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ABSTRACT. The paper generalizes results of [B] by formulating their background in
categories with a sufficiently rich internal logic, e. g. elementary topoi, using the well
known initial algebra approach. Thus the right setting for program transformations
in the sense of [B] is given by embedding them into the generalisation of primitive
recursion over the naturals in the sense of [F] to lists. Particularly there is a simple
concept of tail recursion, hence an outline on a systematic transformation of naive
recursive programs into tail recursive i. e. more efficient iterative forms.

Let £ be an elementary (LAWVERE-TIERNEY-)topos with a natural number ob-
ject (NNO) 15 N 2 N (see [F] or [J] for details).

The following standard notations are used:

A4 As the identity and A Y, ¢ the composition of A Jy Band B % C.

0 is the initial and 1 the terminal object, O % Aand A 5 1 the related unique
morphisms.
Products are denoted by x and projections by 7 (with the appropriate indices),

the uniquely determined morphism h for a pair A Sy Band A% C s t. mgh = f

and Tch =gby A M B x (. The notations + and o are reserved for coproducts

and injections resp.

AP is the exponential with £(C' x B, A) = £(C, AP), AP x B =42 A the eva-
luation morphism. Toggling between morphisms and their exponential transposes
by adjointness is denoted by a bar.

true

1 —  is the subobject classifier in £.

Not everywhere in this paper the full power of the topos axioms is used — so
most results are true in the more general situation of £ just being cartesian closed.

Underlying intuitive ideas are indicated in footnotes, in general by using a sort
of functional programming language.

1. Universal Characterisation and Properties of Lists.
We start off with the basic definition and some consequences of it.
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1.1 Definition. For any object E in £, an object L with a pair of morphisms*
15 Land Ex L 5 L is called a list object over E, iff this situation is initial in
the following sense:

for all pairs of morphisms® 1 = X and F x X Iy X and all morphisms® E = F
there is a unique L — X such that the diagrams

ExL — 5 L «°% 1

O

FxX —1 4 x = 1

commute. (Equivalently, E = F could have been replaced by E N E.)

This situation could of course be expressed in terms of an adjoint situation,
although in this paper no particular use will be made of that:

1.1a Alternative description. Let &g be the category of actions of E on objects
of & with objects and morphisms of the type

ExX 2, Bxy

hl kl
x L5 v

If the underlying functor Ug: g — &, sending the above morphism to X J, Y,
has a left adjoint € N &k, then E x L 5 L is just Fi(1) and 1 5 L is the front
adjunction 1 2 UgFg(1).

Proof. Simply by describing the adjoint situation Fg 4 Ug in terms of the corre-
sponding universal morphism problem.

1.2 Corollary. For every pair F' x Y LN Y,1%Y and any E x L = F there is
a unique L = Y s. t. the diagram

ExL —S 5 [ & 1
J{(v,rm;) J(r H
Fxy —" sy ¥ 1

commutes.

Proof. BychoosingX:LxYandf:ExLxY—)mU)XY LxFxY 28 [ xy

in 1.1 one finds a unique L M) LxY s t.

ExL —5 L +%2 1

Ex(l,r)l l(lm) H

ExLxY —L 5 pxy &% 4

llists of elements of type E, the empty list and the construction morphism, [] and :
2«“initial states of X” and “actions of F' on X”

3«changes of base”
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commutes. Combining this with

ExLxY &Y I Fxy 2 pxy &9

E XL — L — L +—1
gives by uniqueness | = L, combining it with

ExLxY —' 5 pxy &%

v e
Fxy —“5 v 1
yields the result.

By universality, one then immediately has:

1.3 Lemma. A list object over E is uniquely determined up to an isomorphism
rendering the appropriate diagrams commutative.

1.4 Example. The NNO is the list object over 1.

Proof. Choose E =1,e=1 2 N and the successor map N = N for ¢, identifying
1xN = N.

First, we are going to derive some conclusions of this concept.

1.5 Proposition. If (E, L,e,c) is a list object, then Ex L % L < 1 is a coproduct

in &, i.e. there exists an isomorphism* L 2 1 + E x L whose inverse is given by

1+ExL- %

Proof. Let o, and o« denote the coproduct injections into 1+ E x L; furthermore
let Ex (1+E x L) %4 1+ E x L be defined as composition

Ex(e,c)
7

Ex(1+ExL) ExL 2% 14+ ExL.

