
SOPA - A Self Organizing Processing and Streaming Architecture

Gerald Friedland and Karl Pauls
Freie Universiẗat Berlin

Fachbereich Mathematik und Informatik
Institut für Informatik

Takustr. 9, D-14195 Berlin, Germany
{fland, pauls}@inf.fu-berlin.de

Abstract

This paper describes SOPA, a component framework
that is an essential part of the lecture recording system
E-Chalk. It envisiones a general processing and stream-
ing architecture featuring autonomous assembly of stream
processing components. The goal is to provide an easy
to use framework where dynamically organized processing
graphs are build out of components from various distributed
sources. Based on state-of-the-art solutions for component
based software development the system simplifies the imple-
mentation and the configuration of multimedia streaming
applications and associated tools. It supports stream syn-
chronization transparently while extending components are
installed on the fly according to the existing requirements
that may change at any time.

Contents

1. Introduction 1
1.1. Example Usage Scenario. 2

2. Underlying Concepts and Technologies 2
2.1. OSGi . 2
2.2. The OSGi Framework. 3
2.3. Oscar . 3
2.4. Eureka . 3

3. SOPA 6
3.1. The Media Graph. 6
3.2. A Media Node 6
3.3. Identifying Media Formats. 6
3.4. Resolving the Media Graph. 7
3.5. Synchronization 7
3.6. SOPA in Action 7

4. Related Work 8

5. Validations and Project Status 10

6. Future Work 10

7. Conclusion 11

1. Introduction

This paper envisiones a general processing and stream-
ing architecture and describes an implementing project,
called SOPA, featuring autonomous assembly of stream
processing components. The goal is to provide an easy
to use framework where dynamically organized processing
graphs are build out of components from various distributed
sources. Components are installed on the fly according to
the requirements of the processing graphs. Requirements
are a result of the purpose of a specific graph assembled ac-
cording to the needs of an application which may change at
any time.

SOPA currently focuses on multimedia processing and
Internet streaming applications on either server and/or client
side. On the server side (e.g., on a video streaming server)
SOPA integrates and manages codecs according to the ca-
pabilities of the connecting clients at runtime. Furthermore,
reconfigurations or updates are supported seamlessly and
transparent to the client. The idea is to dynamically adapt
stream processing to user demands. For each specific de-
mand a special processing graph is assembled using com-
ponents discovered in the local framework and/or in remote
depositories, respectively. In the latter case, required com-
ponents are retrieved from their remote source and locally
deployed. Examples of applications in need of a Self Or-
ganizing Processing and streaming Architecture range from
extensible multimedia servers such as video and/or audio
streaming systems over more specialized systems like lec-
ture recording applications and streaming clients to rapid
prototyping of, for example, filter chains.

The scientific goal for this research is to ease the de-
velopment pains of applications in need for an extensible
streaming and processing layer while decreasing adminis-
trative maintainance workload. More specific, to provide
a round-up solution that serves as an extensible framework
for managing of multimedia components (i.e., plugins). An-
other motivation is to enable synchronization of different
independent (multimedia) streams such as slides and video
streams and to propose a program independent notion to de-
scribe the handling of a concrete content, for example, to
convert from one multimedia format into another.

The next Section introduces and discusses the underly-
ing concepts and technologies of this work before a more
detailed description of SOPA is given in Section3. Sec-
tion 4 presents related work and Section5 reports on some
concrete usage. Finally, Section6 presents future work fol-
lowed by the conclusion.

1.1. Example Usage Scenario

Consider university lecture recording: It is common to
combine software defined radio with video and/or slides for
on-the-fly streaming and recording of university lectures.
However, combinability between standard Internet stream-
ing systems is missing, for example, if one wants to com-
bine a video conferencing system with a whiteboard pre-
sentation system. Unfortunetaly several streams are often
combined by just starting different applications [9]. Of
course, no control of synchronization then exists between
the streams. Another way of synchronizing several streams
is to have a postprocessing step using metadata, like SMIL
[49], for manual synchronization (see for example [28]).
The problem of not being able to automatically synchronize
different independent media streams at application level has
been proposed an open research question [34]. Even though
most commercial multimedia streaming systems provide an
API (Section4), they are not only complicated to use but
also too specialized and propietary. A common subset, like
a compatibility layer is missing. Updates of codecs often
force the costumers to re-install certain components (some-
times they do not even know about). Introducing a new
medium results in administration work and also in an update
of clients and associated tools [12]. The reminder of this
paper presents a system that eases the development of com-
patible codecs and filters in a community, makes it easy for
system administrators to use and to query for given codes,
and aims towards changing the server configuration when a
client connects instead of requiring to download a plugin.

2. Underlying Concepts and Technologies

Component orientation is a current trend for creating
modern applications. The concept of a component is

broad and includes plugins and other units of modulariza-
tion. In general, component models and systems employing
component-oriented approaches all define a concept similar
to a component, e.g., an independently deployable binary
unit of composition. Figure1 depicts the application archi-
tecture envisioned in this paper. In the general model, a pos-
sible application is build on top of a component framework
and SOPA, which in turn uses the component framework
as a plugin-mechanism and a search-engine as a means of
deployment-mechanism.

Figure 1. SOPA Architecture and Framework

In SOPA, any streaming application is a self organizing
flow graph. The graph consists of six basic types of nodes:
generic, sources, targets, forks, mixers, and pipes. Tech-
nically, any component that wants to live inside the graph
becomes a node by inheriting one of these six superclasses.
The graph that glues these components is described by an
XML file. Nodes are described via general properties, for
example, to tell the system to select some audio codec that
compresses down to a certain bandwidth. The system then
looks for an appropriate codec, first locally and then at re-
mote locations. The structure of the graph can be changed
and the nodes can be updated while the system is running.

This Section introduces a specific Java based model (see
Figure1) that currently supports underlying the multimedia
platform E-Chalk. The implementation targets Oscar, a free
implementation of the OSGi framework, as the SOPA un-
derlying component model. Furthermore, Eureka, a Ren-
dezvous based component discovery and deployment en-
gine, that deploys a means of service discovery in order to
provide component discovery, is used. The reminder of this
sections introduces this aforementioned technologies.

2.1. OSGi

The Open Services Gateway Initiative (OSGi) [22]
framework and service specification, was defined by the
OSGi Alliance to dynamically deploy, activate, and manage
service-oriented applications. The original intention was to
create a specification for services that can be remotely de-
ployed onto home network gateways, like set-top boxes and
DSL-Modems, and into other networked environments, like

2

cars and telephones. The second release introduced meth-
ods for improving security, remotely managing service plat-
forms, and making it easier to implement complex applica-
tions on top of it. This included a whole set of defined stan-
dard services, such as a log and an HTTP service. There-
fore, other services may build on to that foundation of pro-
vided functionality. Release 3 [48] includes support for mo-
bile service platforms and applications where data access is
handled by a variety of secure interfaces. The number of
services that are defined by the standard has increased by a
significant number and several functions have been added
in order to enhance the basic specification to simplify the
deployment of OSGi based applications.

