus seems to indicate that recombination evolves
in a similar way in primates and murids.

Results around DSB hotspots in Mus m. musculus show that gene conversion
events happen mostly around DSB hotspots’ middle points and that recombination is
evolving rapidly. In the next section, we investigate substitution patterns in meiotic
recombination hotspots in the human lineage.

5.4. Gene conversion and PRDM9 binding sites in
human

Since no DSB mapping is currently available for the human genome, one cannot
simply apply the same methodology used in Mus m. musculus to the human genome.
High-resolution genetic maps in human have shown that meiotic recombination is
not homogeneously distributed along mammalian chromosomes: it happens mostly
in relatively short regions (1 to 2 kbp) that have been called recombination hotspots
(Myers et al., 2005; Paigen et al., 2008; Paigen and Petkov, 2010). These hotspots
have two characteristics: they live hot and die young (Coop and Myers, 2007). They
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show intense recombination rates, with 80% of recombination activity happening in
20% of the genome (Myers et al., 2005). The hotspot locations evolve very rapidly
during evolution in murids and primates. They are poorly conserved between human
and chimpanzee (Ptak et al., 2005; Winckler et al., 2005; Coop and Myers, 2007;
Jeffreys and Neumann, 2009; Auton et al., 2012).

These genetic maps consist of genetic markers scattered along the genome, with
a rate of recombination measured in each interval between adjacent markers. Un-
like DSB hotspots obtained in Mus m. musculus by ChIP-Seq for which information
within hotspots is available (such as location of the hotspot peak) (Smagulova et al.,
2011), detailed information other than the rate of recombination is unavailable be-
tween adjacent markers. Using human meiotic recombination hotspots and pooling
them with respect to their middle points is therefore not applicable in human.

It has recently been shown that the Prdm9 gene controls recombination activity
inside recombination hotspots in murid rodents and primates (Baudat et al., 2010;
Myers et al., 2010; Parvanov et al., 2010). In human, this control is mediated by
the binding of the PRDM9 protein to a consensus 13 bp motif (CCNCCNTNNC-
CNC) found in 41% of hotspots (Myers et al., 2008; Baudat et al., 2010; Myers et al.,
2010). Also, variations in the zinc finger DNA binding domains of PRDM9 in human
populations have been associated with variations in hotspot activity and location
(Fledel-Alon et al., 2009; Berg et al., 2010; Kong et al., 2010; Berg et al., 2011;
Hinch et al., 2011). This gene is under very strong positive selection in metazoans,
especially at the DNA binding residues of the zinc finger domains (Oliver et al.,
2009). This extra information about human recombination hotspots was therefore
used to investigate the link between PRDM9 and meiotic recombination by look-
ing for traces of gene conversion around PRDM9 binding sites in human meiotic
recombination hotspots.

Substitution patterns around PRDM9 binding sites were computed by first detect-
ing PRDM9 binding motifs in human meiotic recombination hotspots and pooling
these hotspots using PRDM9 binding sites as a reference position, and then by an-
alyzing substitution patterns in 2,000 non-overlapping windows of 100 bp, centered
on binding sites, using human - chimpanzee - gorilla triple alignments. These pooled
windows contain a total of around 1,000 Mbp of analyzable sites (sites where all
three species share a nucleotide), with an average of over 500 kbp per window. GC*
values were computed from substitution patterns to search for regions under strong
influence of gBGC and to detect regions experiencing gene conversion (for more
details, see the Materials & Methods chapter).

5.4.1. Gene conversion is centered on PRDM9 binding sites
in human

In the human lineage, results show an increase of GC* values centered on PRDM9
binding sites (Figure 5.8 and B.8a). Regions with high values of GC* are interpreted
as being under the influence of gBGC (Duret and Galtier, 2009). Similarly to the
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Mus m. musculus lineage, these regions are inferred to be experiencing high rates
of gene conversion.
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Figure 5.8.: GC* around PRDM9 binding sites in recombination hotspots in the human lineage (black), the chim-
panzee lineage (red) and around PRDM9 binding sites in recombination coldspots (blue). Lines represent
one-sided local regressions computed over 25 neighboring windows.

We controlled whether this increase was specific to meiotic recombination hotspots
in the human lineage as follows. First, substitution patterns were computed around
10,000 randomly chosen PRDM9 binding motifs located outside recombination hotspots
(hereafter designated as recombination coldspots), using the same method as for
binding motifs inside hotspots. Results showed no increase of GC* in these coldspots
(Figure 5.8 and B.8a). Second, substitution rates corresponding to hotspot regions in
the human lineage were compared to the chimpanzee lineage. These results showed
no increase of GC* in the chimpanzee lineage (Figure 5.8 and B.8a). We therefore
conclude that the observed increase of GC* around PRDM9 binding sites in human
meiotic recombination hotspots is specific to recombination hotspots in the human
lineage. Similarly to what we observe in mouse, this increase of GC* is mainly due
to an increase of W→S substitution rates around PRDM9 binding sites (Figure 5.9
and B.8b).
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Figure 5.9.: W→S (red) and S→W (black) substitution rates around PRDM9 binding sites in recombination hotspots
in the human lineage. Lines represent one-sided local regressions computed over 25 neighboring windows.

Furthermore, we controlled whether the observed increase of GC* was specific to
PRDM9 sites in recombination hotspots as follows. The same set of recombination
hotspots used above was analyzed, but by pooling them using their middle points
as a reference position. Substitution rates in 100 bp windows around this refer-
ence position were computed using the same methodology as above. Results showed
an increase of GC* around middle points in human recombination hotspots. This
increase is, however, less pronounced than that observed around PRDM9 binding
sites (Figure 5.10 and B.8d). We therefore conclude that gene conversion tracts are
centered on PRDM9 sites.