By 1.1 there is a unique L = 1+ E x L such that

ExL - L «—< 1

Bxp | |7 H

Ex(I+ExL) —4 5 1+ExL «+2— 1

commutes. We now prove the proposition by showing that the bottom row of this
diagram constitutes a list object over E :

4a list is empty or consists of head and tail
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Let E% Fand Fx X L X & 1be given. By taking the unique L = X from
1.1, we consider the diagonal

fluxr)y=rc: ExL — X.

This allows for g = (z,r¢): 1+ E x L — X, such that

Ex(1+ExL) —2 5 1+4ExL «2— 1

ol s H

FxX I, x 2

comimutes.

Combining the two diagrams we get gp = L — X with regard to the uniqueness
property of 1.1. Particularly for (F,z, f) = (L,e,c) we get (e,c)p = L; therefore
90ExL = 9opxL(E x (e,¢))(E x p) = gd(E x p) = gpc = rc, which together with
go, = x determines g uniquely.

The equation p(e,¢) = 1+ E x L is simply a consequence of the main argument.

Alternatively, one could say that T'(L) =1+ E x L (e—c)> L is a least fixpoint in

an appropriate category.

1.6 Lemma. Let the head and the tail morphism® L = 1+ F and L = 1+ L be
given by

k=L B 1+ExL "% 1+F and
r=L"%

1+ ExL 2™ 141

Then the following diagrams commute:

E 225 14FE+2—1

] dl |

ExL —» L +% 1

| g |

L I 140 21

Proof. Immediate by pe = 01 and pc = ogxr.-

1.7 Lemma. For any list object E x L < L <~ 1, the construction morphism ¢
and the projection E x L == L define a coequalizer diagram E x L = L 51,

Proof. Let L 4 X be given such that tc = twy. Then the problem 1.1 for E =

F,f=FxX 5 Xandz=1 5% X is solved by t and te!, which therefore are
equal. Since !y, is a retraction, the factorization of ¢ through 1 is unique.

5hd(x:xs) = x, tl(x:xs) = xs
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1.8 Lemma. Let the list length morphism® be the unique L 2 N, for which

c e

E x L sy L« 1
!XVEI/TI’LJ( J(V H
IxXN=N — 5 N +2 1

commutes. Then both these squares are pullbacks, i. e. (s:N — N;0:1 — N) is a
“list classifier”.

Proof. The proof rests on some typical elementary topos arguments relying on the
existence of the adjunction v* 411, : /L — £/N.
The left sqare and the outer diagram in

0 —» ExL 223 N

1 ——— L 2> N
are coproduct diagrams, hence pushouts; so the right sqare is a pushout, which is
bound to be a pullback, because by 1.5 E x L = L is monic (in a topos the pushout
of a mono gives a pullback).
Let
AL

"
0
1 —— N
be a pullback and 1 = A I L the unique factorization of 1 % L. By pulling back
the coproduct 1 LNEN along L & N we get the coproduct diagram

0 —— ExL

! 5

A"y L

We consider the morphism 1+ E x L tBxL 4 + E x L; composing it with the

resulting iso A+ E X L (h—c)> Lyields 1+ E X L (e—c)> L, from which by 1.5 follows

that it is an isomorphism itself.
Since in a topos all diagrams of the form

AL)B

7 | |7

A+C I By D

are pullbacks and pullbacks of epimorphisms are again epic, 1 — A turns out to be
an isomorphism.

6#[]1 = 0, #(x:xs) = 1+#xs
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1.9 Definition. Let the singleton morphism™ be E - L = E N DAY

Then the diagrams
E

aEl

are commutative and

is a pullback.®

Proof. The first claim follows immediately from the definitions, for the second com-

pose the pullbacks 1.9 with the trivial one E —(ﬂ ExL™SL=FE515%L.

2. Algorithms on Lists.

We now give some examples, how to carve out several recursively defined al-
gorithms, just by using the approach of the previous section. Throughout this
chapter, let (E x L < L <~ 1) generally denote a list object over E.

First of all, we have a general form of primitive recursion [F, Proposition 5.22]
for list objects:

2.1 Proposition. Let EXLx A% F, A% B and F x B s B be given. Then

there is a unique L x A 7y B such that the diagrams

ExLxA -S4 [xa & 4
(urfﬂ'LA)l lf H
FxB —'» B +2 4
commute.

Proof. The situation is shifted by adjointness to

ExL oy L 1
w7nn| P

B _
FAxBA~(FxB)A 1 pA 2 1

because the transpose of the left bottom row is h(evar 7pa,evap 7r4). The unique
existence of F follows from 1.2, which proves the proposition.