Figure 2. OSGi Service Registry (left) and
Bundle Life Cycle (right)

2.2. The OSGi Framework

The OSGi framework, which sits on top of a Java vir-
tual machine, is an execution environment for services. The
OSGi framework was originally conceived to be used in-
side restricted environments. OSGi can however be used in
other domains, as for example, an infrastructure to support
underlying release 3.0 of the eclipse IDE [47].

The OSGi framework defines a unit of modularization,
called a bundle, that is both a deployment unit and an acti-
vation unit. Physically, a bundle is a Java JAR file that con-
tains a single component. The framework provides dynamic
deployment mechanisms for bundles, including installation,
removal, update, and activation (see Figure2).

After a bundle is installed, it can be activated if all of
its Java package dependencies are satisfied; package depen-
dency meta-data is contained in the manifest of the bundle
JAR file. Bundles can export/import Java package to/from
each other; these are deployment-level dependencies. The
OSGi framework automatically manages package depen-
dencies of locally installed bundles, but it is not able to re-
motely discover bundles. After a bundle is activated it is
able to provide service implementations or use the service
implementations of other bundles within the framework. A
service is a Java interface with externally specified seman-
tics; this separation between interface and implementation
allows for the creation of any number of implementations

for a given service interface. When a bundle component im-
plements a service interface, the service object is placed in
the service registry provided by the OSGi framework so that
other bundle components can discover it. All bundle inter-
action occurs via service interfaces (see Figure2). When a
bundle uses a services, this creates an instance-level depen-
dency on a provider of that service. The framework defines
no mechanisms for managing service dependencies.

2.3. Oscar

The work introduced in this paper is implemented and
tested on top of the Open Service Container Architecture
(Oscar) [20], an Open-Source implementation of the OSGi
specification [38]. Therefore, it is not limited to this par-
ticular OSGi framework implementation but should be de-
ployable to any standard conform OSGi framework.

The goal of Oscar is to provide a compliant and com-
pletely open OSGi framework implementation. The work
on the Oscar project started in December 2000 by the
founder of Oscar, Dr. Richard S. Hall. Technically, the
OSGi service framework can be boiled down to a custom,
dynamic Java class loader and a service registry that is glob-
ally accessible within a single Java virtual machine. The
custom class loader maintains a set of dynamically chang-
ing bundles that share classes and resources with each other
and interact via services published in the global service reg-
istry. In the last release 1.0 in Mai 2004 Oscar is almost
fully compliant with the OSGi specification Release 1 and
2 although there are some minor issues [21]. Furthermore
Oscar 1.0 is largely compliant with the OSGi framework
specification Release 3. Most noticeably the ability to dy-
namically import packages and an initial implementation of
the URL Stream Handlers service is already included.

2.4. Eureka

Discussions of network server communication pattern,
especially discussions of peer-to-peer approaches, implic-
itly make an analogy between component discovery and file
sharing. Ultimately, a component is a file or a collection
of files, which leads to this analogy, but perhaps a differ-
ent analogy would lead to a different solution. Conceptu-
ally, components can be viewed as service providers, which
makes it interesting to investigate technological solutions
that target service discovery in networks, rather than file
sharing mechanisms.

Apple Computer, Inc. has recently focused attention
on network service discovery. Apple realized that the Do-
main Name System (DNS)[35] address resolution protocol
and its associated server infrastructure provided a conve-
nient, well-tested, and ubiquitous infrastructure for adver-
tising and querying for network services. However, to use

3

the DNS infrastructure for discovering network services, an
approach was needed to generalize DNS from publishing
domain names and querying for IP addresses to publishing
and querying for network services, such as printers. To fa-
cilitate this, Apple defined DNS-based Service Discovery
(DNS-SD)[39] that describes a convention for naming and
structuring DNS resource records for discovering a list of
named instances of services using standard DNS queries.
The DNS infrastructure and DNS-SD create an effective
approach for service discovery in wide-area networks, but
there is also a need to discover services in local, ad-hoc net-
works where DNS servers are not present. For this, Apple
defined Multicast DNS (mDNS)[40], which defines a way
to perform DNS queries over IP Multicast in a local-link
network without a DNS server. The combination of DNS-
SD and mDNS forms the basis of Apple’s Rendezvous tech-
nology.

Rendezvous [3], also known as Zero Configuration net-
working, is an open protocol that enables automatic discov-
ery of computers, devices, and services in ad-hoc, IP-based
networks. Due to mDNS, Rendezvous does not require a
DNS server in the local-link network, nor does it require
devices to have statically configured IP addresses. Partici-
pants in the Rendezvous protocol must be able to dynam-
ically allocate an IP address without the aid of a Dynamic
Host Configuration Protocol (DHCP) server, translate be-
tween device names and IP addresses without a DNS server,
and advertise or locate services without a directory server.
To do this, a participant first chooses an arbitrary link-local
address (i.e., IPv4 address range 169.254.0.0/16) using a
protocol to avoid address clashes. After a participant has
chosen a link-local address, it is free to choose an arbitrary
name in the .local domain, which is the domain that signi-
fies the local link. Participants can then publish services
under their local-link domain name using DNS resource
records in the fashion specified by DNS-SD. Finally, par-
ticipants may query for available services in the local-link
domain using standard DNS queries via mDNS. In response
to an mDNS query and depending on the type of query, par-
ticipants advertising a given service will respond with its
local-link name or address. When Rendezvous is combined
with the standard DNS infrastructure, it provides an effec-
tive mechanism for service discovery in both local-link and
wide-area networks

The DNS/Rendezvous infrastructure also has features
that fit well with the requirements of a resource discovery
service. For example, clients of a DNS/Rendezvous-based
resource discovery services only produce network traffic in
those situations where they actually make a query. Since
clients of the service are not servers, like in a peer-to-peer
network, they are simple and do not pay a network or com-
putational cost when not using the service. Also, the DNS
infrastructure is federated and allows cooperation among

multiple servers.
Eureka [27] is a network-based resource discovery ser-

vice to support deployment and run-time integration of
components into extensible systems using Rendezvous’
DNS-based approach. In Eureka’s resource discovery ser-
vice resource discovery servers are federated, where addi-
tional servers can be set up and connected to an existing
resource discovery network or used as the root of another
one. Publishing and discovery of components can be per-
formed in both wide-area and local-link (i.e., ad-hoc) net-
works. Component providers can submit components to
existing resource discovery servers, so it is not necessary
for them to maintain their own server. Clients do not need
to know the specific server that hosts a given component
to discover it. Domain names under which components are
registered provide an implicit scoping effect, as suggested
by Rendezvous (e.g., a query for printers under the scope
inf.fu-berlin.de produces a list of printers in the computer
science department of the Free University Berlin).