5.4.2. PRDM9 triggers DSB directly around its binding sites

Our results show that in human recombination hotspots, gene conversion occurs
mostly around PRDM9 binding sites, which agrees with recently obtained results
(Katzman et al., 2011). Since in mouse, gene conversion occurs in a short region
centered on DSB hotspots’ middle points, it is inferred that DSBs occur in very
close proximity to PRDM9 binding sites. It is therefore concluded that PRDM9
triggers DSB in the proximity of its binding site.

How this control is mediated, however, is still unknown. As PRDM9 binding
sites are found all across the human genome, this protein alone cannot control re-
combination hotspot activity. It is possible that this control is performed through
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Figure 5.10.: GC* around PRDM9 binding sites (black) or hotspots’ middle points (red) in human meiotic recom-
bination hotspots. Lines represent one-sided local regressions computed over 25 neighboring windows.

protein-protein interactions. Another possibility is the recruitment of other proteins
through histone modifications. PRDM9 has a histone methyl-transferase domain,
and a histone modification (trimethylation of the lysine residue of the histone 3
protein, H3K4me3) has been found to be associated in mouse with recombination
hotspots (Buard et al., 2009; Borde et al., 2009; Smagulova et al., 2011) and with
PRDM9 binding activity (Grey et al., 2011).

Alternatively, this control could be mediated by the binding of proteins to the
DNA in the vicinity of PRMD9 binding sites. To test this hypothesis, we explored
over-represented DNA motifs in a 2 kbp region around PRDM9 binding sites using
the RSAT peak-motifs tool (Thomas-Chollier et al., 2012). We found one DNA
motif that showed a particular over-enrichment close to PRDM9 binding sites in
meiotic recombination hotspots (Figure B.9a). However, by repeating this analysis
around PRDM9 binding motifs in recombination coldspots, we found exactly the
same over-represented DNA binding motifs (Figure B.9b). This indicates that such
over-represented motifs are not specific to meiotic recombination hotspots and thus
cannot control hotspot activity.
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5.4.3. The hotspot conversion paradox

PRDM9 binding sites are directly affected by gene conversion through DSB and
subsequent digestion and repair, which means that when binding and subsequent
recombination occurs at a locus where there is heterozygosity for the binding motif,
this motif will be replaced by gene conversion with an inactive motif, thus disabling
PRDM9 binding and causing the recombination activity to disappear (although
gBGC can slow down this process for reasons explained below). Indeed, it has been
recently shown that there is a drive against the consensus binding motif specific to
human inside meiotic recombination hotspots (Myers et al., 2010). This drive will
cause a selective pressure favoring new binding specificities of the zinc finger do-
mains of the PRDM9 protein (Hochwagen and Marais, 2010; Ponting, 2011). This
has been put forward to explain the very fast evolution of hotspot structure between
human and chimpanzee (Ptak et al., 2005; Winckler et al., 2005; Coop and Myers,
2007; Jeffreys and Neumann, 2009), the very fast evolution of the Prdm9 gene in
metazoans (Oliver et al., 2009) and the variation in hotspot structure observed be-
tween human populations (Fledel-Alon et al., 2009; Berg et al., 2010; Kong et al.,
2010; Berg et al., 2011; Hinch et al., 2011). This entire process has been modeled
in the hotspot conversion paradox model, the fact that an allele promoting recom-
bination activity will promote its own disruption (Boulton et al., 1997; Jeffreys and
Neumann, 2002; Pineda-Krch and Redfield, 2005). Overall, our results agree with
that model.

It is possible that gBGC helps maintain recombination activity as it promotes the
fixation of G and C alleles: the consensus PRDM9 binding motif in human is indeed
C-rich, and the fact that a mismatch involving a C will be repaired often back to a C
by gBGC is expected. This effect remains relatively small for the following reasons.
First, the consensus motif is C-rich, not GC-rich, therefore a C→G substitution in
the motif will result in its inactivation. Second, as the biased mismatch repair is
biased towards both G and C bases, it is then possible that mismatches will be
repaired into G, which will also inactivate the motif. Finally, gBGC is not expected
to be 100% efficient: not all mismatches will be repaired into G and C. Inversely, if
the PRDM9 binding motif was AT-rich, gBGC might actually speed up the turnover
of recombination hotspots for reasons mentioned above.

5.4.4. Differences in hotspot structures between human and
chimpanzee

Recently, meiotic recombination hotspots have been mapped in the chimpanzee
genome using a sequencing-based technique (Auton et al., 2012), providing a unique
opportunity to compare the recombination process between two closely related species
at a small scale. This study shows that although meiotic recombination works in
hotspots in both genomes, the hotspot structure is much more complex in the chim-
panzee genome: hotspots in chimpanzee are not as well defined as in human. This is
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explained by the fact that Prdm9 alleles are much more variable in chimpanzee than
in human and that contrary to human, no consensus binding motif can be found
in chimpanzee. Such differences are surprising and cannot be explained by positive
selection being more efficient in chimpanzee compared to human, given that both
species’ effective population sizes are of similar orders of magnitude (Yu et al., 2003;
Keightley et al., 2005). It is possible that the increased diversity of Prdm9 alleles
in chimpanzee is due to the fact that these alleles are very recent and thus harder
to identify. It is also possible that the PRM9 protein is less predominant in hotspot
determinism in chimpanzee compared to human.

