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Abstract

We show that n random points chosen independently and uniformly from a parallel-
ogram are in convex position with probability

n!
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1 The result

A finite set of points in the plane is called convex if its points are vertices of a convex
polygon. In this paper we show the following result.

Theorem 1 The set A of n random points chosen independently and uniformly
from a parallelogram S is convex with probability

A large part of studies in stochastic geometry deals with the convex hull C' of
a set of n points placed independently and uniformly in a fixed convex body K in
R?. Typical questions are: How many vertices does C' have? What is the volume
of C7 What is the surface area of C'7 See [WW] for a survey. In this paper we
settle one very special case — the probability that C' has n vertices in the case K
is a parallelogram. It is interesting that our approach is purely combinatorial, with
no use of integration. We think that our method based on an approximation of
the uniform distribution in a square by a large grid might have other applications.
However, it is already not clear how to apply our method for K a triangle or in
three dimensions.

In this section we prove Theorem 1, and in the next section we mention some
applications of Theorem 1.

Proof of Theorem 1. Let n > 2 be a fixed integer. Since a proper affine trans-
formation transfers the uniform distribution on .S onto the uniform distribution on
a square, we may and shall assume that S is a square. We shall approximate the
square S by a grid whose size tends to infinity.

Let m be a positive integer (denoting the size of the grid). Partition the (axis—
parallel) square S by m — 1 horizontal and by m — 1 vertical lines into m? squares
St,..., 5,2 of equal size. The centers of the squares Sy,..., 5,2 form a square grid
m X m. Every point of A lies in each of the squares 5,...,5,,2 with the same
probability 1/m?. Move every point of A to the center of the square S; in which it
lies, and denote the obtained multiset by A(m). It is not difficult to see that

Prob(A is convex) = lim Prob(A(m) is convex).
Thus,

Prob(A is convex) = lim Prob(R,, is convex),

where, for every m > 1, R,, is a multiset of n points chosen randomly and indepen-
dently from the square grid G, = {(¢,7) : 1,7 = 1,2,...,m} (each point of G, is
always taken with the same probability 1/m?).
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Let M(G,,,) be the set of all multisets of size n with elements from G, and let
C(G,,) be the set of all convex n-element subsets of Gip,,. It is easy to see that

: : : (G| . e(Ga)l
Prob(A is convex) = lim Prob(R,, is convex) = lim ————= = lim .
( ) = A, Frobl )= MG ] — ()

In the sequel we shall estimate the size of C(G,).

Every convex set R € C((,,) is uniquely defined by the smallest axis—parallel
rectangle Q(R) containing R and by the set V(R) of the n integer vectors forming
the boundary of the convex hull of R oriented in counterclockwise order.

Let X(R) and Y'(R) be the multisets of the first and of the second coordinates
of vectors in V(R), respectively. Formally,

Xp= (J {«, Y(R)= U )

(zy)EV(R) (zy)EV(R)

Let C'(G,,) be the set of all convex sets R € C((,,) such that 0 ¢ X(R)U Y (R)
and that the directions of the n? vectors (z,y) formed by all the n? pairs = €
X(R),y € Y(R) are distinct. Thus, in particular, the multisets X (R) and Y(R) are
sets for any R € C'(G,). It is not difficult to see that

. 1C(Gn)
lim = 1.
m—ca [C(Gp)]
Therefore,
Prob(A is convex) = lim |C<(§;;)| = lim %

In the estimation of the size of C'((,,) we use an auxiliary set S defined by
S ={(X(R),Y(R),Q(R)): R € C'(Gn)}.

The following construction shows that, for every (X,Y, Q) € S, there are exactly n!
sets R € C'(G,,) with (X(R),Y(R),Q(R)) = (X,Y,Q):

Take any of the n! one-to-one correspondences f : X — Y between X and Y,
and define a set V of n vectors by V = {(z, f(x)) : « € X}. Due to the definitions
of C'(G,,) and S, vectors in V' have distinct directions and, consequently, form the
(counterclockwise oriented) boundary of the convex hull of a unique set R € C'(G,,)
fitting into the rectangle Q).

