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Abstract

We present a simple geometric and combinatorial algorithm for the approximate
partial matching problem of small 3D point landmark patterns. It has been designed
for and successfully applied in a computer aided neurosurgery navigation system.
The algorithm relies mainly on a geometric voting and scoring technique.
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1 Introduction

1.1 The Application Background

We address a geometric point pattern matching question stemming from a problem that
occurred in the development of a computer aided neurosurgery navigation system NEN [5]
at Functional Imaging Technologies GmbH. The aim of that system is to enable a surgeon
to utilize pre-operatively gathered information more effectively during the operation. This
information could be for example a 3D—map of functional regions in human brain obtained
by functional magnetic resonance imaging (MR). The surgeon of course wants to bypass
functional regions. Now the overall idea consists in linking the information from the MR
image directly to the operation environment for navigation purposes. Like in most such
guidance systems (see for example [2] and the references there) the basic approach to
solve this question relies on a technique called image registration. A set of markers is
attached to the skin (or even bone implanted in other systems) and special points on the
markers serve as orientation landmarks. These landmarks are visible in the pre-operative
volumetric MR images and define therefore a 3D point set. Then, immediately prior to the
operation, a 3D—tracking system can be used to localize (i.e. to ‘register’) the landmark
points a second time in the operation environment while the patient’s head is fixed. This,
again, defines a 3D point set. Assuming the rigidity of the head, we are now able to relate
the actual surgery position to the corresponding location in the MR image via the unique
rigid transformation defined by the two point sets.

In practice however, we cannot assume such an ideal situation. Firstly, rigidity does
not completely hold, since external forces are applied during the measurements or while
fixing the patient’s head. Secondly, we may be faced with distorted or missing landmarks
in both point sets. This could be caused for example by noise/artifacts in the MR image,
markers torn off unintentionally by the patient, or markers inaccessible for registration.
Finally, in the application markers are intentionally not distinguishable by labels. The
system designers wanted to keep both the procedure of attaching the markers to the skin
and of registering them in the operation environment as simple as possible. Nevertheless,
even under these weak assumptions the aim was to have a reliable algorithm that checks
whether there is a unique nearly rigid transformation from world data to image points
consistent with almost all landmarks within prescribed tolerances. The algorithm should
compute an approximation of this mapping in case of an affirmative answer. Figure 1
shows cylindric markers as used in the system attached to a dummy skull. The landmark
points are on top of the markers.

1.2 Mathematical Modeling and Algorithm Outline

Suppose that a number of landmark points mounted on a three-dimensional rigid body
have been localized in two different coordinate systems representing world space and image
space, respectively. This way we are given a set P of n world points and a set () of m image
points. We want to find an affine transformation A from world space into image space,
which approximates a 1-to-1 correspondence between P and (). Ideally, P and () have
equal size and A is the unique rigid transformation that maps each point of P onto the
corresponding point of ). Our goal is to find two large subsets P/ C P and Q' C Q
together with a 1-to-1 correspondence between them (called subsequently combinatorial
matching) and an affine transformation that is nearly a rigid motion and maps each p € P’



A Simple and Robust Geometric Algorithm for Landmark Registration in . .. 3

Figure 1: Two snapshots of a dummy skull with attached markers

approximately onto the corresponding ¢ € Q'. In [1] the reader finds a survey of geometric
techniques developed for solving pattern matching problems.

Our approach is divided into three steps. The first one is a search for similar triangles
in the point sets to build an n X m matrix S named scoring table. The value of an
entry s;;, called score, determines the relationship between p; € P and ¢; € @, i.e. a high
(low) score represents a strong vote for matching (not matching) these two points. Based
on the scoring table a candidate table is build in the second step. Each ¢; € @) with a high
score s;; becomes a candidate for p; € P. From the candidate table we compute all possible
combinatorial matchings. Finally, we determine for each combinatorial matching A the best
approximating affine transformation Ay. If A) is nearly rigid (the term is defined later
in dependence on a tolerance parameter, but should be intuitively clear), X is a geometric
matching. Usually a unique geometric matching will be found this way. Otherwise we
return a list of all geometric matchings found.