5.4.5. Contrasting results in human and mouse lineages

Our results in the human lineage show that the region affected by gene conversion
has a length of approximately 2 kbp centered on PRDM9 binding sites in human
meiotic recombination hotspots. This is a little longer than what we observe in
mouse DSB hotspots. Differences in gene conversion tract length have already been
raised as a potential explanation to differences in large-scale dynamics of GC-content
evolution between primates and murid rodents (Clément and Arndt, 2011). These
different results can be explained as follows. It is possible that DSBs occur directly
at PRDM9 binding sites and that gene conversion tracts are indeed longer in human
compared to mouse. However, it is also possible that DSBs do not occur directly at
PRDM9 binding sites, and that gene conversion tract have the same length in both
species. Recent results in the mouse genome indicate that PRDM9 binding sites are
normally distributed around DSB hotspots’ middle points (Smagulova et al., 2011),
which supports the second hypothesis. However, without large-scale information
about DSB in human, whether human and mouse gene conversion tract lengths
differ remains an open question.

5.4.6. Comparison of different hotspots datasets

To study biased gene conversion inside meiotic recombination hotspots in the human
genome, a hotspot dataset was generated from a high density genetic map available
(hereafter designated as Clement hotspots, International HapMap Consortium et al.,
2007). The same analysis done previously was performed using already published
hotspots (hereafter designated as Myers hotspots, Myers et al., 2005).

Following the same methodology as Necşulea et al. (2011), hotspots locations
were first downloaded, their coordinates were then converted to the hg19 version of
the human genome. More than 34,000 recombination hotspots were obtained. First,
crossover rates were computed inside each recombination hotspot by computing
the weighted average of crossover rates of chromosomal regions that overlap the
hotspots. Only about half of the Myers hotspots have a crossover rate of at least 10
cM/Mb, our criteria to define recombination hotspots in genetic maps. Then, Myers
hotspots were divided into two equally sized groups, a highly recombining hotspots
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group and a lowly recombining hotspots group and applied the same procedure as
for Clement hotspots to analyze substitution patterns around PRDM9 binding sites
in Myers hotspots (see the Materials & Methods chapter for more details). This
procedure was done in both groups separately as well as for all Myers hotspots
grouped together.

When analyzing substitution patterns around PRDM9 binding sites, we observe
that on average Myers hotspots have lower GC* values compared to Clement hotspots
(Figure 5.11 and B.8e). The analysis of lowly and highly recombining Myers hotspots
reveal interesting features. Whereas highly recombining hotspots have GC* values
comparable to that of Clement hotspots, lowly recombining hotspots have GC*
values comparable to what is observed in the chimpanzee lineage (Figure 5.8 and
B.8a). As what differentiates both groups of hotspots is recombination rates, we
interpret differences in substitution patterns as gBGC having less influence in lowly
recombining hotspots compared to highly recombining hotspots. We therefore argue
that the absolute crossover rate primarily determines how strong gBGC will be in a
particular region.
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Figure 5.11.: GC* around PRDM9 binding sites in Clement hotspots (black), all Myers hotspots (red), Myers
hotspots with low crossover rates (green) and Myers hotspots with high crossover rates (blue). Lines
represent one-sided local regressions computed over 25 neighboring windows.

A number of studies focusing on possible effects of meiotic recombination and
gBGC on genome evolution, particularly in and around recombination hotspots, use
the distance of a particular region to a hotspot as a proxy measure of recombination
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(Berglund et al., 2009; Necşulea et al., 2011). As the absolute crossover rate is shown
to best predicts the influence of gBGC in a particular genomic region, we argue that
using the distance to the nearest hotspots will be less informative than the crossover
rate in the region of interest.

5.5. Conclusion

By investigating the link between double strand breaks and substitution patterns
across the Mus m. musculus genome, we were able to show that DSB better pre-
dicts GC-content evolution than crossover rates, possibly due to the influence of
non-crossover events on substitution patterns. Also, we found independent changes
in substitution patterns in different mouse lineages. Furthermore, by analyzing sub-
stitution patterns in the vicinity of double strand breaks in Mus m. musculus, we
were able to show that gene conversion events occur mostly around double strand
breaks hotspots’ middle points. Finally, we show that gene conversion is triggered
in the proximity of PRDM9 binding sites in human. Overall, these results give a
precise picture of how recombination works in both Mus m. musculus and human
genome.
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Sex-averaged LDT
ρ ρ

GC-content 0.420∗∗∗ -0.378∗∗∗
GC* 0.681∗∗∗ -0.532∗∗∗

Table A.1.: Spearman rho correlation coefficients between substitution rates, crossover rates and LDT in human.
∗∗∗p-value < 10−10

Sex-averaged Male-specific Female-specific LDT
ρ ρ ρ ρ

GC-content 0.182∗∗∗ 0.269∗∗∗ 0.096∗ -0.273∗∗∗
GC* 0.190∗∗∗ 0.282∗∗∗ 0.097∗ -0.334∗∗∗

Table A.2.: Spearman rho correlation coefficients between substitution rates, crossover rates and LDT in mouse.
∗p-value < 0.05; ∗∗∗p-value < 10−10
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Figure A.1.: Distribution of CO on a normal scale (left panel) and on a logarithmic (right panel) for the human
(black) and mouse (red) genomes.
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Figure A.2.: Relationship between chromosomal arm length and genetic distance (left panel) and crossover rates
(right panel) for the human (black) and mouse (red) genomes.