Figure 3. Eureka Architecture

Figure3 is a conceptual view of the Eureka architecture.
Each Eureka server has an associated DNS server, whose re-
source records the Eureka server can manipulate. A Eureka
server has a client application programming interface (API)
that provides access to its functionality. The client API al-
lows clients to publish components, discover available com-
ponents, and discover other Eureka servers. There are two
options for publishing components. The provider can use
the client API to submit the component meta-data and an
URL from which the component archive file is accessible
or the provider can submit the component meta-data and the
component archive file itself, which the Eureka server will
store in its component repository. In this latter case, Eu-
reka uses its own HTTP server (not pictured in the Figure)
to make the submitted component archive file URL accessi-
ble. Component discovery occurs in the DNS/Rendezvous

4

cloud of the Figure, which represents the unified local-link
and wide-area networks accessible through mDNS and stan-
dard DNS, respectively.

Given the promise offered by the DNS/Rendezvous in-
frastructure discussed, Eureka adopted this technical ap-
proach. However, not all of Eureka’s requirements for com-
ponent discovery were addressed by this approach; in par-
ticular, some issues still needed to be resolved. Namely,
how to map component meta-data to DNS resource records,
how to allow either existing DNS servers (i.e., those in-
volved with Internet name-address resolution) or arbitrary
DNS servers (i.e., those not involved with name-address
resolution) to participate in the same Eureka network, how
to allow component providers to publish components into a
Eureka network without having to maintain their own DNS
server, and how to create a federated network out of the in-
dividual servers offering components, so that once a client
has an entry point they can then discover other servers par-
ticipating in the Eureka network.

As mentioned above, DNS-SD describes a convention
for naming and structuring DNS resource records for dis-
covering a list of named instances of services using stan-
dard DNS queries. A similar mechanism is needed for
DNS-based component discovery, referred to in this pa-
per as DNS-CD, for purposes of analogy. DNS-CD de-
fines how to map component meta-data onto the three dif-
ferent types of DNS resource records: PTR, SRV, and TXT.
As a model, the DNS-SD approach for service discovery
uses SRV records to describe the location of a service,
DNS PTR records to list all available instances of a par-
ticular service type, and DNS TXT records to convey ad-
ditional service meta-data; for example, available queues
on a printer. Similarly for component discovery, DNS-
CD uses PTR records for describing export/import of li-
braries/services, SRV records for publishing available dis-
covery scopes (defined in the next subsection), and TXT
records to contain additional component meta-data.

As discussed previously, a Eureka server has an exter-
nal DNS server associated with it; standard DNS server im-
plementations are freely available and by leveraging them
Eureka avoids a duplication of effort. This use of standard
DNS server implementations is a first step toward using ex-
isting (i.e., involved in Internet name-address resolution) or
arbitrary (i.e., not involved in Internet name-address res-
olution) DNS servers. As part of this first step, Eureka
needs a way to externally configure standard DNS server
implementations. Fortunately, most DNS server implemen-
tations use the DNS Dynamic Update Protocol[36], which
allows clients to dynamically manipulate information stored
on the server. This protocol is used by Eureka to add, edit,
and remove DNS resource records that represent component
meta-data.

It is important for Eureka to allow providers to publish

components without maintaining there own server, since
maintaining network servers is a potential security risk for
less knowledgeable users. For this reason, publishing com-
ponents to existing Eureka servers will probably be the pre-
ferred way to provide components for most providers. To
achieve this, a scope hosted by a server can be either open
or closed. An open scope allows arbitrary providers to pub-
lish their components into that scope, i.e., onto the hosting
server. A closed scope requires a user name and password
to publish components into that scope. For an open scope,
a provider can use the client API to submit the component
meta-data and an URL from which the component archive
file is accessible or the provider can submit the component
meta-data and the component archive file itself, which the
Eureka server will store in its component repository. In this
latter case, Eureka uses its own HTTP server to make the
submitted component archive file URL accessible. Since
components are published by arbitrary providers, like web
pages, it is likely that component references will eventually
get stale and will no longer be accessible. To deal with this
situation, Eureka provides a garbage collection mechanism
for component meta-data. A Eureka server periodically
checks whether all components referenced by the meta-data
in its associated DNS server are accessible via their given
URL. If a component can not be accessed, its meta-data is
removed from the server.

To ensure that a query for a given resource is found, no
matter which entry point into the Eureka network a client
is using, Eureka must define a way to interconnect Eureka
servers by propagating new scopes to existing servers. As
it turns out, DNS provides a mechanism for distributing re-
source records to other DNS servers. A DNS server that
is responsible for a specific domain can be configured as
the master of that domain, while other servers may act as
slaves that maintain copies of the resource records. A slave
server periodically checks for changes on the master server
and, when changes are found, applies those changes to its
copy of the resource records. These mechanisms are well
understood and have been in use for a long time in DNS
servers. Using this mechanism it is possible to make ev-
ery DNS server that takes part in an Eureka network aware
of all other scopes by creating a special scope at the root
server of a given Eureka network; the root server acts as
the master of that scope. When other servers join the Eu-
reka network, they are configured as a slave for that special
scope. This then propagates all scopes to the other servers.
Clients of the DNS servers are then free to query this special
scope at their DNS server to discover what scopes are avail-
able. New scopes are added to the master server by using
the DNS controller of the associated Eureka server.

5

3. SOPA

This Section describes SOPA’s main concepts. It intro-
duces the notion of the media graph and the media node,
explains how the graph is resolved, and how stream syn-
chronization is achieved.

3.1. The Media Graph

The underlying structure of SOPA is a directed, cycle-
free flowgraph. The graph consists of both, so called media
nodes and virtual nodes. The nodes can be of six different
types: sources, targets, pipes, mixers, forks, and generic.
The data flow is organized as a push stream from the sources
to the target. The reason for this is, that multimedia PC
hardware mostly enforces a push paradigm. Source nodes
read from an external source, like a special device, a file,
or from a network and push the data to another node. Pipe
nodes get data from a single source, usually process them,
and push them further to other media nodes. Mixers get
their data from several nodes, mix them, and push them to
single further nodes. Forks split a stream using a certain
strategy to pass it to several nodes. Targets receive a stream
and push it to external targets. Generic nodes can be of any
type, their application field is either wildcard usage or for
building unconnected nodes. A virtual node is an LDAP
query that may point to a media node that has not yet been
found. Besides the multimedia stream that flows between
the media nodes events are also passed through.