2 Scoring Table

Let the two point sets P = {p',p?,...,p"} and Q = {¢',¢%,...,¢™} and an error bound ¢
be given. We start with the key observation that a geometric matching maps world edges
to image edges of nearly the same length and world triangles to nearly congruent image
triangles. The idea of the scoring procedure is to turn this observation the other way round:
each edge pair or triangle pair similarity gives a vote to match the corresponding points,
such an approach was also used in [3]. The votes are collected in an n x m matrix S which
is initialized with zero entries. The easiest way to fill S would be an edge comparison.
Let Ep (Eg) be the set of all edges in P (Q). For each pair of edges e = (p%,p’) € Ep
and € = (¢%,¢") € Eg check if they are e-similar, i.e. whether their lengths differ by at
most . A positive answer gives some evidence that ¢* and ¢° are candidates for p* and p/.
Thus the scores sy, Sjy, Siv, and s, are increased by

el =111

1
€

This similarity value is one for edges of equal length and tends to zero if edges exhaust
the given error bound e. If p* corresponds to ¢“ in a geometric matching then s;, will
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end up with a high score. We remark that the reverse implication is not always true for
several reasons. Firstly, edges are symmetric objects and thus for any edge e = (p*,p’)
which is mapped to a similar edge €' = (¢", ¢") we have the same votes for s;y, Siy, S5, and
5jy. Secondly, with increasing size of the point set the expected number of image edges
similar to a given world edge also increases. Thus, we are faced with random noise in the
scoring table which might cover the values corresponding to a geometric matching.

One can significantly reduce these difficulties replacing the role of edges by congru-
ent triangles. Let Tp (Tg) denote the set of all triangles in P (Q). Two triangles
t = (p',p?,p*) € Tp and ' = (¢%,¢",q¥) € T are e-congruent if the corresponding edges
are e-similar. In this case the scores of the corresponding point pairs are increased by the
similarity value of the pairs of incident edges, e.g. score s;, is increased by

R e i W e el
5 £ '

Clearly, it is sufficient to consider only one representation for each triangle in Tp whereas
all permutations of the vertices of each triangle in Ty have to be considered.

Given a world triangle t we denote by C.(t) the set of all image triangles which are
e-congruent to t. We remark that the expected number E[|C.(¢)|] of image triangles
e-congruent with a randomly chosen world triangle ¢ is significantly smaller than the
expected number of image edges e-similar to a random world edge. Moreover, only few
triangles are (nearly) symmetric (i.e. e-isosceles or e-equilateral). Thus, in contrast to
scoring by edge similarities, now in the similarity scores will be updated for only one
permutation of the vertices with the before mentioned exceptions. This shows that the
random noise in the scoring table is essentially smaller if e-congruent triangles are used.

The only drawback caused by the triangle method is an increase of the running time.
The naive approach requires Q(n®m?) triangle comparisons. We introduced a more ef-
ficient data structure sorting triangles lexicographically according to the lengths of the
longest, the middle, and, the shortest edge. Thus, for any world triangle £ with maximal
edge length [ the set C.(t) can be limited performing a binary search for the first and last
triangle ¢’ with maximal edge length I’ > 1 — e and I’ <[ + ¢, respectively.

3 Combinatorial Matchings

A scoring table S provides a lot of useful information about geometric matchings. A small
score s;; testifies against matching p' with ¢/, whereas a high score sirjr is an advise that
there should be a geometric matching mapping pi' onto qj'. However, if there are several
(relatively) high scores in the ith row we have several candidates which can be matched
with p’ and the highest one may not always be the best one. Thus, we have to check several
combinatorial matchings. In the next section we will see that many such matchings can be
excluded because they are not geometric matchings or because they are reflections. The
problem is to find a balance ensuring that the desired geometric matching will be found
but at the same time keeping the total number of matching to be checked small.