Mx = [x]

8elements can be considered as lists of length 1
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2.1a Remark. With respect to 1.1a, E x L x A XA T x A s just the value of
the left adjoint Fi 4 €5 25 & on A, 4“2 I, x A being the front adjunction.

2.2 Example. Let the element morphism® L x E = E be given by 2.1 for A = E,
F = B =Q, u = 0 (characterizing the diagonal), g = falseg and h =V, i.e. € is
uniquely determined by the commutativity of the diagrams

ExLxE -2E, L x5 &8

E
(JEﬂEE,swLE)l ls l!
1.

false

Oax0 —L s 0

Then one has immediately the equation E B L E 5 Q=F S q

2.3 Proposition. Let the concatenation morphism'® be the unique L x L 5L

such that

ExLxL -y pxp &5

Bxo | B H

ExL —S» [ <% L

commutes. Then L x L -5 L is unitary and associative, i. e. the diagrams

AN N A CILO N LxLxL -2 L
| | | and ] |
L+, 1 £ LxL — & L

commute. Particularly,' ExL S L=ExL % xL % L.

Proof. The left side of the first diagram commutes by definition of 7, the right side
by commutativity of

ExL —5 I +%£ 1

Ex(L,e!)l l(L,e!) H

ExLxL -<Iy pxp <99

Bxo | B H

ExL —— L ++*—1,

9element[1x = False, element(x:xs)x = True, element(x:xs)y = element xs y

10[]++ys = ys, (x:xs)++ys = x:(xs++ys)

Hy:xs = [x]++xs
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and uniqueness. Futhermore, because the diagram

ExLxLxL 50 pypxr &0 ror

Exwal lew H

ExLxL -2t rpxrp & el

pea | |
ExL —° L «2X  LxL

and its counterpiece with v x L instead of L x v commute, associativity holds. The
last equation is shown by composing E X (e!, L) with the defining diagram of ~.

2.4 Remark. L is the free monoid over E with multiplication L X L s and neutral
element 1 < L [J, Theorem 6.41].

Proof. For any monoid M x M % M <“ 1 and any E - M let L 2% M be the
unique morphism such that

Cc

ExL s [+ 1

ol ol

MxM —2 5 M % 1.

Then h is a monoid homomorphism, because

ExLxL -ty pxp &8

| 2 H

MxM —"™ % MxM " L

is made commutative by ¢ = hvy as well as by ¢ = m(h x h), which follows from the
definitions of v and h and the monoid structure on M.
Furthermore, there is the unique factorization

E "y M
| |
h
L —" M,

given by the composition of £ —(E—e')> E x L with the defining diagram of h.

2.5 Corollary. In the special case of 1.3, v is just the addition of natural numbers
NxN 5 N and L % N is a monoid homomorphism.
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2.6 Proposition. Let the append morphism'? be the unique L x E = L, for
which

ExLxE =P, pxp {P g

! EE

c

ExL —S» L +% E

commutes, where E 2 L is the singleton morphism.
Then'® a = L x E 2% [ x L 2 L and the following diagrams'*'> commute:

LxLxE 2 LxE LxExL -2y [ xL
anl la and QXLl lV
LxL —s L LxL ——s L.

Proof. The definition of v and 7 implies the first equation.
The commutativity of the diagrams is a consequence of that, using the defining
properties of ~.

2.7 Lemma. Let the last element morphism'® be the unique L A1 + E, for which

ExL - L £ 1

& b

Ex(1+E) — 23 E+ExE P p %, 1 g+

commutes. Then the diagrams

LxE %5 [ <1 FE

) b

E 5 1+E 2 E
commute.
Proof. Because the diagram

ExLxE e, LxE &F g

x| Js H

Ex(1+E) — 23 E+ExE 2™ p %, 1 g % §

commutesfor E=LxE -5 L 31+ Easwellasfor =L x E 25 E "5 1+ E,
the first diagram commutes by uniqueness. Composing (E,e!) with the defining
diagram of A\ gives immediately the commutativity of the second diagram.

12append[ly = [y], append(x:xs)y = x:append xs y
13append xs y = xs++[y]

lys++(append ys y) = append(xs++ys)y

15 (append xs y)++ys = xs++(y:ys)

161ast[x] = x, last(x:xs) = last xs
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2.8 Lemma. Let the (simple) list reverse morphism'” be the unique L 2 L, for
which

ExL C s L+% 1
Peo [«
ExL —= 3 LxE —* L «°“ 1

commutes. Then the diagrams'®

LxL ——5 LxL —2 5 L

oxo | |

LxL - 5L
and particularly!®
ExL —= 3 LxE >3+ E
Beo [
ExL C s L+«1 E

are commutative, where = denote the swap morphisms (7,71 ).