A media graph is in one of three states: defined, resolved,
or active. In the defined state the graph only consists of vir-
tual nodes, in other words a set of LDAP queries. In the
resolved state the graph is resolved as described in Section
3.4. When a graph is resolved, at least one path exists from
a source to a target, where all LDAP queries have been eval-
uated to match certain media nodes and the input and output
formats have been set to each media node in a way, that they
build a processing chain. If a media graph description led
to a resolved graph the active state is reached by first ini-
tializing all non-sources of valid pathes. Then the sources
are activated in order to start delivering data. A path of the
media graph is deactivated by stopping its source. An event
is then propagated that no further data is available, which
makes the remaining nodes of the path shut down, too. Af-
ter all activated path have shut down, the media graph gets
back to resolved state.

3.2. A Media Node

Each media node is a service as defined by the OSGi
standard. It has a name and a version that identifies it
uniquely. A set of properties as well as a preference or-
dered list of processable formats. All properties of a media

node are defined inside the class. There is no need to cre-
ate an extra file containing these metadata. Media nodes
are also configured via properties. Inter node communica-
tion is done via property change events. All media nodes
are notified whenever a property changes. There are several
predefined properties for certain events. For example, when
new media nodes are initialized or pathes are started.

A node is in one of three states: constructed, initial-
ized, or running. In the constructed state a node is con-
structed by first instantiating the class and then calling the
start()method as required by OSGi. Either the node is
a BundleActivator and Oscar calls this method or a so
called NodePropagator is used to do this for several nodes
at once. In the initialized state a node is initialized after the
media graph has been resolved and is to be startet. During
initialization, a node has to prepare everything for the im-
midiate receive of data. This state is introduced for synchro-
nization. Finally, in the running state, after initialization
pipes, targets, mixers, and forks immidiately receive data
from their predecessing nodes. Sources are started using
thestartWork() method. Ifstop() is called on a media
node, the node goes back to initialized state.

3.3. Identifying Media Formats

Media Formats are distinguished by so called format de-
scriptors. The mechanism has been taken from the open
source project Exymen, [15] discusses it in detail. SOPA
provides some default implementations of format and con-
tent descriptors that supply several standard methods typi-
cally used to describe media content, such as the average
framerate, the duration of an individual frame, the name,
and space coordinates of a frame, and, most important,
the FormatID. Exymen uses FormatIDs as a mechanism to
uniquely identify media formats, because file extensions are
ambiguous and unreliable. Magic bytes in headers are not
always used and sometimes it is unclear how to read them,
since they tend to be machine dependent (for example, Lit-
tle and Big Endian representations). MIME types [29] are
not sufficiently different because their primary intention is
to define a mapping between format and application, not the
classification of format types.

Exymen’s FormatIDs work differently: Compatible for-
mats get the same FormatID even though they may be read-
in differently. For example: There may be several ways to
store PCM (pulse code modulation) audio data, however, a
wav-file handler plug-in will not have any problem handling
PCM audio data even if it comes from an aif-file. Formats
that are basically different but are handled by some API are
put in the same class. For example, a node that uses Mi-
crosoft’s Windows Media SDK [57] can handle all audio
CODECs supported by the Audio Codec Manager (ACM).
A lists of the FormatIDs defined so far is available at [52].

6

3.4. Resolving the Media Graph

A graph is resolved in two main steps. In the first step,
SOPA tries to match the LDAP queries, in other words it
tries to find concrete media nodes that match the virtual
nodes. The query is matched upon the properties that each
media node propagates. Media nodes are searched locally
and in the Internet using Eureka. If no node is found, the re-
garding path cannot be resolved. If several nodes are found
they are stored as a list of alternatives considered in the next
step. In the second step, a list of media nodes belongs to
each virtual node. SOPA now tries to create a processing
chain by substituting each virtual node by a media node that
input and output format matches best. Since the format list
is preference ordered, best fit is defined as the minimum
index in the list. If there are several choices, the source’s
output format and the target’s input format is considered
more important than the format preferences of other nodes.
If there is still an ambiguity, newer versions of media nodes
are preferred.

3.5. Synchronization

SOPA uses the notion of progress constrained threads.
These are threads that dynamically depend on other thread’s
progress. The progress is measured in steps. Threads have
to request allowance for progress by requesting to proceed
to the next step at a central clearance manager. To avoid
deadlocks, steps must increase monotonically. If a thread
depends on another one, it has to wait until that other thread
requests the same step. A progress constrained thread ob-
ject signals the clearance manager that it has progressed to
a certain step. If it depends on other progress constrained
threads that have not come to this step yet, the clearance
manager blocks until these other threads request progress
for the same or a higher step. Each progress constrained
thread implements a method that is called by the clearance
manager to determine if this progress constrained thread de-
pends on some other progress constrained thread in a cer-
tain step. The dependencies have to be constant for a cer-
tain step, but may change in further steps dynamically. The
idea of progress constrained threads is derived from the well
known barrier synchronisation, described in detail in [46].
The difference being, that there are multiple barriers and
the barrier exists only for those threads that have to wait on
other threads.

A set of arbitrary media nodes can be grouped into a syn-
chronisation group in the media graph description. These
nodes are then synchronised using a given time granular-
ity (the default is 100ms). This is done by blocking the
path to its ancestor node while a given media node has pro-
cessed more data then the others, considering their frame
rates. Nodes can be added or removed from a synchroniza-

tion group at runtime.

3.6. SOPA in Action

Figure 4. A simple Graph Description

The initial media graph is specified in an XML file. The
file contains a set of node descriptions. Each node is de-
scribed by a temporary label (that can be choosen freely),
its type, and an LDAP query. Figure4 shows an example.
For developers there is also a shell and a simple graphi-
cal node editor (Figure5). The shell gives access to Oscar
and Eureka functionalities such as installing and publish-
ing bundles as well as to a few Java debugging features. A
given, dynamically evolved, media graph can also be seri-
alized into a new XML graph description. Once an initial
configuration has been found and debugged, devolpers pub-
lished their bundles of media nodes using the Eureka sys-
tem. The only thing that has to be deployed is the XML
graph description and SOPA itself (optionally the bundle
cache can also be deployed, so that an end user does not
need to have an Internet connection).

Figure 5. The SOPA Graphical Editor

At any time, a media graph can be restructured by a me-
dia node that uses the SOPA API or by loading another
XML graph description. Both graph descriptions or media
nodes restructure a given graph by adding virtual nodes in
the form of LDAP queries. Media nodes that are not run-
ning can be removed or replaced dynamically. Nodes in the
running state cannot be replaced or removed. However, an

7

active path can be connected to by connecting a media node
to a fork or a mixer. Forks and mixers can handle new con-
nections even when in the runnning state.

Every Node or the media graph manager inherits from
org.osgi.BundleActivator. In this way, Oscar takes care of
the component administration but is hidden to media node
developers that do not want to fiddle with the OSGi system.
The OSGi aware developers can just overwrite thestart()
andstop()methods in media node and can access the whole
functionality that Oscar provides. This is especially inter-
esting if you want to access some of the standard OSGi ser-
vices.