In practice the following approach proved to be very useful. Let «;, §;, and v denote
the maximal scores in the i-th row of S, in the j-th column of S, and in the whole matrix S,
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respectively. An image point ¢; is a candidate of p; if the following condition holds:

Sij > max{%,%,%} .

The parameters 1/2, 1/2, and 1/4 have been fixed by numerous experiments. If a; < /2
for some p;, i.e. there is no candidate with very high score for this world point, a formal
symbol unmatched is inserted in the list of candidates. The collection of all candidate lists
forms the candidate table C'. A combinatorial matching generated from C' selects for each
world point one of its candidates such that each image point is used at most once. This
guarantees that world points with high scored candidates are always matched. The list of
all possible combinatorial matchings is computed with a back-tracking method.

4 Least-Squares Approximation

Given a combinatorial matching, i.e. two large subsets P’ C P and Q' C @ together with a
1-to-1 correspondence between them, assume for simplicity of notation that
P ={pp%....p'} and Q' = {q¢',¢%...,¢'} and that p” corresponds to ¢” for all
v € {1,...,l}. In the sequel a homogeneous representation of the points is used, i.e.
= (p¥,p5,p%,1)7 and ¢ = (¢¥,¢5,q5,1)". The goal is to find an affine transformation
A with
ail @12 Q13 Q@14
A= | G2 a2 a2 axn (1)
azr a2 a3z a34
0 0 0 1

such that l
> w’[|ApY —¢"|)? (2)
v=1

is minimal. Here, the symbol w” denotes an additional weight function. The standard
approach would work with w” =1 for all v € {1,...,l}. Taking into account that points
p¥ which are far from the center of gravity are more essential for the alignment of the
transformation than closer points, the weight w” is defined as |[p” — P||, i.e. as the dis-
tance between the world point p¥ and the center of gravity p of all matched world points
pl, ..., 0

The quadratic function (2) in the variables a;; assumes a unique minimum if and only
if the gradient vector vanishes, i.e.

0L 1w’ ||Ap —q"|* _
8aij

0 (3)

for all i € {1,2,3}, j € {1,...,4}.
Let p € P and ¢q € Q be corresponding points. Using (1) gives

3 4

1A —qlI* = 2(( laijﬁj)—ﬁi)Q

=1 j=

3 4 9 4
= Z((Z aijﬁj) —2G; Y aijp; + @2)
=1

=1 j=1
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Note that the upper border of index 4 is three (not four) because the product of the last
row of A with p is one, and so is the last coordinate of §. Consider the partial derivative
for some a;;,

O||Ap — || ~ I ) o
oA — df E | = ZGijP?Jr?pj Z aikPk — 2GiDj (4)
g e
4
= > 2piPrair — 2p;di- (5)
k=1

Substituting (5) into (3) results in

4 1 !

S (X W )an = > w' i, (6)
k=1 v=1 v=1

for alli € {1,2,3}, j € {1,...,4}. Note that a factor of two has been cancelled from each

equation. The coefficients of A which minimize (2) are obtained by solving this system of

12 linear equations in 12 variables as follows:

A more careful analysis of (6) shows that the variables and the equations can be
partitioned into three independent groups. KEach group consists of four variables and
four equations and corresponds to one row in A. This leads to the following three linear
equation systems

ST | oy i e el =D DN Eiaic?
1| wp3pr wpzpy; wp3p3 Wops3 a3 =1 | W P3q
w'pi  w'py  w'py w” aig w"q;

with ¢ € {1,2,3}. Note that the matrix does not depend on 4, so it is stored only once.
To solve the systems of linear equations an LU-decomposition of this matrix is computed.

