LIST OBJECTS AND RECURSIVE ALGORITHMS IN ELEMENTARY TOPOI

Christian E. G. Maurer

Fachbereich Mathematik und Informatik Freie Universität Berlin

11.6.96

ABSTRACT. The paper generalizes results of [B] by formulating their background in categories with a sufficiently rich internal logic, e. g. elementary topoi, using the well known initial algebra approach. Thus the right setting for program transformations in the sense of [B] is given by embedding them into the generalisation of primitive recursion over the naturals in the sense of [F] to lists. Particularly there is a simple concept of tail recursion, hence an outline on a systematic transformation of naive recursive programs into tail recursive i. e. more efficient iterative forms.

Let \mathcal{E} be an elementary (LAWVERE-TIERNEY-)topos with a natural number object (NNO) $1 \xrightarrow{0} N \xrightarrow{s} N$ (see [F] or [J] for details).

The following standard notations are used:

 $A \xrightarrow{A} A$ is the identity and $A \xrightarrow{gf} C$ the composition of $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$. 0 is the initial and 1 the terminal object, $0 \xrightarrow{?} A$ and $A \xrightarrow{!} 1$ the related unique morphisms.

Products are denoted by \times and projections by π (with the appropriate indices), the uniquely determined morphism h for a pair $A \xrightarrow{f} B$ and $A \xrightarrow{g} C$ s. t. $\pi_B h = f$ and $\pi_C h = g$ by $A \xrightarrow{(f,g)} B \times C$. The notations + and σ are reserved for coproducts and injections resp.

 A^B is the exponential with $\mathcal{E}(C \times B, A) \cong \mathcal{E}(C, A^B)$, $A^B \times B \xrightarrow{\text{ev}_{AB}} A$ the evaluation morphism. Toggling between morphisms and their exponential transposes by adjointness is denoted by a bar.

 $1 \xrightarrow{\text{true}} \Omega$ is the subobject classifier in \mathcal{E} .

Not everywhere in this paper the full power of the topos axioms is used — so most results are true in the more general situation of \mathcal{E} just being cartesian closed.

Underlying intuitive ideas are indicated in footnotes, in general by using a sort of functional programming language.

1. Universal Characterisation and Properties of Lists.

We start off with the basic definition and some consequences of it.

 $^{1991\ \}textit{Mathematics Subject Classification.}\ \ 03D75,\ 18A40,\ 18B25.$

¹⁹⁸⁷ CR Classification Scheme. D.3.3, E.1, F.3.

Key words and phrases. topos, list, recursion, algorithm, tree.

1.1 Definition. For any object E in \mathcal{E} , an object L with a pair of morphisms $\stackrel{1}{\to} L$ and $E \times L \stackrel{c}{\to} L$ is called a list object over E, iff this situation is initial in the following sense:

for all pairs of morphisms² $1 \xrightarrow{x} X$ and $F \times X \xrightarrow{f} X$ and all morphisms³ $E \xrightarrow{u} F$ there is a unique $L \xrightarrow{r} X$ such that the diagrams

$$E \times L \xrightarrow{c} L \xleftarrow{e} 1$$

$$\downarrow^{u \times r} \qquad \downarrow^{r} \qquad \parallel$$

$$F \times X \xrightarrow{f} X \xleftarrow{x} 1$$

commute. (Equivalently, $E \xrightarrow{u} F$ could have been replaced by $E \xrightarrow{E} E$.)

This situation could of course be expressed in terms of an adjoint situation, although in this paper no particular use will be made of that:

1.1a Alternative description. Let \mathcal{E}_E be the category of actions of E on objects of \mathcal{E} with objects and morphisms of the type

If the underlying functor $U_E: \mathcal{E}_E \to \mathcal{E}$, sending the above morphism to $X \xrightarrow{f} Y$, has a left adjoint $\mathcal{E} \xrightarrow{F_E} \mathcal{E}_E$, then $E \times L \xrightarrow{c} L$ is just $F_E(1)$ and $1 \xrightarrow{e} L$ is the front adjunction $1 \xrightarrow{\eta_1} U_E F_E(1)$.

Proof. Simply by describing the adjoint situation $F_E \dashv U_E$ in terms of the corresponding universal morphism problem.