GC LCO LDT RepTime Exons SINEs LINEs LTRs CpGodds
R R R R R R R R R

GC* 0.508∗∗∗ 0.631∗∗∗ -0.604∗∗∗ -0.226∗∗∗ 0.294∗∗∗ 0.338∗∗∗ -0.427∗∗∗ -0.309∗∗∗ 0.516∗∗∗
W→S -0.028 0.526∗∗∗ -0.530∗∗∗ 0.351∗∗∗ -0.321∗∗∗ -0.272∗∗∗ 0.006 0.195∗∗∗ 0.070∗
S→W -0.123∗∗ 0.190∗∗∗ -0.300∗∗∗ 0.445∗∗∗ -0.447∗∗∗ -0.376∗∗∗ 0.103∗∗ 0.354∗∗∗ -0.012
W→W -0.412∗∗∗ 0.119∗∗ -0.120∗∗ 0.493∗∗∗ -0.573∗∗∗ -0.495∗∗∗ 0.288∗∗∗ 0.388∗∗∗ -0.274∗∗∗
S→S -0.126∗∗ 0.283∗∗∗ -0.353∗∗∗ 0.329∗∗∗ -0.346∗∗∗ -0.271∗∗∗ 0.070∗ 0.196∗∗∗ 0.010

CpG Rate -0.678∗∗∗ -0.140∗∗∗ 0.198∗∗∗ 0.634∗∗∗ -0.696∗∗∗ -0.699∗∗∗ 0.587∗∗∗ 0.583∗∗∗ -0.668∗∗∗
Total Rate 0.070∗ 0.443∗∗∗ -0.521∗∗∗ 0.344∗∗∗ -0.316∗∗∗ -0.236∗∗∗ -0.058∗ 0.206∗∗∗ 0.160∗∗∗

Table A.3.: Pearson correlation coefficients between genomic features and substitution rates in human. ∗p-value
< 0.05; ∗∗p-value < 10−5; ∗∗∗p-value < 10−10
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Figure A.5.: Principal component regression for GC* in the human (left panel) and the mouse (right panel) lineages.
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inside a component.
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GC LCO LDT RepTime Exons SINEs LINEs LTRs CpGodds
R R R R R R R R R

GC* 0.757∗∗∗ 0.275∗∗∗ -0.305∗∗∗ -0.637∗∗∗ 0.625∗∗∗ 0.734∗∗∗ -0.733∗∗∗ -0.053∗ 0.909∗∗∗
W→S 0.219∗∗∗ 0.196∗∗∗ -0.234∗∗∗ -0.174∗∗∗ 0.132∗∗ 0.174∗∗∗ -0.268∗∗∗ 0.048 0.603∗∗∗
S→W -0.680∗∗∗ -0.180∗∗∗ 0.181∗∗∗ 0.630∗∗∗ -0.628∗∗∗ -0.719∗∗∗ 0.636∗∗∗ 0.097∗ -0.614∗∗∗
W→W -0.699∗∗∗ -0.175∗∗∗ 0.135∗∗ 0.510∗∗∗ -0.608∗∗∗ -0.690∗∗∗ 0.594∗∗∗ 0.057∗ -0.516∗∗∗
S→S -0.685∗∗∗ -0.140∗∗ 0.134∗∗ 0.538∗∗∗ -0.623∗∗∗ -0.685∗∗∗ 0.571∗∗∗ 0.067∗ -0.421∗∗∗

CpG Rate -0.594∗∗∗ -0.172∗∗∗ 0.190∗∗∗ 0.568∗∗∗ -0.583∗∗∗ -0.609∗∗∗ 0.555∗∗∗ 0.050∗ -0.582∗∗∗
Total Rate -0.433∗∗∗ -0.040 0.016 0.438∗∗∗ -0.469∗∗∗ -0.527∗∗∗ 0.382∗∗∗ 0.124∗∗ -0.201∗∗∗

Table A.4.: Pearson correlation coefficients between genomic features and substitution rates in mouse. ∗p-value
< 0.05; ∗∗p-value < 10−5; ∗∗∗p-value < 10−10

GC LCO LDT RepTime Exons SINEs LINEs LTRs CpGodds
R R R R R R R R R

GC NA 0.354∗∗∗ -0.453∗∗∗ -0.543∗∗∗ 0.631∗∗∗ 0.718∗∗∗ -0.744∗∗∗ -0.510∗∗∗ 0.817∗∗∗
LCO 0.354∗∗∗ NA -0.474∗∗∗ -0.006 0.103∗∗ 0.165∗∗∗ -0.318∗∗∗ -0.046∗ 0.265∗∗∗
LDT -0.453∗∗∗ -0.474∗∗∗ NA 0.012 -0.114∗∗ -0.177∗∗∗ 0.373∗∗∗ 0.140∗∗∗ -0.536∗∗∗

RepTime -0.543∗∗∗ -0.006 0.012 NA -0.605∗∗∗ -0.718∗∗∗ 0.515∗∗∗ 0.463∗∗∗ -0.555∗∗∗
Exons 0.631∗∗∗ 0.103∗∗ -0.114∗∗ -0.605∗∗∗ NA 0.662∗∗∗ -0.477∗∗∗ -0.469∗∗∗ 0.569∗∗∗
SINEs 0.718∗∗∗ 0.165∗∗∗ -0.177∗∗∗ -0.718∗∗∗ 0.662∗∗∗ NA -0.681∗∗∗ -0.559∗∗∗ 0.698∗∗∗
LINEs -0.744∗∗∗ -0.318∗∗∗ 0.373∗∗∗ 0.515∗∗∗ -0.477∗∗∗ -0.681∗∗∗ NA 0.565∗∗∗ -0.747∗∗∗
LTRs -0.510∗∗∗ -0.046∗ 0.140∗∗∗ 0.463∗∗∗ -0.469∗∗∗ -0.559∗∗∗ 0.565∗∗∗ NA -0.527∗∗∗