4. Related Work

Media frameworks include Indiva, HaVi, Audio Toolbox
in MacOS X, and the Java Media Framework. Indiva [50]
stands for INfrastructre for DIstributed Video and Audio
and is based on the Open Mash project. It is a middleware
layer for a unified set of abstractions and operations for
hardware devices, software processes, and media data
in a distributed audio and video environment. These
abstractions use a file system metaphor to access resources
and high-level commands to simplify the development
of Internet webcast and distributed collaboration control
applications. It uses soft state protocols for communication
between the individual processes. Indiva focuses very
much on distributed programming. The smallest elements
indiva handles are processes, not classes. The configu-
ration is pretty easy but static. There are no automatic
stream synchronisation mechanisms. HAVi [53] stands for
Home Audio Video Interoperability and is a standard for
networking home entertainment devices defined by several
major electronics companies. It specifically focuses on
the transfer of digital audio/video (AV) content between
HAVi devices, as well as the processing (rendering, record,
play back) of this content by these devices. HAVi provides
Java API for stream management and device controls.
It shares some goals with Indiva (see above). Havi has
similarities to Jini [54], both aim to create a network of
devices which users can easily connect and operate. There
is also a HaVi-Jini bridge. However, HAVi is targeted at
consumers home audio/video network and dictates the use
of Firewire as a transport mechanism. It aims towards
connecting hardware devices and is a protocol layer on top
of IEEE1394. Apple’s MacOS X operating system’s audio
core contains a package called Audio Toolbox [2]. Inside
this, one can find the AUGraph API. An AUGraph is a
high-level representation of a set of so called AudioUnits,
along with the connections between them. AudioUnits are
used to generate, process, receive, or otherwise manipulate
streams of audio. They are building blocks that may be
used singly or connected together to form the audio signal

graph. Information to and from AudioUnits is passed via
properties. AudioUnits are identified by a string based,
Apple propietary, hierarchic identification mechanism. One
can use the API to construct arbitrary signal paths through
which audio may be processed, i.e., a modular routing
system. The API deals with large numbers of AudioUnits
and their relationships. AudioGraphs allow realtime
routing changes, that means connections can be created and
broken while audio is being processed. Apples API comes
very near to what is described in this paper. However, the
API is restricted to audio and - although available in Java
- can only be used in Mac OS X. There is also no concept
for self configuration or distributed programming. Sun
Microsystems delivers a quite general and platform inde-
pendent framework that hides the implementation details of
several media formats: the Java Media Framework (JMF)
[55]. JMF is a Java API that supports capture, playback,
streaming and transcoding of audio, video, and other
time-based media. It also provides a plug-in architecture
that enables developers to support custom data sources
and sinks, effect plug-ins, and CODECs. JMF supports a
wide variety of different specifications, including various
sound formats, MPEG-1 (ISO/IEC 11172), H.261 (ITU-T
Recommendation H.261, 1990), H.263 (ITU-T Recom-
mendation H.263, 1998), Macromedia Flash, and others.
Although their plug-in loading mechanism can load classes
at runtime, they do not offer package dependency checking
or automatic updating, as one would expect from a well
defined component management. It is therefore not suitable
as a base for a dynamically configurable system. The main
disadvantage, however, is its complexity. JMF consists
of 11 packages of 212 different classes and interfaces.
Recording audio from the default input without any volume
control, requires about 20 lines of code and the knowl-
edge of these classes:AudioFormat, TargetDataLine,
DataLine, DataLine.Info, AudioSystem. Converting
a file from one format into another, involves about 700
lines of code [56] and at least the knowledge of the
following classes:ContentDescriptor, MediaLocator,
DataSink, SinkListener, TrackControl, Format,
QualityControl, Processor. It has to be remarked,
that these classes implement propietary concepts that may
sound familiar to the reader, but they are deduced from the
properties and technological restrictions of the supported
hardware and the implemented formats. One example that
illustrates this hypothesis is, that JMF does not support
synchronizing two content streams of different formats. A
top down approach would make life much easier for the
application programmer.

File sharing systems oriented around the peer-to-peer ap-
proach include Napster, Gnutella, JXTA, and JXTA Search.
The primary goal of Napster [30] was to enable file shar-
ing among clients with a special focus on music files. In

8

truth, Napster was something in-between a client-server and
a peer-to-peer architecture due to its use of a centralized reg-
istry. The concept used resembles that of a service-oriented
framework. The main advantages of the Gnutella protocol
[13] are based on its simplicity. Due to the fact that only
a few message types exist through which peers communi-
cate with each other and that the payload of queries is un-
defined, the protocol is easy to implement and makes no as-
sumptions about the resources shared. Due to its simplicity,
there are numerous clients available for the Gnutella pro-
tocol, such as LimeWire[10]. The Gnutella protocol does
have drawbacks, as discussed in [25]. Mainly, Gnutella
has high network traffic overhead due to its lack of effec-
tive traffic avoidance mechanism. Sun Microsystems has
founded an open community project called JXTA (short for
Juxtapose)[45]. The goal of the project is to allow a wide
range of applications to make use of distributed computing
and targets some of the limitations found in many peer-to-
peer systems. On the whole, JXTA introduces some new
concepts to peer-to-peer, most noticeably the ”peer group”
concept and the possibility of context-based querying for
services. One of the available peer-to-peer applications built
on top of JXTA is JXTA Search. The idea of this project is
to use server peers with which other peers can register as
capable of answering queries for a certain query-space. A
query-space is a topic under which a query belongs and all
queries made to a server node must commit themselves to a
query-space. JXTA Search is not limited to queries from in-
side the JXTA framework, but a server node can be queried
via SOAP[51] as well. The real downside of this approach
is that server nodes must be interconnected by hand.