1.2 Corollary. For every pair $F \times Y \xrightarrow{h} Y$, $1 \xrightarrow{y} Y$ and any $E \times L \xrightarrow{v} F$ there is a unique $L \xrightarrow{r} Y$ s. t. the diagram

$$E \times L \xrightarrow{c} L \xleftarrow{e} 1$$

$$\downarrow^{(v,r\pi_L)} \qquad \downarrow^r \qquad \parallel$$

$$F \times Y \xrightarrow{h} Y \xleftarrow{y} 1$$

commutes.

Proof. By choosing $X = L \times Y$ and $f = E \times L \times Y \xrightarrow{(c,v) \times Y} L \times F \times Y \xrightarrow{L \times h} L \times Y$ in 1.1 one finds a unique $L \xrightarrow{(l,r)} L \times Y$ s. t.

 $^{^{1}}$ lists of elements of type E, the empty list and the construction morphism, [] and :

 $^{^2\,\}mbox{``initial states of}~X\mbox{''}~\mbox{and ``actions of}~F~\mbox{on}~X\mbox{''}$

³ "changes of base"

commutes. Combining this with

gives by uniqueness l = L, combining it with

$$E \times L \times Y \xrightarrow{f} L \times Y \xleftarrow{(e,y)} 1$$

$$\downarrow^{v \times Y} \qquad \qquad \downarrow^{\pi_Y} \qquad \qquad \parallel$$

$$F \times Y \xrightarrow{h} Y \xleftarrow{e} 1$$

yields the result.

By universality, one then immediately has:

- **1.3 Lemma.** A list object over E is uniquely determined up to an isomorphism rendering the appropriate diagrams commutative.
- **1.4 Example.** The NNO is the list object over 1.

Proof. Choose E=1, $e=1 \xrightarrow{0} N$ and the successor map $N \xrightarrow{s} N$ for c, identifying $1 \times N \cong N$.

First, we are going to derive some conclusions of this concept.

1.5 Proposition. If (E, L, e, c) is a list object, then $E \times L \xrightarrow{c} L \xleftarrow{e} 1$ is a coproduct in \mathcal{E} , i. e. there exists an isomorphism⁴ $L \xrightarrow{p} 1 + E \times L$ whose inverse is given by $1 + E \times L \xrightarrow{(e,c)} L$

Proof. Let σ_1 and $\sigma_{E \times L}$ denote the coproduct injections into $1 + E \times L$; furthermore let $E \times (1 + E \times L) \xrightarrow{d} 1 + E \times L$ be defined as composition

$$E \times (1 + E \times L) \xrightarrow{E \times (e,c)} E \times L \xrightarrow{\sigma_{E \times L}} 1 + E \times L.$$

By 1.1 there is a unique $L \xrightarrow{p} 1 + E \times L$ such that

commutes. We now prove the proposition by showing that the bottom row of this diagram constitutes a list object over E:

⁴a list is empty or consists of head and tail

Let $E \xrightarrow{u} F$ and $F \times X \xrightarrow{f} X \xleftarrow{x} 1$ be given. By taking the unique $L \xrightarrow{r} X$ from 1.1, we consider the diagonal

$$f(u \times r) = rc \colon E \times L \to X.$$

This allows for g = (x, rc): $1 + E \times L \rightarrow X$, such that

$$E \times (1 + E \times L) \xrightarrow{d} 1 + E \times L \xleftarrow{\sigma_1} 1$$

$$\downarrow^{g} \qquad \qquad \parallel$$

$$F \times X \xrightarrow{f} X \xleftarrow{x} 1$$

commutes.

Combining the two diagrams we get $gp = L \xrightarrow{r} X$ with regard to the uniqueness property of 1.1. Particularly for (F, x, f) = (L, e, c) we get (e, c)p = L; therefore $g\sigma_{E\times L} = g\sigma_{E\times L}(E\times(e,c))(E\times p) = gd(E\times p) = gpc = rc$, which together with $g\sigma_1 = x$ determines g uniquely.

The equation $p(e,c) = 1 + E \times L$ is simply a consequence of the main argument.

Alternatively, one could say that $T(L) = 1 + E \times L \xrightarrow{(e,c)} L$ is a least fixpoint in an appropriate category.