CpGodds 0.817∗∗∗ 0.265∗∗∗ -0.536∗∗∗ -0.555∗∗∗ 0.569∗∗∗ 0.698∗∗∗ -0.747∗∗∗ -0.527∗∗∗ NA

Table A.5.: Pearson correlation coefficients between genomic features in human. ∗p-value < 0.05; ∗∗p-value < 10−5;
∗∗∗p-value < 10−10

GC LCO LDT RepTime Exons SINEs LINEs LTRs CpGodds
R R R R R R R R R

GC NA 0.240∗∗∗ -0.304∗∗∗ -0.721∗∗∗ 0.657∗∗∗ 0.798∗∗∗ -0.879∗∗∗ -0.017 0.706∗∗∗
LogDis 0.240∗∗∗ NA -0.285∗∗∗ -0.158∗∗ 0.146∗∗ 0.209∗∗∗ -0.259∗∗∗ -0.044 0.277∗∗∗
LDT -0.304∗∗∗ -0.285∗∗∗ NA 0.131∗∗ -0.071∗ -0.197∗∗∗ 0.330∗∗∗ 0.114∗∗ -0.331∗∗∗

RepTime -0.721∗∗∗ -0.158∗∗ 0.131∗∗ NA -0.659∗∗∗ -0.804∗∗∗ 0.679∗∗∗ -0.052∗ -0.658∗∗∗
Exons 0.657∗∗∗ 0.146∗∗ -0.071∗ -0.659∗∗∗ NA 0.711∗∗∗ -0.572∗∗∗ 0.021 0.610∗∗∗
SINEs 0.798∗∗∗ 0.209∗∗∗ -0.197∗∗∗ -0.804∗∗∗ 0.711∗∗∗ NA -0.808∗∗∗ -0.042 0.720∗∗∗
LINEs -0.879∗∗∗ -0.259∗∗∗ 0.330∗∗∗ 0.679∗∗∗ -0.572∗∗∗ -0.808∗∗∗ NA 0.203∗∗∗ -0.743∗∗∗
LTRs -0.017 -0.044 0.114∗∗ -0.052∗ 0.021 -0.042 0.203∗∗∗ NA -0.074∗

CpGodds 0.706∗∗∗ 0.277∗∗∗ -0.331∗∗∗ -0.658∗∗∗ 0.610∗∗∗ 0.720∗∗∗ -0.743∗∗∗ -0.074∗ NA

Table A.6.: Pearson correlation coefficients between genomic features in mouse. ∗p-value < 0.05; ∗∗p-value < 10−5;
∗∗∗p-value < 10−10

GC LCO LDT RepTime Exons SINEs LINEs LTRs CpGodds R2

GC* 0.014 0.463 -0.321 -0.104 0.055 -0.031 0.102 -0.168 0.130 0.597
W→S -0.188 0.424 -0.325 0.106 -0.219 -0.226 0.025 0.039 0.318 0.598
S→W -0.213 0.067 -0.032 0.199 -0.330 -0.246 -0.073 0.217 0.260 0.581
W→W -0.351 0.166 -0.092 0.133 -0.350 -0.153 -0.050 0.118 0.325 0.458
S→S -0.267 0.224 -0.223 0.126 -0.256 -0.134 0.016 0.048 0.395 0.354

CpG Rate -0.134 -0.012 -0.038 0.142 -0.279 -0.106 -0.018 0.177 -0.184 0.658
Total Rate 0.045 0.280 -0.217 0.198 -0.312 -0.258 -0.014 0.144 0.465 0.570

Table A.7.: Slopes of linear regressions between substitution rates and genomic features in the human lineage.
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GC LCO LDT RepTime Exons SINEs LINEs LTRs CpGodds R2

GC* 0.328 0.017 0.012 0.101 0.012 0.130 0.176 -0.017 0.771 0.860
W→S -0.122 0.035 -0.003 0.106 -0.169 -0.305 -0.006 0.125 1.076 0.541
S→W -0.515 -0.006 -0.018 -0.161 -0.131 -0.388 -0.282 0.091 -0.367 0.791
W→W -0.672 -0.022 -0.051 -0.271 -0.166 -0.539 -0.343 0.088 0.010 0.596
S→S -0.645 -0.004 0.008 -0.129 -0.246 -0.530 -0.307 0.113 0.264 0.608

CpG Rate -0.199 -0.006 0.033 0.101 -0.222 -0.136 -0.092 0.052 -0.193 0.456
Total Rate -0.236 0.020 -0.004 0.083 -0.241 -0.553 -0.158 0.174 0.454 0.409

Table A.8.: Slopes of linear regressions between substitution rates and genomic features in the mouse lineage.
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Figure A.3.: Slopes of linear regressions between substitution patterns and genomic features in the human (left
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PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 Total
R2 R2 R2 R2 R2 R2 R2 R2 R2 R2

GC* 0.128∗∗∗ 0.261∗∗∗ 0.034∗∗∗ 0.003∗ 0.001 0.001 0.007∗ 0.031∗∗∗ 0.005∗ 0.471∗∗∗
W→S 0.031∗∗∗ 0.408∗∗∗ 0.065∗∗∗ 0.001 0.007∗ 0.002∗ 0.014∗∗ 0.013∗∗∗ 0.017∗∗ 0.558∗∗∗
S→W 0.617∗∗∗ 0.010∗∗ 0.009∗∗ 0.001 0.015∗∗ NA 0.003∗ 0.004∗ 0.009∗∗ 0.669∗∗∗
W→W 0.344∗∗∗ 0.077∗∗∗ 0.021∗∗∗ 0.003∗ 0.023∗∗∗ 0.001 0.006∗ 0.001 0.022∗∗∗ 0.497∗∗∗
S→S 0.081 0.231∗∗∗ 0.034∗∗∗ NA 0.008∗ 0.004∗ 0.001 NA 0.037∗∗∗ 0.396∗∗∗