Over the last decade service sharing systems, includ-
ing the Service Location Protocol (SLP)[24, 23], Jini [26],
the CORBA Trader[31], and more recently UDDI [4], have
gained attention. SLP is an IETF standard for resource dis-
covery of devices that offer network-based services to other
devices. SLP defines a protocol that enables clients to find
each other in a network and provide services to each other.
One of the concepts applied in order to structure the ser-
vices offered in SLP is the notion of scopes. The purpose of
the scope is to provide scalability, limiting the network cov-
erage of a request and the number of replies. SLP focuses
on the local-link, not wide-area networks. Developed by
the Object Management Group (OMG) the Common Ob-
ject Request Broker Architecture (CORBA)[32] is a refer-
ence implementation to aid the development of distributed
object-oriented applications. The CORBA Trader provides
the possibility of discovering instances of services of par-
ticular types. The concept used resembles that of a service-
oriented framework. A special registry object, called a
trader, supports the trading of objects in a distributed en-
vironment. Traders form a federated system that may span
many domains. CORBA, unfortunately, never gained a crit-

ical mass of acceptance, so CORBA traders are not ubiq-
uitous like the DNS infrastructure. Universal Description
Discovery and Integration (UDDI) is a specification for dis-
tributed registries that allow publishing and discovery of
web services. A core concept in UDDI is business publica-
tion, where a business is published into the UDDI registry
based on a description of the business and the web services
it provides. UDDI is a closed federation of registries, where
new registries can only be added by existing members. In
this federation, all registries replicates all published infor-
mation, which means that information that is published at
one registry is propagated to all other federation members.
The downside of this closed federation approach is that it is
not simple for arbitrary third-party providers to participate
in the federation. Jini is a distributed Java infrastructure that
provides mechanisms for service registration, lookup, and
usage. Jini does not provide sophisticated deployment facil-
ities and relies on the class loading capabilities of Java Re-
mote Method Invocation (RMI)[44]. An interesting aspect
is that services are leased to clients as a means of garbage
collection. The downsides of Jini are that it is dependent
on Java, and the Jini infrastructure is not ubiquitous on the
Internet.

Component models [11] include COM[5], Java-
Beans[43], EJB[42], and CCM[33]. EJB and CCM sup-
port non-functional aspects such as persistence, transac-
tions, and distribution. Service-oriented platforms include
OSGi, Jini, web services[14], and Avalon [1].

Gravity [37] is a research project investigating the dy-
namic assembly of applications and the impact of building
applications from components that exhibit dynamic avail-
ability, i.e., they may appear or disappear at any time. Grav-
ity is built as a standard OSGi bundle and provides a graphi-
cal design environment for building application using drag-
and-drop techniques. Using Gravity, an application is as-
sembled dynamically and the end user is able to switch
between design and execution modes at any time. In re-
gard to the dynamic configuration of an OSGi based sys-
tem, SOPA and Gravity do have some similarities. Both fo-
cus on the dynamic, demand-driven aspect of applications.
Subsequently, a promising approach could be to port this
specific part of SOPA to Gravity’s service-binder. Unfortu-
nately, Gravity does deploy a push based service binding,
meaning that additional meta-data is used in order to spec-
ify dependencies of a service and the servicebinder takes
care that dependencies are satisfied and binds those to the
service at runtime. SOPA in comparison, relays on a pull
based model, where services are requested when needed.
Therefore, especially since Gravity does not have a means
of specifying dependencies dynamically, a port would call
for a major redesign of the very core of SOPA.

9

5. Validations and Project Status

Figure 6. The E-Chalk System [19]

SOPA is an open API and is currently part of the E-
Chalk system. E-Chalk is a software system for classroom
teaching and distance learning. E-Chalk’s philosophy is to
provide a tool to enhance classroom lectures while distance
teaching arises as a side effect, i. e. at no extra cost. The
lecturer writes using special hardware that operates as an
electronic chalkboard. The lecturer can seamlessly integrate
pictures and interactive programs from the local hard-drive
or directly from the Internet. The lecture can be followed in
the lecture room and remotely through the Internet. The
system transmits audio, video, the build-up of the board
image, and optionally slides. All content is recorded and
archived in such a way that only a Java enabled web browser
is needed for later viewing. Figure6 shows a sketch of the
system in use. For a detailed description of E-Chalk see
[18, 19].

Early versions of E-Chalk used the WWR system, see
[17], to stream and archive the voice of the lecturer. This
was similar to the common approach for on-the-fly stream-
ing and recording of university lectures: software defined
radio systems combined with video and slides discussed in
Section1.1. Using SOPA, E-Chalk streams can also be re-
ceived with a Quicktime player or Windows Media Player.
A receptor, a generic media node, waits for an incoming
connection and checks its type. According to the type of
the connecting client it restructures the given media graph.
Downloaded media nodes are also used in Exymen [16],
which is used for editing archived lectures because it shares
the bundle cache with SOPA. A dedicated Exymen plugin is
able to read in media graph descriptions to find out conver-
sion pathes. This way, Exymen can edit any lecture, even
if it was recorded in a new format. Before recording, the

E-Chalk system uses an audio configuration wizard, mea-
sures the quality of the sound hardware used, monitors pos-
sible hardware malfunctions, prevents common user mis-
takes, and provides gain control and filter mechanisms. The
result is a modified initial graph description, that contains
a set of media nodes needed for pre- and postprocessing a
given lecture recording.

6. Future Work

An important problem to solve in the future is to guar-
antee the realtime performance of the media graph. Up to
now the system installs components on demand without any
knowledge of how much CPU time is consumed. It is well
possible, that the combination of certain components goes
beyond the limits of the underlying computer system. The
result is a denial of service. One solution is to let each
developer implement a benchmark for his or her compo-
nent which returns a value relative to components that come
along with the framework. On the very first run of SOPA,
a large benchmark using build-in components would be run
to Figure out what the underlying system is able to han-
dle. When running, SOPA would refuse to integrate further
components into the graph if the sum of the benchmark re-
sults of the already integrated components exceeds the max-
imum.

Security is a concern in any environment that supports
the execution of arbitrary dynamically downloaded code.
From the point of view of safety, the environment must
be protected from dynamically integrated components caus-
ing harm to the underlying resources, such as deleting files.
From the point of view of privacy, the environment must
be protected from components snooping or spying, such as
inventorying all services being used. The OSGi framework
uses a technique for dealing with security, namely executing
dynamically integrated components within a security sand-
box. The sandbox is used to stop unauthorized access to the
underlying resources and to control the visibility of other in-
stalled services and resources. External declaration enables
the creation of security policies that can assign defaults ac-
cess rights to dynamically integrated components, as well
as to assign different levels of rights to components from
known sources using a public-key cryptography approach.
The most difficult aspect of security is finding mechanisms
that are very simple or support automated decision making,
since the typical end user is not very knowledgeable about
security-related issues. End-user involvement in security-
related decisions should be kept to a minimum to avoid con-
fusion and mistakes. Future work in this area targets the
issue that especially in the SOPA vision, where the system
is autonomously deployed, access-control related issues be-
come almost unbearable to the End-user. Therefore, an
access-control management system like Raccoon [8] should

10

be deployed in order to ease those pains. Raccoon provides
access control in distributed object systems. The language
in which access policies are specified is determined by the
underlying access control model. An access control model
specifically designed to support the design and manage-
ment of access control policies in object-oriented systems
is view-based access control(VBAC) [6, 7]. VBAC relies
on roles as abstractions of callers and can thus be regarded
as an extension ofrole-based access control(RBAC) [41]
to distributed object systems (e.g. CORBA). The principal
new feature of VBAC is that of aview as a static, typed
language construct for the description of fine-grained ac-
cess rights, which are permissions or denials for operations
of distributed objects. Views are defined in theView Pol-
icy Language(VPL) as part of a policy design document,
which is a product of the design stage in the development
process. View-based access policies are type-checked with
a language compiler. Access policies are delivered in de-
scriptor files and deployed together with applications in the
target environments, similar to approaches like EJB [42] or
the CORBA Component Model [33]. Due to the fact that a
lightweight OSGi-based version of Raccoon is currently un-
der development future work will investigate the integration
of Raccoon into SOPA.