1.6 Lemma. Let the head and the tail morphism⁵ $L \xrightarrow{\kappa} 1 + E$ and $L \xrightarrow{\tau} 1 + L$ be given by

$$\kappa = L \xrightarrow{p} 1 + E \times L \xrightarrow{1+\pi_E} 1 + E \quad \text{and}$$

$$\tau = L \xrightarrow{p} 1 + E \times L \xrightarrow{1+\pi_L} 1 + L.$$

Then the following diagrams commute:

$$E \xrightarrow{\sigma_E} 1 + E \xleftarrow{\sigma_1} 1$$

$$\pi_E \uparrow \qquad \qquad \kappa \uparrow \qquad \qquad \parallel$$

$$E \times L \xrightarrow{c} \qquad L \xleftarrow{e} 1$$

$$\pi_L \downarrow \qquad \qquad \tau \downarrow \qquad \qquad \parallel$$

$$L \xrightarrow{\sigma_L} 1 + L \xleftarrow{\sigma_1} 1$$

Proof. Immediate by $pe = \sigma_1$ and $pc = \sigma_{E \times L}$.

1.7 Lemma. For any list object $E \times L \xrightarrow{c} L \xleftarrow{e} 1$, the construction morphism c and the projection $E \times L \xrightarrow{\pi_L} L$ define a coequalizer diagram $E \times L \rightrightarrows L \xrightarrow{!} 1$.

Proof. Let $L \xrightarrow{t} X$ be given such that $tc = t\pi_L$. Then the problem 1.1 for E = F, $f = F \times X \xrightarrow{\pi_X} X$ and $x = 1 \xrightarrow{te} X$ is solved by t and te!, which therefore are equal. Since $!_L$ is a retraction, the factorization of t through 1 is unique.

 $[\]frac{1}{5}$ hd(x:xs) = x, tl(x:xs) = xs

1.8 Lemma. Let the list length morphism⁶ be the unique $L \xrightarrow{\nu} N$, for which

$$E \times L \xrightarrow{c} L \xleftarrow{e} 1$$

$$! \times \nu \cong \nu \pi_{L} \downarrow \qquad \qquad \downarrow \nu \qquad \qquad \parallel$$

$$1 \times N \cong N \xrightarrow{s} N \xleftarrow{0} 1$$

commutes. Then both these squares are pullbacks, i. e. $(s:\mathbb{N}\to\mathbb{N},0:1\to\mathbb{N})$ is a "list classifier".

Proof. The proof rests on some typical elementary topos arguments relying on the existence of the adjunction $\nu^* \dashv \Pi_{\nu} : \mathcal{E}/L \to \mathcal{E}/N$.

The left squre and the outer diagram in

$$0 \longrightarrow E \times L \xrightarrow{\nu \pi_L} N$$

$$\downarrow \qquad \qquad c \downarrow \qquad \qquad \downarrow s$$

$$1 \xrightarrow{e} L \xrightarrow{\nu} N$$

are coproduct diagrams, hence pushouts; so the right squre is a pushout, which is bound to be a pullback, because by 1.5 $E \times L \xrightarrow{c} L$ is monic (in a topos the pushout of a mono gives a pullback).

Let

$$\begin{array}{ccc}
A & \stackrel{h}{\longrightarrow} & L \\
\downarrow \downarrow & & \downarrow^{\nu} \\
1 & \stackrel{0}{\longrightarrow} & N
\end{array}$$

be a pullback and $1 \xrightarrow{a} A \xrightarrow{h} L$ the unique factorization of $1 \xrightarrow{e} L$. By pulling back the coproduct $1 \xrightarrow{0} N \xleftarrow{s} N$ along $L \xrightarrow{\nu} N$ we get the coproduct diagram

$$\begin{array}{ccc}
0 & \longrightarrow & E \times I \\
\downarrow & & \downarrow^c \\
A & \stackrel{h}{\longrightarrow} & L.
\end{array}$$

We consider the morphism $1 + E \times L \xrightarrow{a+E \times L} A + E \times L$; composing it with the resulting iso $A + E \times L \xrightarrow{(h,c)} L$ yields $1 + E \times L \xrightarrow{(e,c)} L$, from which by 1.5 follows that it is an isomorphism itself.