CpG Rate 0.064∗∗∗ 0.008∗ 0.009∗∗ 0.002∗ 0.008∗ 0.003∗ 0.001 0.019∗∗∗ 0.008∗ 0.123∗∗∗
Total Rate 0.009∗∗ 0.454∗∗∗ 0.043∗∗∗ 0.011∗∗ 0.002∗ 0.016∗∗ NA 0.052∗∗∗ 0.001 0.589∗∗∗

Table A.9.: Results of principal component regression on substitution patterns in the HCM branch. ∗p-value < 0.05;
∗∗p-value < 10−5; ∗∗∗p-value < 10−10

NA: R2 < 0.001
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Figure A.6.: Principal component regression for W→S substitution rates in the HC (left panel) and HCM (right
panel) branches. The height of each bar represents how much of the variable’s variance the corresponding
component explains. Each coloured area is proportional to the relative importance of the corresponding
feature inside a component.
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Figure A.7.: Principal component regression for S→W substitution rates in the HC (left panel) and HCM (right
panel) branches. The height of each bar represents how much of the variable’s variance the corresponding
component explains. Each coloured area is proportional to the relative importance of the corresponding
feature inside a component.
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Figure B.1.: Density plot of correlation coefficients between GC* values and noisy DSB hotspot density in the Mus
m. musculus lineage in Mus m. musculus - Mus m castaneus - Mus spretus alignments. The vertical
dotted line indicates the correlation coefficient between GC* and male crossover rates in the same
lineage.
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Figure B.2.: GC* values plotted against GC-content values for the Mus m. musculus lineage. Substitution patterns
were computed by comparing: (a) Mus m. musculus to Mus m. castaneus sequences and using either
Mus spretus (black) or Homo sapiens (red) as an outgroup or (b): Mus m. musculus to Mus m.
castaneus sequences and using Mus spretus as an outgroup in MCS alignments (black) or MCSRH
alignments (red). Curves represent LOWESS local regressions. The straight line represents the x = y
relationship.

89



B. Appendix B

0.00 0.02 0.04 0.06 0.08

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8

MCSR  to MCS  rates

R
a

tt
u

s
 n

o
rv

e
g

ic
u

s
 r

a
te

s

AT−>GC

GC−>AT

AT−>CG

GC−>TA

AT−>TA

GC−>CG

(a)

0.00 0.02 0.04 0.06 0.08

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

MCSR  to MCS  rates

M
C

S
 t

o
 M

C
 r

a
te

s

AT−>GC

GC−>AT

AT−>CG

GC−>TA

AT−>TA

GC−>CG

(b)

0.00 0.02 0.04 0.06 0.08

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

MCSR  to MCS  rates

M
u

s
 m

. 
m

u
s

c
u

lu
s

 r
a

te
s

AT−>GC

GC−>AT

AT−>CG

GC−>TA

AT−>TA

GC−>CG

(c)

0.00 0.02 0.04 0.06 0.08

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

MCSR  to MCS  rates

M
u

s
 m

. 
c

a
s

ta
n

e
u

s
 r

a
te

s
AT−>GC

GC−>AT

AT−>CG

GC−>TA

AT−>TA

GC−>CG

(d)

0.00 0.02 0.04 0.06 0.08

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

MCSR  to MCS  rates

M
u

s
 s

p
re

tu
s

 r
a

te
s

AT−>GC

GC−>AT

AT−>CG

GC−>TA

AT−>TA

GC−>CG

(e)

Figure B.3.: Substitution rates for: (a) the Rattus norvegicus lineage, (b) the MCS to MC branch, (c) the Mus m.
musculus lineage, (d) the Mus m. castaneus lineage and (e) the Mus spretus lineage plotted against
rates for the MCSR to MCS branch. Lines represent linear regression between rates in the two branches,
with a forced intercept of 0.
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Figure B.4.: (a): GC* values computed from alignments where SNPs in Mus m. musculus were masked plotted
against original GC* values for each branch studied in Mus m. musculus - Mus m. castaneus - Mus
spretus - Rattus norvegicus - Homo sapiens multiple alignments. (b): GC* values computed without
taking CpG hypermutability into account plotted against original GC* values for each branch studied
in Mus m. musculus - Mus m. castaneus - Mus spretus - Rattus norvegicus - Homo sapiens multiple
alignments. Lines represent the x = y relationship.
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Figure B.5.: Original GC* values for each branch studied in Mus m. musculus - Mus m. castaneus - Mus spretus -
Rattus norvegicus - Homo sapiens multiple alignments (left panel) and (right panel) GC* values com-
puted (a): after masking SNPs in Mus m. musculus and (b): without taking the CpG hypermutability
into account. All GC* values are plotted against Mus m. musculus GC-content.
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Figure B.6.: (a): W→S (red) and S→W (black) substitution rates around DSB hotspots middle points in the
Mus m. musculus lineage. Lines represent one-sided local regressions computed over 25 neighboring
windows. (b): GC-content around DSB hotspots middle points in Mus m. musculus (black), Mus m.
castaneus (red) and around DSB coldspots in Mus m. musculus (blue). Lines represent one-sided local
regressions computed over 25 neighboring windows. (c): AT skews (black) and GC skews (red) around
DSB hotspots middle points in Mus m. musculus. AT and GC skews were computed in 2000 windows
upstream and 2000 windows downstream of length 100 bp which overlap for 99 bp.
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Figure B.7.: Strand asymmetries for transversion rates around DSB hotspots middle points in the Mus m. musculus
lineage (black) and the Mus m. castaneus lineage (red) for (A) transition rates, (b) & (c) transversion
rates and (d) CpG rates. Lines represent one-sided local regressions computed over 25 neighboring
windows.
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Figure B.8.: (a): GC* around PRDM9 binding sites in recombination hotspots in the human lineage (black),
the chimpanzee lineage (red) and around PRDM9 binding sites in recombination coldspots (blue).
(b): W→S (red) and S→W (black) substitution rates around PRDM9 binding sites in recombination
hotspots in the human lineage. Lines represent one-sided local regressions computed over 25 neighbor-
ing windows. (c): GC-content around DSB hotspots middle points in the human lineage (black), the
chimpanzee lineage (red) and around PRDM9 binding sites in recombination coldspots (blue). (d): GC*
around PRDM9 binding sites (black) or hotspots middle points (red) in human meiotic recombination
hotspots. (e): GC* around PRDM9 binding sites in home-made hotspots (black), all Myers hotspots
(red), Myers hotspots with low crossover rates (green) and Myers hotspots with high crossover rates
(blue).