Proof. Composing the defining diagrams of v with the defining diagram of p shows,
that the diagram

ExLxL L LxL &Y g

x| | H

ExL —— LxE —25 [ L
is commutative for € = L x L - L % L.

Now, the same diagram commutes with ¢ = L x L S LxL 25 LxL L,
which can be seen by composing the defining diagram of ¢ with 2.6 and some
canonical factor commuting isomorphisms.

Hence, by uniqueness of &, the first result is proven.

The second is a special case of that by using a =L x E RSNy NS AN L; the
third is immediate from the definition of ¢ and 7.

2.9 Corollary. L % L is idempotent, i. e. 0> = L.
Proof. By Composition of the defining diagram of ¢ with the second result of 2.8.
7rev[] = [1, rev(x:xs) = append(rev xs)x

18rev(xs++ys) = (rev ys)++(rev xs)
Yrev(append xs x) = x:rev xs
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2.10 Corollary. The following equations®® hold:

LALMI+E=L%1+E and
LY.L 5% 1+E=L>1+E.

Proof. By definition of ¢ and 2.7 one has

ExL —° s L <1

el o

ExL — 3 LxE —%% L[ % 1

| [ |
E 225 14+4EFE 21,

hence A\o(e,c) =1+ mg. By 1.5 and 1.6 we therefore get Ao = (1 + 7g)p = k.
The second equation is a consequence of that, using the preceding corollary.

3. Tail recursion.
3.1 Lemma. Let Ex L x A~ A and A 2 B be given. Then there is a unique
morphism L x A ER B, such that the diagram

ExLxA%LxA(MA

o] o

LxA —1 4 B %2 4

commutes.

Proof. Consider the internal composition morphism A4 x BA % BA, given as
exponential transpose by

AV x BAx A —©A, BA 4
(m2,evaa 7713)l leVAB

BAxA 245, B

Then by 1.1, there is a unique L s BA such that

Cc

Ex L >y L« 1

(HﬂExLyfﬂL)l l? H

Al xpA 4, A 9 4

commutes. Crossing this diagram with A and combining it with the above yields
the result, since (ma,evaa m3)(@Wrpxr, frr,ma) = (frr,u) x A.

201ast(rev(x:xs)) = x, hd(rev xs) = last xs
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3.2 Corollary. Let L x L 2, L be the unique morphism, given by the preceding
lemma for A= B =L, u=cm3 and g = L, s. t. the following diagram commutes:

ExLxL -y pxp &5

)] o

LxlL -2 1 <L .

Then
1
LxL -2t Ixr AN N )
| | ‘|
LxL —% % L L —° L

commute, i. e. in particular, the (simple) reverse morphism ¢ and the fast reverse
Le! '
morphism?' L 9 1 x 1 &5 I coincide.

Proof. v(o x L) defines o', because by definition of ¢ and 2.6

(e!,L)

ExXLXL —— ExLxL SLLLINY SN L
Exngl ngl H
ExLxl = pupExD -2t pxp {29

- e ] H

LxExL 2y pxr 24 xp 2 [ <% o,
Lie!
commutes. Composing the first diagram with L Q) L x L renders the second
one commutative, by neutrality of .

3.3 Corollary. Let L x N L’> N be the unique morphism, s. t.

ExLxN 2N, LN &Y w

e I
v’ N
LxN —— N +—— N
commutes. Then the following diagrams are commutative:

vXN (L,0)
E—

LxN —— NxN L LxN
| [+ ana | |
LxN — % N L —" % L

2lif rev’xs = r’xs[] where r’[lys = ys, r’(x:xs)ys = r’xs(x:ys), then rev’ = rev
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Proof. The top left diagram commutes by definition of v, together with the com-
mutative rest
cXN (5 N)