Since in a topos all diagrams of the form

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\sigma_A \downarrow & & \downarrow \sigma_B \\
A + C & \xrightarrow{f+g} & B + D
\end{array}$$

are pullbacks and pullbacks of epimorphisms are again epic, 1 \xrightarrow{a} A turns out to be an isomorphism.

$$6\#[] = 0, \#(x:xs) = 1+\#xs$$

1.9 Definition. Let the singleton morphism⁷ be $E \xrightarrow{\eta} L = E \xrightarrow{(E,e!)} E \times L \xrightarrow{c} L$. Then the diagrams

$$E = E \xrightarrow{e!} L$$

$$\sigma_E \downarrow \qquad \qquad \downarrow \eta \qquad \qquad \downarrow \sigma_L$$

$$1 + E \xleftarrow{\kappa} L \xrightarrow{\tau} 1 + L$$

are commutative and

$$E \xrightarrow{\eta} L$$

$$\downarrow \downarrow \qquad \qquad \downarrow^{\nu}$$

$$1 \xrightarrow{1=s0} N$$

is a pullback.8

Proof. The first claim follows immediately from the definitions, for the second compose the pullbacks 1.9 with the trivial one $E \xrightarrow{(E,e!)} E \times L \xrightarrow{\pi_L} L = E \xrightarrow{!} 1 \xrightarrow{e} L$.

2. Algorithms on Lists.

We now give some examples, how to carve out several recursively defined algorithms, just by using the approach of the previous section. Throughout this chapter, let $(E \times L \xrightarrow{c} L \xleftarrow{e} 1)$ generally denote a list object over E.

First of all, we have a general form of primitive recursion [F, Proposition 5.22] for list objects:

2.1 Proposition. Let $E \times L \times A \xrightarrow{u} F$, $A \xrightarrow{g} B$ and $F \times B \xrightarrow{h} B$ be given. Then there is a unique $L \times A \xrightarrow{f} B$ such that the diagrams

$$E \times L \times A \xrightarrow{c \times A} L \times A \xleftarrow{(e!,A)} A$$

$$\downarrow f \qquad \qquad \downarrow f \qquad \qquad \parallel$$

$$F \times B \xrightarrow{h} B \xleftarrow{g} A$$

commute.

Proof. The situation is shifted by adjointness to

$$E \times L \qquad \xrightarrow{c} \qquad L \xleftarrow{e} \qquad 1$$

$$(\overline{u}, \overline{f}\pi_L) \downarrow \qquad \qquad \downarrow \overline{f} \qquad \parallel$$

$$F^A \times B^A \cong (F \times B)^A \xrightarrow{h^A} B^A \xleftarrow{\overline{g}} \qquad 1.$$

because the transpose of the left bottom row is $h(\text{ev}_{AF} \pi_{EA}, \text{ev}_{AB} \pi_{LA})$. The unique existence of \overline{F} follows from 1.2, which proves the proposition.

 $^{^7[]}x = [x]$

⁸elements can be considered as lists of length 1

- **2.1a Remark.** With respect to 1.1a, $E \times L \times A \xrightarrow{c \times A} L \times A$ is just the value of the left adjoint $F_E \dashv \mathcal{E}_E \xrightarrow{U_E} \mathcal{E}$ on A, $A \xrightarrow{(e^!,A)} L \times A$ being the front adjunction.
- **2.2 Example.** Let the element morphism⁹ $L \times E \xrightarrow{\varepsilon} E$ be given by 2.1 for A = E, $F = B = \Omega$, $u = \delta_E$ (characterizing the diagonal), $g = \text{false}_E$ and $h = \vee$, i. e. ε is uniquely determined by the commutativity of the diagrams

Then one has immediately the equation $E \xrightarrow{(\eta,E)} L \times E \xrightarrow{\varepsilon} \Omega = E \xrightarrow{\text{true}_E} \Omega$.

2.3 Proposition. Let the concatenation morphism 10 be the unique $L \times L \xrightarrow{\gamma} L$ such that

commutes. Then $L \times L \xrightarrow{\gamma} L$ is unitary and associative, i. e. the diagrams

 $commute. \ \ Particularly,^{11} \ E \times L \xrightarrow{c} L = E \times L \xrightarrow{\eta \times L} L \times L \xrightarrow{\gamma} L.$

Proof. The left side of the first diagram commutes by definition of γ , the right side by commutativity of

⁹element[]x = False, element(x:xs)x = True, element(x:xs)y = element xs y

 $^{^{10}[]++}ys = ys, (x:xs)++ys = x:(xs++ys)$

 $^{^{11}}x:xs = [x]++xs$

and uniqueness. Futhermore, because the diagram

and its counterpiece with $\gamma \times L$ instead of $L \times \gamma$ commute, associativity holds. The last equation is shown by composing $E \times (e!, L)$ with the defining diagram of γ .