Yves Clément 95



B. Appendix B

(a)

(b)

Figure B.9.: Sequence logo (top panel) and relative frequency around PRDM9 binding site (here designated as peak
center) of over represented DNA sequence motif in (a): meiotic recombination hotspots and (b): meiotic
recombination coldspots.
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Figure B.10.: Fixation probabilities of W→S (red) and S→W (blue) mutations as a function of gBGC strength
(s). The black line represents the fixation probability of S→S and W→W mutations = 1/2Ne where
Ne = 104 in this example.
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Notations and Abbreviations

A Adenine

T Thymine

G Guanine

C Cytosine

DNA Deoxyribonucleic acid

SINEs Short interspersed elements

LINEs Long interspersed elements

gBGC GC-biased gene conversion

SNPs Single nucleotide polymorphisms

DSB Double strand break

GC* Equilibrium GC-content

CpGodds Observed CpG dinucleotide normalized by expected CpG dinucleotide
frequency

LTR Long terminal repeats

CO Crossover rates

LCO Logarithm of crossover rates

LDT Logarithm of the distance to telomeres

RepTime Replication-timing

RCVE Relative contribution to variability explained

PCA Principal component analysis

PCR Principal component regression

PC Principal component
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Notations and Abbreviations

ChIP-seq Chromatine immuno-precipitation followed by sequencing

ILS Incomplete lineage sorting

Indels Insertion or deletion

TE Transposable elements
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Summary

As one of the most basic properties of genomic sequences, base composition has been
extensively studied for years. It is traditionally summarized by the GC-content, the
frequency of G and C bases in the sequence of interest. One striking feature of mam-
malian genomes is the fact that GC-content is not homogeneous along chromosomes:
one can observe large-scale variations of the GC-content. These variations have been
called isochores and are linked to a number of genomic features such as gene density
or replication-timing. While different hypotheses have been put forward over the
years to explain these GC-content variations, GC-biased gene conversion has been
identified as a major force influencing GC-content evolution. This process is neu-
tral and works as follows. During meiotic recombination, double strand breaks are
repaired by gene conversion, the copy and paste of one DNA fragment in another.
Mismatches can occur during this copy step, which repair mechanism is biased to-
wards G and C. As a result, the fixation of G and C alleles is going to be favored over
that of A and T alleles. In this thesis, we investigated base composition variations
and GC-content evolution in mammalian genomes.

We first estimated GC-content variations for random DNA sequences and com-
pared them to that of mammalian genomic sequences and found that base composi-
tion is more variable than expected by chance in these genomes. We then analyzed
GC-content variations along the genome of several organisms and were able to find
major differences between groups of organisms, for example rodents’ genomes have
a much less variable base composition than primates’ genomes.

We then investigated substitution patterns and GC-content evolution across mouse
and human genomes using a comparative approach. We found that GC-biased gene
conversion is active in the mouse genome but that GC-content is evolving differ-
ently in the human and mouse genomes. Furthermore, we investigated substitution
patterns and how much different genomic features influence them. We found that,
while meiotic recombination through GC-biased gene conversion is the major fea-
ture influencing A or T→ G or C substitution rates in the human genome, the CpG
dinucleotide content best predicts these substitution rates in the mouse genome,
showing that GC-biased gene conversion is active but weak in this genome and
that substitution patterns are under different influences in the human and mouse
genomes.