Thus,
(G| = n! - [S]
and ,
Prob(A is convex) = ﬂll—%io % = Tgl_{fio n;ml?

It remains to estimate the size of the set S which is done in the sequel technical
part of the proof.



For (X,Y,Q) € S, partition each of the two sets X and Y into two subsets
containing elements with the same sign:

Xt={reX:2>0}, X ={reX:x<0}

Yt={yeY:y>0}, Y ={yeY:y<0}.

Suppose that each of the sets X, X~, Y+ Y~ is ordered in an arbitrary way.
Denote s = | X*| and ¢ = |Y*|. Thus,

Xt ={ry,...,25}, X ={2s1,...,2.},

Y+:{y17"'7yt}7 Y- :{yt+17---7yn}'

For every (X,Y,Q) € S, where Q@ = {(z,y) : a1 < @ < az, by <y < by}, the
orders on the sets X, X, YT, Y~ uniquely determine four sets D=, E~, DT, E* of
integers from the set {1,2,...,m} in the following way:

k k
D"':{al—l—z:zji:k:(),l,...,s}, D™ ={ay+ Z v k=ss4+1,...,n},
=1

1=s+1

k k
E"":{bl—l—Zyi:k:O,l,...,t}, E-={b+ Z zick=tt4+1,...,n}.

=1 i=t+1

Note that the sets D™, E~, Dt E satisfy the following conditions:

|IDY|+|D7|=n+2, ay =min DT =min D™, a; = max DT = maxD~, (1)
|EY|+|E7[=n+2, by=minEt =min E7, by = max Kt = max E~. (2)

For any (X,Y,Q) € S, we obtain [ XTI X~|I|]Y*|'|Y~|! different 4-tuples of sets
D=, E~, D*, E* corresponding to different orders on the sets X+, X~, Y+ Y ~.
Denote the set of all these 4-tuples (D™, E~, DT E*) by F(X,Y,Q). Thus,

IFXLY, Q) = [XT XTIy Ty !
= ([DF] = DUIDT[ = DIET] = DL = DL

where (D™, E~, Dt ET) is an arbitrary 4-tuple in F(X,Y,Q). For 0 < i <n —2
and 0 < j < n — 2, we say that a 4-tuple (D=, E~, Dt E™) of sets of integers has
property P; ; if

P |DT| =142, |[EY| = j 42, and the sets D™, E~, DT E* satisfy (1) and (2)
forsomel <ay <ay; <mand 1 <b <b <m.

There are (”;2> <m> . (”_,2> (:ﬁ) 4-tuples (D=, E~, Dt ET) with P, j and |DtND~| =

n J

|[E+t N E7| = 2. It follows that there are (1 +o(1)) - ("7%) (") - ("7°) (™) 4-tuples

% n 7

(D=, E~, Dt E*T) with P, ;. (Throughout the proof, o(1) denotes functions of m
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which tend to 0 as m tends to infinity.) Most of them (i.e., a (1 — o(1))-fraction of
them) lie in the disjoint union

U FX.Y0).
(X, Y.Q)eS

Thus,
FXY,Q)
— 1 = _
151 2 T

(X, Y,Q)es (X,Y,Q)es
DTG

Hence,

.
Prob(A is convex) = lim ne- |9 = lim ' —

2 2
n n

2 Applications and related results

In this section we sketch some applications of our result.

1. Replacing the parallelogram by a conver body. It is known that, for every
bounded convex body K in the plane, there are two parallelograms, one containing K’
and one contained in K, whose areas differ from the area of K at most by a constant
factor (e.g., see [Ba] for analogous results). Using this result and Theorem 1, it is
not difficult to show that there are two positive constants ¢; and ¢y such that the
set of n points chosen independently and uniformly from an arbitrary convex body
is convex with probability at least (%)n and at most (%)n



2. The expected area of a random triangle. 1t is not difficult to show that
Prob(A is convex) + 4 - E[Area of T] =1,

where A is a set of four random points selected independently and uniformly from
a convex body S of area 1, and T' is a triangle with random vertices selected also
independently and uniformly from S. If S is a parallelogram, Theorem 1 yields that
the expected area of T'is
1-(5/6)* 11
4 1447

which was also shown in [He| by a different method.