ExLx N ——— LxN N
TI'LXNJ( J{VXN H
LxN 2Ny NxN 2N v n &Yy

e v B H

LxN 2N NxN_—*T3 N &N

which shows by uniqueness that v’ = L x N 2NN x N 5 N. From that and
the equation +(N,0!) = N it follows, that the list length morphism v is identical

with the fast list length morphism,?? given as composition L ——= LN NS Ly

3.4 Lemma. Let the fold left morphism??® be the unique L x AP*A x A % A
such that the following diagram is commutative:

7

Ex L x AAXE 5 4 ©ATTXAL P gBxA g M AAXE A
l(ﬂ'237eVA><E,A 7l'341) J(W H
L x AME x A -, A T AAXE 4,

(7L, 57N,7N)

Then v' = L x N Lx NNXEx N % N,
Furthermore, if L is the list object over N and L = N is the sum morphism,?*
defined by

NxL 2L, 1 ¢

Nxo | | H

NxN —5 N« 1,

A

(LFO0 1 NNXN « N % N

Proof. Straightforward diagram chasing.

theno =L

3.5 Lemma on tail recursion over natural numbers. Let (N > N,1 RN N)
be the NNO. Let A % A and A % B be given. Then there is a unique morphism
NxAZ B, such that the diagram

Nxd X4 Nxa 04 4

e b

NXAL) B 2 4

commutes.
Proof. The situation is a special case of 3.1, using 1.4.
22if length xs = 1 xs O where 1(x:xs)n = 1 xs sn, then length = #

23£61d1l u a [] = a, foldl u a(x:xs) = foldl u(u a x)xs
24sum[] = 0, sum(n:ns) = n+sum ns
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3.6 Example. Let the replicate morphism be the unique N x E x L il) L such
that

NxExL 220 NyxExL &0 por
(ﬂN,CﬂEL,ﬂL)l l'ﬂ' H
NxExL —2 L " ExL
N xE,e!)

and NxE -5 L = NXE—>N><E><L—>L where N x E % L is the
unique morphism®® with ¥(s x E) = ¢(rg,9) and 9(0!, E) =e! by 1.4.%5

Proof. Straightforward.
4. Appendix: Standard abstract data types.

new,

4.1 Example: Stacks. A stack S on E is given by the operations 1 —— S,
S x B 2l S, S — P, 1+ E and S 2% 1+ S with the standard equations

describing stacks.
Then, if € has list objects, there are enough stacks.

Proof. For a stack over E choose the list object L over E, and set new =1 < L,
push=ExL 5 L, top=L -5 1+ FE and pop =L = 1+ L. The stack equations
are given by 1.6.

new

4.2 Example: Queues. A queue ) on E is given by the operations 1 — @,

Q % | 244, add Q Q first 1+E Q last ].+E Q dequeue 1+QandQ><Q merge Q

with some wellknown equations.
If £ has list objects, then there are enough queues.

Proof. Let @ be a list object L over E and new = 1 5 L, add = Lx E > L,
first=L 5 14+ FE, last = L EN 1+ L, dequeue = L = 1+ L, merge = Lx L 5L
The queue equations are given in 1.6, 2.6, 2.7 by means of the commutative diagram

LxL -2 5 L

TXLl TJ(
A+ L)xLL+LxL 270 141,

4.3 Definition. For any object E in &, an object T with a pair of morphisms?’

1 5 TandT x ExT 5 T is called a tree object over E, iff this situation is initial
in the following sense: for all pairs of morphisms 1 = X and X x F x X Jy X and
all morphisms E = F there is a unique T —» X such that the diagrams

TxExT LT %1
J{T‘XUX’I" l?‘ H
XxFxX —L 3 x «* 1

commute.
25rep 0 x = [1, rep(n+l)x = x:rep n x

26ifr n x = r’n x [] where r’0 x xs = xs, r’(n+1)x xs = r’n x(x:xs), then r = rep

27the constructors s. t. Treex = Empty|Node (Tree*)*(Treex)
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4.4 Lemma. T ﬂ) 1+ 7T x E x T is an isomorphism.

Proof. By the same technique as in the proof of 1.5.

4.5 Lemma. Let the tree size morphism?® be the unique L <, N, such that

TxExT - T < 1
xmx | e
Nx1IxN Sy v N —F 3 N 2 3 N 2 1

commutes. Then these diagrams are pullbacks and (p = v, where v is the list
length and p:T — L is the flatten morphism,?® given by

TxExT C s T = 1

T

LxExL 25X e 4

Proof. The first result is shown analogously to 1.8, the second is given by the
combination of the definitions of (, ¢y and v with 2.3 and 2.5.
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28size Empty = 0, size(Node 1 x r) = size l+size r+l

29flatten Empty = [], flatten (Node 1 x r) = (flatten 1)++(x:flatten r)