2.4 Remark. L is the free monoid over E with multiplication $L \times L \xrightarrow{\gamma}$ and neutral element $1 \xrightarrow{e} L$ [J, Theorem 6.41].

Proof. For any monoid $M \times M \xrightarrow{m} M \xleftarrow{u} 1$ and any $E \xrightarrow{h} M$ let $L \xrightarrow{\overline{h}} M$ be the unique morphism such that

$$E \times L \xrightarrow{c} L \xleftarrow{e} 1$$

$$h \times \overline{h} \downarrow \qquad \qquad \parallel$$

$$M \times M \xrightarrow{m} M \xleftarrow{u} 1.$$

Then \overline{h} is a monoid homomorphism, because

is made commutative by $\xi = \overline{h}\gamma$ as well as by $\xi = m(\overline{h} \times \overline{h})$, which follows from the definitions of γ and \overline{h} and the monoid structure on M.

Furthermore, there is the unique factorization

$$E \xrightarrow{h} M$$

$$\downarrow \eta \qquad \qquad \parallel$$

$$L \xrightarrow{\overline{h}} M,$$

given by the composition of $E \xrightarrow{(E,e!)} E \times L$ with the defining diagram of \overline{h} .

2.5 Corollary. In the special case of 1.3, γ is just the addition of natural numbers $N \times N \xrightarrow{+} N$ and $L \xrightarrow{\nu} N$ is a monoid homomorphism.

2.6 Proposition. Let the append morphism¹² be the unique $L \times E \xrightarrow{\alpha} L$, for which

commutes, where $E \xrightarrow{\eta} L$ is the singleton morphism.

Then¹³ $\alpha = L \times E \xrightarrow{L \times \eta} L \times L \xrightarrow{\gamma} L$ and the following diagrams^{14,15} commute:

Proof. The definition of γ and η implies the first equation.

The commutativity of the diagrams is a consequence of that, using the defining properties of γ .

2.7 Lemma. Let the last element morphism¹⁶ be the unique $L \xrightarrow{\lambda} 1 + E$, for which

commutes. Then the diagrams

$$\begin{array}{cccc}
L \times E & \xrightarrow{\alpha} & L & \xleftarrow{\eta} & E \\
\pi_E \downarrow & & \downarrow^{\lambda} & & \parallel \\
E & \xrightarrow{\sigma_E} & 1 + E & \xleftarrow{\sigma_E} & E
\end{array}$$

commute.

Proof. Because the diagram

commutes for $\xi = L \times E \xrightarrow{\alpha} L \xrightarrow{\lambda} 1 + E$ as well as for $\xi = L \times E \xrightarrow{\sigma_E} E \xrightarrow{\pi_E} 1 + E$, the first diagram commutes by uniqueness. Composing (E, e!) with the defining diagram of λ gives immediately the commutativity of the second diagram.

 $^{^{12}}$ append[]y = [y], append(x:xs)y = x:append xs y

 $^{^{13}}$ append xs y = xs++[y]

 $^{^{14}}xs++(append ys y) = append(xs++ys)y$

 $^{^{15}}$ (append xs y)++ys = xs++(y:ys)

¹⁶last[x] = x, last(x:xs) = last xs

2.8 Lemma. Let the (simple) list reverse morphism¹⁷ be the unique $L \xrightarrow{\varrho} L$, for which

commutes. Then the diagrams¹⁸

$$\begin{array}{ccc} L \times L & \stackrel{\cong}{\longrightarrow} & L \times L & \stackrel{\gamma}{\longrightarrow} & L \\ e^{\times} e \Big\downarrow & & & \downarrow e \\ L \times L & & \stackrel{\gamma}{\longrightarrow} & L \end{array}$$

and particularly 19

are commutative, where \cong denote the swap morphisms (π_2, π_1) .

Proof. Composing the defining diagrams of γ with the defining diagram of ϱ shows, that the diagram

is commutative for $\xi = L \times L \xrightarrow{\gamma} L \xrightarrow{\varrho} L$.

Now, the same diagram commutes with $\xi = L \times L \xrightarrow{\cong} L \times L \xrightarrow{\varrho \times \varrho} L \times L \xrightarrow{\gamma} L$, which can be seen by composing the defining diagram of ϱ with 2.6 and some canonical factor commuting isomorphisms.

Hence, by uniqueness of ξ , the first result is proven.