Finally, for testing whether the resulting transformation A is nearly rigid, consider the
matrix R = (a;;)1<i,j<3, i-e. the linear part of the affine transformation A. The following
necessary conditions for R are checked:

det(R) —1] < 4, (7)

[R(e)| —1] < 6, i€{1,2,3}, (8)
IIR((1,1,1) —e;))| — V2| < 4, i€e{1,2,3}, (9)
IR((1,1,1)| = V3] < 4, (10)

with e; being the unit vectors and for § the value 0.1 is chosen in the implementation.
Condition (7) guarantees det(R) > 0 (i.e. A contains no reflection) and det(R) ~ 1 (the
determinant is +1 for rigid transformations). The remaining conditions are relaxations of
the fact, that rigid transformations do not scale, i.e. they are length preserving.

5 Implementation

Our algorithm has been implemented in C4++. We followed the generic programming
paradigm as it is realized in the standard template library (STL) [4]. The whole computa-
tion is encapsulated in a class which provides an interface to easily adjust the parameters.
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We tested the implementation on several different input sets. Besides computer gener-
ated point sets to check degenerated configurations, we used data stemming from dummy
skulls as well as patients’ data from real world surgeries. A selection of these data sets is
shown in Table 1.

name #p01.nts description
world image
dummy1 5 5 dummy skull (MRI)*
dummy?2 5 4 dummy skull (MRI)*
one marker not detected in preprocessing
dummy3 14 5 dummy skull (MRI)*
nine “virtual” markers measured at random
dummy4 8 8 dummy skull (CT)**
dummyb 6 8 dummy skull (CT)**
two markers not measured
phantoml 4 10 second dummy skull (MRI)*
only four markers measured
phantom2 6 10 second dummy skull (MRI)*
only six markers measured
patient1 5 5 patient’s head (MRI)*
patient2 5 6 patient’s head (MRI)*
one marker lost during surgery preparation
equal 6 6 two equal sets (generated)
cube 6 6 six vertices of a 3-cube (slightly perturbed)

Table 1: Data sets.

The algorithm computed the right geometric matching in all cases. Table 2 gives the
results, i.e. the number of matched point pairs, the determinant of the resulting trans-
formation, and the mean and maximal point deviation. Note that the missing point pair
of input sets ‘dummy4’ and ‘phantom?2’ is due to one badly measured marker. All run-
ning times are far below one second, which is completely satisfactory for the designated
application.

Our implementation has been integrated in the computer aided surgery system NEN [5]
and gives very good results in practice.
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#matched | deter- | point deviation
name . .
pairs minant | mean max.
dummy1 5of 5 1.04 1.48 2.60
dummy?2 4 of 4 0.95 0.00 0.00
dummy3 5of 5 1.04 0.64 1.10
dummy4 7 of 8 0.98 2.74 6.46
dummyb 6 of 6 1.01 0.41 0.98
phantom1 4 of 4 1.00 0.00 0.00
phantom?2 5 of 6 1.01 0.13 0.21
patientl 5of 5 0.97 0.51 1.27
patient2 5of 5 0.95 0.45 1.15
equal 6 of 6 1.00 0.00 0.00
cube 6 of 6 1.01 0.55 0.80
Table 2: Test Results.
References
[1] H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and approx-
imation. In J.-R. Sack and J. Urrutia, editors, Handbook of Computational Geometry,
pages 121 — 153. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 1999.
[2] J. M. Fitzpatrick, J. B. West, and C. R. Maurer. Predicting error in rigid-body point-
based registration. IEEE Transactions on Medical Imaging, 17(5):694-702, 1998.
[3] F. Hoffmann, K. Kriegel, and C. Wenk. An applied point pattern matching problem:
comparing 2d patterns of protein spots. Discrete Applied Mathematics, 93:75-88, 1999.
[4] D. Musser and A. Saini. STL Tutorial and Reference Guide: C++ Programming with
the Standard Template Library. Addison-Wesley, 1996.
[5] A. Schleich, S. Jovanovic, B. Sedlmaier, U. Warschewske, F. Oltmanns, S. Schonherr,

W. Oganovsky, B. Ohnesorge, T. Hoell, and H. Scherer. Electromagnetic ENT naviga-
tion: the NEN system. In Proc. Jth Annu. Conf. International Society for Computer
Aided Surgery, 2000.