Eureka uses a network of interconnected DNS servers
that advertise component meta-data following the approach
of Rendezvous from Apple. During the time following
the first release Eureka’s architecture has been reworked
in order to support various networks. Networks introduce
themselves to Eureka in form of plugins. Future work in
this area includes the investigation and integration of differ-
ent sources for SOPA. Until today, SOPA’s architecture as-
sumes that it can rely on a pre-configured trader, in this case
Eureka, but with the new open architecture any peer-to-peer
system for example could be used in order to allow anybody
to provide extensions to existing SOPA-using applications.
This would be a blessing as well as a curse since by the
amount the number of available extensions increases the re-
liability of the system is decreasing, especially in the case
where extensions from arbitrary providers are used. Addi-
tionally, available extensions are filtered by the aforemen-
tioned notion of a scope. Regarding Eureka, scopes cor-
respond directly to domains in the DNS. It is unclear how
to map those scopes to other distributed system architec-
tures, which do not support scope like structures. Further-
more, even in the case of the DNS-based Eureka, the dif-
ference between a location-scope and a semantical-scope
needs some investigation. A scope is a mean of denoting
a location under which component meta-data can be found.
From a semantical perspective it might be desirable to al-
low the denotation of different branches inside a location as
well, like for instance in todays concurrent version systems
(e.g., CVS). A possible, already feasible way to achieve this

goal is to use sub-domains that represent branches inside a
location but sub-domains can not be created dynamically in
DNS. Subsequently, a different approach is needed that en-
ables the usage of branches inside a scope (i.e., the actual
zone of the scope).

7. Conclusion

SOPA is a framework that manages multimedia process-
ing and streaming components organized in a flow graph.
Components are discovered from remote repositories and
integrated autonomously during runtime. Stream synchro-
nization is handled transparently to the implementor. Based
on state-of-the-art solutions for component based software
development the system simplifies the implementation of
multimedia streaming applications and associated tools.

The SOPA architecure derives from the natural and com-
mon way of designing multimedia streaming applications,
namely, building a flow graph. This is enhanced by a frame-
work that consist of a component managment system com-
bined with a discovery and deployment engine. Therefore,
plugin management, discovery, and deployment is already
taken care of. The assembly of the graph is managed by
SOPA. Developers concentrate on the development of mul-
timedia components. Administrators only have to specify
their wishes in a simple XML file containing LDAP queries.

SOPA is currently an essential part of the current version
of a commercial application, the E-Chalk system, which is
in use in about a hundred institutions. Research projects are
also known to work with it.

References

[1] Apache Organization.The Avalon Framework. http://
jakarta.apache.org/avalon, 2004.

[2] Apple Computer, Inc.Audio and MIDI on Mac OS X, May
2001.

[3] Apple Computer, Inc. Rendezvous. Official Web Site,
http://developer.apple.com/macosx/rendezvous/,
May 2004.

[4] Ariba Corp., IBM Corp., and Microsoft Corp.UDDI Tech-
nical White Paper. Technical Report,http://www.uddi.
org/pubs/Iru_UDDI_Technical_White_Paper.pdf,
September 2000.

[5] Box, D. Essential COM. Addison Wesley, 1998.
[6] G. Brose. A typed access control model for CORBA. In

F. Cuppens, Y. Deswarte, D. Gollmann, and M. Weidner, ed-
itors,Proc. European Symposium on Research in Computer
Security (ESORICS), LNCS 1895, pages 88–105. Springer,
2000.

[7] G. Brose.Access Control Management in Distributed Object
Systems. PhD thesis, Freie Universität Berlin, 2001.

[8] G. Brose. Raccoon — An infrastructure for managing access
control in CORBA. InProc. Int. Conference on Distributed

11

http://jakarta.apache.org/avalon
http://jakarta.apache.org/avalon
http://developer.apple.com/macosx/rendezvous/
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf
http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

Applications and Interoperable Systems (DAIS). Kluwer,
2001.

[9] J. A. Brotherton.Enriching Everyday Activities through the
Automated Capture and Access of Live Experiences. PhD
thesis, Georgia Intitute of Technology, July 2001.

[10] C. Rohrs.LimeWire Design. http://www.limewire.org/
project/www/design.html, August 2001.

[11] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. ACM Press/Addison-Wesley Pub-
lishing Co., New York, NY, USA, 1998.

[12] T. O. Ch. Bacher, R. Mueller and M. Will. Authoring on the
fly. a new way of integrating telepresentation and course-
ware production. InProceedings of the International Con-
ference on Computer in Education, Malaysia, December
1997.

[13] Clip2. The Gnutella Protocol Specification. Version 0.41,
Document Revision 1.2, 2003.

[14] Curbera, F., Nagy, A., and Weerawarana, S.Web-Services:
Why and How.in Workshop on Object-Oriented Web Ser-
vices (OOPSLA, August 2001.

[15] G. Friedland. Towards a generic cross platform media editor:
An editing tool for e-chalk. Master’s thesis, Fachbereich
Mathematik und Informatik, Freie Universität Berlin, May
2002.

[16] G. Friedland. Towards a generic cross platform media editor:
An editing tool for e-chalk (abstract). InProceedings of the
fourth Informatiktage 2002, Bad Schussenried. Gesellschaft
für Informatik e.V., November 2002.

[17] G. Friedland, L. Knipping, and R. Rojas. E-chalk technical
description. Technical Report B-02-11, Fachbereich Mathe-
matik und Informatik, Freie Universität Berlin, May 2002.

[18] G. Friedland, L. Knipping, J. Schulte, and E. T. a. E-chalk:
A lecture recording system using the chalkboard metaphor.
International Journal of Interactive Technology and Smart
Education, 1(1), February 2004.

[19] G. Friedland, L. Knipping, and E. Tapia. Web based lectures
produced by AI supported classroom teaching.International
Journal of Artificial Intelligence Tools, 13(2), 2004.

[20] R. S. Hall. Oscar Community. Official Web Site,http:
//oscar-osgi.sourceforge.net, 2004.

[21] R. S. Hall. Oscar Issues. Official Web Site,http://
oscar-osgi.sourceforge.net/issues.html, 2004.

[22] R. S. Hall.OSGi Alliance. Official Web Site,http://www.
osgi.org, 2004.

[23] Internet Engineering Task Force.Service Location Protocol.
RFC2608, 1999.