The second is a special case of that by using $\alpha = L \times E \xrightarrow{L \times \eta} L \times L \xrightarrow{\gamma} L$; the third is immediate from the definition of ϱ and η .

2.9 Corollary. $L \xrightarrow{\varrho} L$ is idempotent, i. e. $\varrho^2 = L$.

Proof. By Composition of the defining diagram of ϱ with the second result of 2.8.

 $^{17 \}text{rev}$ [] = [], rev(x:xs) = append(rev xs)x

 $^{^{18}}$ rev(xs++ys) = (rev ys)++(rev xs)

¹⁹rev(append xs x) = x:rev xs

2.10 Corollary. The following equations²⁰ hold:

$$L \xrightarrow{\varrho} L \xrightarrow{\lambda} 1 + E = L \xrightarrow{\kappa} 1 + E \quad and$$

$$L \xrightarrow{\varrho} L \xrightarrow{\kappa} 1 + E = L \xrightarrow{\lambda} 1 + E.$$

Proof. By definition of ϱ and 2.7 one has

hence $\lambda \varrho(e,c) = 1 + \pi_E$. By 1.5 and 1.6 we therefore get $\lambda \varrho = (1 + \pi_E)p = \kappa$. The second equation is a consequence of that, using the preceding corollary.

3. Tail recursion.

3.1 Lemma. Let $E \times L \times A \xrightarrow{u} A$ and $A \xrightarrow{g} B$ be given. Then there is a unique morphism $L \times A \xrightarrow{f} B$, such that the diagram

$$E \times L \times A \xrightarrow{c \times A} L \times A \xleftarrow{(e!,A)} A$$

$$(\pi_L, u) \downarrow \qquad \qquad \downarrow f \qquad \qquad \parallel$$

$$L \times A \xrightarrow{f} B \xleftarrow{g} A$$

commutes.

Proof. Consider the internal composition morphism $A^A \times B^A \xrightarrow{d} B^A$, given as exponential transpose by

Then by 1.1, there is a unique $L \xrightarrow{\overline{f}} B^A$ such that

$$E \times L \xrightarrow{c} L \xleftarrow{e} 1$$

$$(\overline{u}\pi_{E \times L}, \overline{f}\pi_{L}) \downarrow \qquad \qquad \downarrow \overline{f} \qquad \qquad \parallel$$

$$A^{A} \times B^{A} \xrightarrow{d} B^{A} \xleftarrow{\overline{g}} 1$$

commutes. Crossing this diagram with A and combining it with the above yields the result, since $(\pi_2, \text{ev}_{AA} \pi_{13})(\overline{u}\pi_{E \times L}, \overline{f}\pi_L, \pi_A) = (\overline{f}\pi_L, u) \times A$.

²⁰last(rev(x:xs)) = x, hd(rev xs) = last xs

3.2 Corollary. Let $L \times L \xrightarrow{\varrho'} L$ be the unique morphism, given by the preceding lemma for A = B = L, $u = c\pi_{13}$ and g = L, s. t. the following diagram commutes:

Then

commute, i. e. in particular, the (simple) reverse morphism ϱ and the fast reverse morphism²¹ $L \xrightarrow{(L,e!)} L \times L \xrightarrow{\varrho'} L$ coincide.

Proof. $\gamma(\varrho \times L)$ defines ϱ' , because by definition of ϱ and 2.6

commutes. Composing the first diagram with $L \xrightarrow{(L,e!)} L \times L$ renders the second one commutative, by neutrality of γ .

3.3 Corollary. Let $L \times N \xrightarrow{\nu'} N$ be the unique morphism, s. t.

$$E \times L \times N \xrightarrow{c \times N} L \times N \xleftarrow{(e!,N)} N$$

$$\pi_L \times s \downarrow \qquad \qquad \downarrow \nu' \qquad \qquad \parallel$$

$$L \times N \xrightarrow{\nu'} N \xleftarrow{N} N$$

commutes. Then the following diagrams are commutative:

²¹ if rev'xs = r'xs[] where r'[]ys = ys, r'(x:xs)ys = r'xs(x:ys), then rev' = rev