The recent discovery that the Prdm9 gene controls meiotic recombination in mam-
mals as well as its binding motif in human meiotic recombination hotspots in human
and the publication of double strand breaks hotspots in mouse enabled the study of
the influence of meiotic recombination on substitution patterns at a fine-scale and
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derive characteristics of meiotic recombination hotspots. Also, the publication of sev-
eral mouse subspecies’ genomes allowed the study of substitution patterns at short
timescales as well as in more mouse lineages than was previously possible. We found
that double strand break hotspots are a better proxy measure of meiotic recom-
bination than crossover rates, which means that the influence of GC-biased gene
conversion in mammalian genomes could be underestimated. Furthermore, when
analyzing substitution patterns in several mouse lineages, we also found that GC-
content evolution is complex and that at least two recent independent shifts in
substitution patterns occurred in these lineages. The study of substitution patterns
in meiotic recombination hotspots revealed that gene conversion is centered around
double strand break hotspots middle points in mouse and around PRDM9 binding
sites in human, affecting a region of approximately 1.5 kbp. Finally, we show that
hotspots locations are evolving rapidly in mouse, mirroring observations in human.
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Zusammenfassung

Genomische Sequenzen können durch ihre prozentuale Zusammensetzung aus den
vier Basen Adenin (A), Guanin (G), Thymin (T) und Cytosin (C) beschrieben wer-
den. Diese Zusammensetzung wurde in den vergangenen Jahren ausführlich unter-
sucht. Meist wird sie im GC-Gehalt zusammengefasst, dem Anteil an G- und C-
Basen an der Gesamtsequenz. Bei Säugetieren ist interessanterweise zu beobachten,
dass der GC-Gehalt entlang der Chromosomen nicht konstant ist, vielmehr bestehen
große Variationen. Diese Abweichungen werden als Isochores bezeichnet. Sie sind mit
einer Reihe genomischer Eigenschaften wie Gen-Dichte und Zeitpunkt der Replika-
tion assoziiert. Es gibt verschiedene Ansätze, die Abweichungen im GC-Gehalt zu
erklären. Es hat sich herausgestellt, dass GC-biased gene conversion (gBGC) einen
großen Einfluss hat. gBGC ist ein neutraler Prozess der folgendermaßen abläuft:
Während der meiotischen Rekombination werden Doppelstrangbrüche mittels gene
conversion repariert, d.h. es wird ein Genfragment in die jeweils andere Sequenz
des Doppelstrangs kopiert. Bei diesem Schritt kann es zu Fehlpaarungen kommen,
deren Reparatur überdurchschnittlich häufig mit G- und C-Basen erfolgt. Das führt
dazu, dass bevorzugt G- und C-Allele fixiert werden im Gegensatz zu A- und T-
Allelen. Diese Doktorarbeit beschäftigt sich mit Variationen der Basenzusammenset-
zung sowie der Evolution des GC-Gehalts in Säugetieren.

Zunächst haben wir Variationen im GC-Gehalt von Säugetieren mit denen von
zufällig erzeugten DNA-Sequenzen verglichen und beobachtet, dass die Variatio-
nen in diesen Genomen größer sind als bei Zufallssequenzen erwartet. Anschließend
untersuchten wir die Genome mehrerer Organismen, wobei wir große Unterschiede
zwischen den verschiedenen Gruppen feststellen konnten, z.B. ist die Basenzusam-
mensetzung in den Genomen der Nagetiere wesentlich weniger variabel als die von
Primaten.

Mit einem vergleichenden Ansatz untersuchten wir dann Substitutions-Muster
und GC-Gehalt Evolution der Genome von Maus und Mensch. Unsere Ergebnisse
zeigen, dass gBGC im Genom der Maus von Bedeutung ist und dass die Evolution
des GC-Gehaltes in beiden Genomen verschieden ist. Außerdem haben wir geprüft,
inwieweit verschiedene genomische Eigenschaften die Substitutions - Muster beein-
flussen. Wir haben herausgefunden, dass die Substitutionsraten A oder T→ G oder
C im menschlichen Genom hauptsächlich durch die Meiose (mittels gBGC) beein-
flusst werden, während diese Substitutionsraten sich im Genom der Maus am besten
durch den CpG Dinukleotid-Gehalt vorhersagen lassen. Daraus schließen wir, dass
gBGC im Genom der Maus zwar aktiv, aber schwach ist und dass die Einflüsse auf
die Substitutions-Muster in den Genomen von Maus und Mensch verschieden sind.
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Zusammenfassung

Kürzlich wurde entdeckt, dass das Prdm9 -Gen die meiotische Rekombination in
Säugetieren kontrolliert und das Bindungsmotiv in den Rekombinations-Hotspots im
menschlichen Genom wurde ermittelt. Außerdem wurden die Hotspots für Doppel-
strangbrüche im Genom der Maus publiziert. Das zusammen ermöglichte unsere de-
taillierte Studie über den Einfluss von meiotischer Rekombination auf Substitutions-
Muster und die Ableitung von Charakteristika meiotischer Rekombinations-Hotspots.
Des weiteren wurden die Genome mehrerer Unterarten der Maus publiziert, die wir
zur Untersuchung der Substitutions-Muster in kürzeren Zeiträumen und in mehr
Mausarten als bisher möglich genutzt haben. Unsere Studie zeigt, dass Hotspots für
Doppelstrangbrüche meiotische Rekombination besser vorhersagen als Crossover-
Raten. Daraus schlussfolgern wir, dass der Einfluss von gBGC in Säugetiergenomen
unterschätzt sein könnte. Bei unserer Untersuchung der Substitutions-Muster in ver-
schiedenen Mausarten konnten wir feststellen, dass die Evolution des GC-Gehaltes
komplex ist und es in diesen Linien mindestens zwei unabhängige Verschiebungen
der Substitutions-Muster gegeben haben muss. Die Studie über die Substitutions-
Muster in Hotspots meiotischer Rekombination zeigte, dass gene conversion in der
Maus um die Mittelpunkte der Hotspots von Doppelstrangbrüchen zentriert ist,
während gene conversion beim Menschen um die PRMD9 Bindungsstellen, in einer
Region von etwa 1,5 kbp, zentriert ist. Abschließend zeigen wir, dass die Positionen
der Hotspots in der Maus, ebenso wie im Menschen, schnell evolvieren.
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