[24] J. Govea and M. Barbeau.Comparison of Bandwidth Us-
age: Service Location Protocol and Jini. Technical Report
TR-00-06, School of Computer Science Carleton University,
October 2000.

[25] J. Ritter. Why Gnutella Can’t Scale. No, Really. http:
//www.tch.org/gnutella.html, 2003.

[26] K. Arnold et al. The Jini Specification. Addison-Wesley,
1999.

[27] Karl Pauls and Richard S. Hall. Eureka - A Resource Dis-
covery Service for Component Deployment. InProceedings
of the 2nd International Working Conference on Component
Deployment (CD 2004), Mai 2004.

[28] T. C. Mingchao Ma, Volker Schillings and C. Meinel. T-
cube: A multimedia authoring system for elearning. InPro-
ceedings of E-Learn, pages 2289–2296, Phoenix, Arizona,
USA, November 2003.

[29] N. B. N. Freed. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types.http://www.ietf.org/
rfc/rfc2046.txt, November 1996.

[30] Napster, LLC. Official Web Site. http://www.napster.
com, January 2004.

[31] Object Management Group, Inc.Trading Object Service
Specification, Version 1.0. http://www.omg.org, 2000.

[32] Object Management Group, Inc.Common Object Request
Broker Architecture: Core Specification. Version 3.0.2, De-
cember 2002.

[33] OMG. CORBA 3.0 New Components Chapters, TC Docu-
ment ptc/99-10-04. OMG, Oct. 1999.

[34] T. Ottmann. Presentation recording. In W. S. C. Haythorn-
thwaite and G. Vossen, editors,Conceptual and Technical
Aspects of Electronic Learning, Dagstuhl, Germany, May
2003. Schloss Dagstuhl, International Conference and Re-
search Center for Computer Science, Seminar No. 03191.

[35] P. Mockapetris.Domain Names - Concepts and Facilities.
RFC 1034, November 1987.

[36] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound.Dynamic
Updates in the Domain Name System (DNS UPDATE). RFC
2136, April 1997.

[37] R.S. Hall and H. Cervantes. Gravity: Supporting Dynam-
ically Available Services in Client-Side Applications. In
Poster paper in Proceedings of ESEC/FSE 2003, September
2003.

[38] R.S. Hall and H. Cervantes. An OSGi Implementation and
Experience Report. InProceedings of IEEEConsumer Com-
munications and Networking Conference, January 2004.

[39] S. Cheshire and M. Krochmal. DNS-Based Service
Discovery. Internet Draft,http://files.dns-sd.org/
draft-cheshire-dnsext-dns-sd.txt, February 2004.

[40] S. Cheshire and M. Krochmal. Multicast DNS. In-
ternet Draft, http://files.multicastdns.org/
draft-cheshire-dnsext-multicastdns.txt, February
2004.

[41] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role–based access control models.IEEE Com-
puter, 29(2):38–47, Feb. 1996.

[42] Sun Microsystems. Enterprise JavaBeans Specification,
Version 2.0, Final Draft, Oct. 2000.

[43] Sun Microsystems, INC.JavaBeans Specification. Version
1.0.1, 1997.

[44] Sun Microsystems, INC. Java Remote Method Invoca-
tion. http://java.sun.com/j2se/1.4.2/docs/guide/
rmi/spec/rmiTOC.html, 2003.

[45] Sun Microsystems, INC.JXTA v2.0 Protocols Specification.
Revision 2.1.1, October 2003.

[46] A. S. Tennenbaum.Modern Operating Systems. Prentice
Hall, 2nd edition, February 2001.

[47] The Eclipse Foundation. Eclipse Platform - Technical
Overview. Technical report, Object Technology Interna-
tional Inc., February 2003.

[48] The Open Services Gateway Initiative.OSGi Service Plat-
form. IOS Press, Amsterdam, The Netherlands, March 2003.
Release 3.

12

http://www.limewire.org/project/www/design.html
http://www.limewire.org/project/www/design.html
http://oscar-osgi.sourceforge.net
http://oscar-osgi.sourceforge.net
http://oscar-osgi.sourceforge.net/issues.html
http://oscar-osgi.sourceforge.net/issues.html
http://www.osgi.org
http://www.osgi.org
http://www.tch.org/gnutella.html
http://www.tch.org/gnutella.html
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.napster.com
http://www.napster.com
http://www.omg.org
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt
http://files.multicastdns.org/draft-cheshire-dnsext-multicastdns.txt
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmiTOC.html

[49] W3C. Synchronized Multimedia Integration Language
(SMIL 2.0). http://www.w3.org/TR/smil20/, August
2001.

[50] P. P. Wei Tsang Ooi and L. A. Rowe. Indiva: Middleware
for managing a distributed media environment. Technical
Report 166, Berkeley Media research Center, 2000.

[51] World Wide Web Consortium.SOAP Version 1.2 Part 1:
Messaging Framework. W3C Recommendation, June 2003.

[52] Exymen Project Homepage.http://www.exymen.org.
[53] Home Audio Video Interoperabilty. http://www.havi.

org.
[54] The Community Resource for Jini Technology.http://

www.jini.org.
[55] Java Media Framework. http://java.sun.com/

products/java-media/jmf/index.jsp.
[56] Java Media Framework Sample Code. http:

//java.sun.com/products/java-media/jmf/2.1.
1/samples/samplecode.html#Export.

[57] Microsoft Windows Media - 9 Series SDK.
http://www.microsoft.com/windows/windowsmedia/
9series/sdk.aspx.

13

http://www.w3.org/TR/smil20/
http://www.exymen.org
http://www.havi.org
http://www.havi.org
http://www.jini.org
http://www.jini.org
http://java.sun.com/products/java-media/jmf/index.jsp
http://java.sun.com/products/java-media/jmf/index.jsp
http://java.sun.com/products/java-media/jmf/2.1.1/samples/samplecode.html#Export
http://java.sun.com/products/java-media/jmf/2.1.1/samples/samplecode.html#Export
http://java.sun.com/products/java-media/jmf/2.1.1/samples/samplecode.html#Export
http://www.microsoft.com/windows/windowsmedia/9series/sdk.aspx
http://www.microsoft.com/windows/windowsmedia/9series/sdk.aspx

	1 . Introduction
	1.1 . Example Usage Scenario

	2 . Underlying Concepts and Technologies
	2.1 . OSGi
	2.2 . The OSGi Framework
	2.3 . Oscar
	2.4 . Eureka

	3 . SOPA
	3.1 . The Media Graph
	3.2 . A Media Node
	3.3 . Identifying Media Formats
	3.4 . Resolving the Media Graph
	3.5 . Synchronization
	3.6 . SOPA in Action

	4 . Related Work
	5 . Validations and Project Status
	6 . Future Work
	7 . Conclusion