Proof. The top left diagram commutes by definition of ν , together with the commutative rest

$$E \times L \times N \qquad \xrightarrow{c \times N} L \times N \xleftarrow{(e,N)} N$$

$$\pi_{L} \times N \downarrow \qquad \qquad \downarrow \nu \times N \qquad \parallel$$

$$L \times N \qquad \xrightarrow{\nu \times N} N \times N \xrightarrow{s \times N} N \times N \xleftarrow{(0,N)} N$$

$$L \times s \downarrow \qquad \qquad \downarrow + \qquad \parallel$$

$$L \times N \qquad \xrightarrow{\nu \times N} N \times N \xrightarrow{+} N \xleftarrow{N} N$$

which shows by uniqueness that $\nu' = L \times N \xrightarrow{\nu \times N} N \times N \xrightarrow{+} N$. From that and the equation +(N,0!) = N it follows, that the list length morphism ν is identical with the fast list length morphism, 22 given as composition $L \xrightarrow{(L,0!)} L \times N \xrightarrow{\nu'} L$.

3.4 Lemma. Let the fold left morphism²³ be the unique $L \times A^{E \times A} \times A \xrightarrow{\varphi} A$, such that the following diagram is commutative:

$$E \times L \times A^{A \times E} \times A \xrightarrow{c \times A^{A \times E} \times A} L \times A^{E \times A} \times A \xleftarrow{(e!, A^{E \times A} \times A)} A^{A \times E} \times A$$

$$\downarrow (\pi_{23}, \text{ev}_{A \times E, A} \pi_{341}) \qquad \qquad \downarrow \varphi \qquad \qquad \parallel$$

$$L \times A^{A \times E} \times A \xrightarrow{\varphi} \qquad \qquad A \xrightarrow{\epsilon \times A} A^{A \times E} \times A.$$

Then $\nu' = L \times N \xrightarrow{(\pi_L, \overline{s\pi_N}, \pi_N)} L \times N^{N \times E} \times N \xrightarrow{\varphi} N$.

Furthermore, if L is the list object over N and L $\xrightarrow{\sigma}$ N is the sum morphism,²⁴ defined by

$$\begin{array}{cccc} N \times L & \xrightarrow{c \times L} & L & \xleftarrow{e} & 1 \\ N \times \sigma \downarrow & & \sigma \downarrow & & \parallel \\ N \times N & \xrightarrow{+} & N & \xleftarrow{0} & 1. \end{array}$$

then
$$\sigma = L \xrightarrow{(L, \overline{+}!, 0)} L \times N^{N \times N} \times N \xrightarrow{\varphi} N$$
.

Proof. Straightforward diagram chasing.

3.5 Lemma on tail recursion over natural numbers. Let $(N \xrightarrow{s} N, 1 \xrightarrow{0} N)$ be the NNO. Let $A \xrightarrow{u} A$ and $A \xrightarrow{g} B$ be given. Then there is a unique morphism $N \times A \xrightarrow{f} B$, such that the diagram

$$\begin{array}{cccc}
N \times A & \xrightarrow{s \times A} & N \times A & \xleftarrow{(0!,A)} & A \\
(\pi_N, u\pi_A) \downarrow & & \downarrow f & \parallel \\
N \times A & \xrightarrow{f} & B & \xleftarrow{g} & A
\end{array}$$

commutes.

Proof. The situation is a special case of 3.1, using 1.4.

²² if length xs = 1 xs 0 where 1(x:xs)n = 1 xs sn, then length = #

 $^{^{23}}$ foldl u a [] = a, foldl u a(x:xs) = foldl u(u a x)xs

 $^{24 \}text{sum}[] = 0$, sum(n:ns) = n+sum ns

3.6 Example. Let the replicate morphism be the unique $N \times E \times L \xrightarrow{\vartheta'} L$ such

and $N \times E \xrightarrow{\vartheta} L = N \times E \xrightarrow{N \times E, e!} N \times E \times L \xrightarrow{\vartheta'} L$, where $N \times E \xrightarrow{\vartheta} L$ is the unique morphism²⁵ with $\vartheta(s \times E) = c(\pi_E, \vartheta)$ and $\vartheta(0!, E) = e!$ by 1.4.²⁶

Proof. Straightforward.

- 4. Appendix: Standard abstract data types.
- **4.1 Example:** Stacks. A stack S on E is given by the operations $1 \xrightarrow{new} S$, $S \times E \xrightarrow{push} S$, $S \xrightarrow{top} 1 + E$ and $S \xrightarrow{pop} 1 + S$ with the standard equations describing stacks.

Then, if \mathcal{E} has list objects, there are enough stacks.