3. Convex subsets of a random set. ~ The author originally considered Theo-
rem 1 in connection with the following result.

Theorem 2 Let A be a set of n random points chosen independently and uniformly
from a parallelogram. Let c¢(A) be the largest convex subset of A. Set h = 243 ~

6.85. Then ¢(A) > An'/® with probability smaller than <%>3M1/37 for any X > h.

Proof. Let A > h. For simplicity, assume that An'/® is an integer. The set A
contalns (ATZ}/S) subsets of size An'/3. According to Theorem 1, each of them is

<2/\n1//3—2> 2
Anl/3 -1
( (Anl/3)] ) ‘

It follows that the expected number of convex independent subsets of A of size
An'/? is at most

convex with probability

2
nl/3— 2

n <2/\/\n11/33_12> n/\n1/3 4/\n1/3 B

\nl/3 ) (Anl/3)! < </\n1/3>An1/3 ' </\n1/3>An1/3 =

B 4263 Anl/? B h 3ant/?

Rt AW '

Consequently, A contains a convex independent subset of size > An'/® with proba-
/3
bility smaller than (%)w .

€

1/3

One application of Theorem 2 on so—called dense sets may be found in the
author’s PhD. thesis [Val.

By a more careful handling with the result of Theorem 1, one can prove that,
for any € > 0 and any sufficiently large n > n(¢e),

(h/2 — 5)n1/3 <c(A) < hn'l?
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holds with a high probability.

4. Construction of random convex sets. Emo Welzl pointed out that the above
proof of Theorem 1 yields a fast way how to construct a random convex set of
size n in a square. Let M, be the set of all n-element subsets of a square S, and
let © be the probabilistic measure on M, corresponding to a choice of n points
selected independently and uniformly from the square S. Let C), be the set of
all convex n-element subsets of S. Theorem 1 gives u(C,) = ((2:__12>/n!>2. The
measure ¢ = p/(p(Cy))|e, is a probabilistic measure on C,. With respect to
i, a random convex set A € (', can be constructed in a straightforward way by
repeated choosings of an n-point random subset A of S with respect to u, until the
set A is convex. However, this procedure has the expected running time at least
QR - (n!/<2::12>>2) = Q(R - (n/4e)* 1), where R is the time required for finding a
random real number uniformly distributed in the interval [0, 1]. The above proof of
Theorem 1 yields a procedure which constructs a random convex set with respect to
" essentially faster, in time O(nlogn+n- R+ P(n)), where R is as above and P(n)
is the time required for constructing a random permutation of the set {1,2,...,n}.
Of course, the argument also applies for any parallelogram.

5. The limit shape of a random convex set. Scale and shift the square grid
n xn so that it fits into the square S = {(z,y) : —1 < x,y < 1}, and consider the set
K (n) of all its convex subsets. Barany [B4] proved that for every ¢ > 0 there exists
ng such that for every n > ng the following holds: if we randomly choose an element
A of K(n), each with the same probability, then the Hausdorff distance between the
boundary of the convex hull of A and the curve {(z,y) : /1 — |z|+ /1 — |y| = 1}
is smaller than ¢ with a high probability. (Hausdorff distance between two sets is
the maximum distance of a point in any of the two sets to the other set.)

It is interesting that random convex sets have the same limit shape. Consider
the square S = {(x,y): —1 < @,y < 1} again, and define C,, and x as in the above

paragraph “Construction of random convex sets”. With a help of the above proof of
Theorem 1, it can be shown that for every ¢ > 0 there exists ng such that for every
n > ng the following holds: if we randomly choose an element A of C,, with respect
to the measure ¢/, then the Hausdorff distance between the boundary of the convex
hull of A and the curve {(2,y) : /1 — ||+ /1 — |y| = 1} is smaller than ¢ with a
high probability.

Let us note that the limit shape curve of the boundary of the convex hull of n
random points chosen independently and uniformly inside any planar convex body
K is (obviously) the perimeter of K.
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