Proof. For a stack over E choose the list object L over E, and set $new = 1 \stackrel{e}{\longrightarrow} L$, $push = E \times L \xrightarrow{c} L$, $top = L \xrightarrow{\kappa} 1 + E$ and $pop = L \xrightarrow{\tau} 1 + L$. The stack equations are given by 1.6.

4.2 Example: Queues. A queue Q on E is given by the operations $1 \xrightarrow{new} Q$, $Q \times E \xrightarrow{add} Q, \ Q \xrightarrow{first} 1 + E, \ Q \xrightarrow{last} 1 + E, \ Q \xrightarrow{dequeue} 1 + Q \ \text{and} \ Q \times Q \xrightarrow{merge} Q$ with some wellknown equations.

If \mathcal{E} has list objects, then there are enough queues.

Proof. Let Q be a list object L over E and $new = 1 \xrightarrow{e} L$, $add = L \times E \xrightarrow{\alpha} L$, $first = L \xrightarrow{\kappa} 1 + E, last = L \xrightarrow{\lambda} 1 + L, dequeue = L \xrightarrow{\tau} 1 + L, merge = L \times L \xrightarrow{\gamma} L.$ The queue equations are given in 1.6, 2.6, 2.7 by means of the commutative diagram

$$\begin{array}{ccc} L \times L & \xrightarrow{\gamma} & L \\ & & & & \tau \\ \downarrow & & & & \tau \\ & & & & \downarrow \\ (1+L) \times L \cong L + L \times L \xrightarrow{(\tau, \sigma_L \gamma)} & 1 + L. \end{array}$$

4.3 Definition. For any object E in \mathcal{E} , an object T with a pair of morphisms²⁷ $1 \xrightarrow{e} T$ and $T \times E \times T \xrightarrow{c} T$ is called a tree object over E, iff this situation is initial in the following sense: for all pairs of morphisms $1 \xrightarrow{x} X$ and $X \times F \times X \xrightarrow{f} X$ and all morphisms $E \xrightarrow{u} F$ there is a unique $T \xrightarrow{r} X$ such that the diagrams

commute.

 $[\]frac{2^{5}}{\text{rep 0 x = []}}$, rep(n+1)x = x:rep n x $\frac{2^{6}}{\text{if r n x = r'n x []}}$ where r'0 x xs = xs, r'(n+1)x xs = r'n x(x:xs), then r = rep

²⁷the constructors s. t. Tree* = Empty | Node(Tree*)*(Tree*)

4.4 Lemma. $T \xrightarrow{(e,c)} 1 + T \times E \times T$ is an isomorphism.

Proof. By the same technique as in the proof of 1.5.

4.5 Lemma. Let the tree size morphism²⁸ be the unique $L \xrightarrow{\zeta} N$, such that

commutes. Then these diagrams are pullbacks and $\zeta \varphi = \nu$, where ν is the list length and $\varphi: T \to L$ is the flatten morphism, ²⁹ given by

Proof. The first result is shown analogously to 1.8, the second is given by the combination of the definitions of ζ , φ and ν with 2.3 and 2.5.

References

- [B] E. T. P. Burton, Verification and Transformation of Simple Recursive Programs An Algebraic Approach, Mathematical Structures for Software Engineering (B. Neumann, D. Simpson, G. Slater, eds.), Clarendon Press, Oxford, 1991, pp. 17-43.
- [F] P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76.
- [J] P. T. Johnstone, Topos Theory, London, 1977.
- [CTCP] D. Pitt, S. Abramsky, A. Poigné and D. Rydeheard (eds.), Category Theory and Computer Programming, LNCS 240 (Tutorial and Workshop, Guildford, U.K., September 1985), Berlin-Heidelberg-New York, 1986.
- [P] A. Poigné, Elements of Categorical Reasoning, [CTCP], 16-42.
- [R] D. E. Rydeheard, Functors and Natural Transformations, [CTCP], 43-50; Adjunctions, [CTCP], 51-57.

Institut für Informatik, Freie Universität Berlin, Takustr. 9, D-14195 Berlin $E\text{-}mail\ address:}$ maurer@inf.fu-berlin.de

 $^{^{28}}$ size Empty = 0, size(Node 1 x r) = size 1+size r+1

 $^{^{29}}$ flatten Empty = [], flatten (Node 1 x r) = (flatten 1)++(x:flatten r)