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Abstract

We give tail estimates for the space complexity of randomized incremental algorithms
for line segment intersection in the plane. For n the number of segments, m is the
number of intersections, and m > n In nIn(® n, there 1s a constant ¢ such that

the probability that the total space cost exceeds ¢ times the expected space cost is
e—ﬂ(m/(nln n))
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1 Introduction

Randomized incremental algorithms have received considerable attention recently;
cf. [3], [10] and [1]. They solve a large number of geometric problems, including the
construction of Voronoi diagrams and convex hulls and intersection of line segments,
in optimal expected time and space. Mehlhorn [9] has given a tail estimate for the
space complexity of some of these algorithms. In particular, he has shown that, for
the construction of planar Voronoi diagrams and Delaunay triangulations (using the
algorithm of [5]), the probability that the space cost exceeds ¢ times the expected
value is at most (¢/e)~¢/e for every constant ¢ > 1. In this paper we obtain a
considerably sharper bound for line segment intersection which is exponential in the
size of the problem.

This paper is structured as follows. In Section 2 we prove a simple probabilistic
lemma which we then apply in Section 3 to derive the tail estimate mentioned above.

2 A Probalistic Lemma

For functions M : N — N and d : N — N and integers n and r with n > r > 0, call
a rooted tree T' an (n,r)-tree respecting M and d iff either r = 0 and T consists of a
single node, or r > 0, the root of 7" has n subtrees each of which is an (n—1, r—1)-
tree respecting M and d, and the n edges incident to the root are labeled with
non-negative weights d; so that d; < d(n) for 1 <i:<mnand > ..., di < M(n).

For a path 7 in T, let X = X, be the sum of the weights of the edges along the
path. The uniform distribution on the n(n —1)---(n —r + 1) paths in 7" makes X
a random variable with expectation E(X) <> ..., M(n—1)/(n —1).

Lemma 1l Forallt >0 and B> 0

M(n—1) (etd(n=i) _1)

Prob(X > B) < e~ BT 0cicr1 Timndn=D

Remark: The proof is an adaption of the standard proof for Hoeffding’s inequality,
cf. [8]. The case r = n and d(¢) = M (i) for all ¢ was previously treated in [9].

Proof. For 0 < ¢ <r—1,let X; be the weight of the (¢ + 1)-st edge on the path =.
Then X =5 ..., Xiand

Prob(X > B) = ¢ PePProb(e™ > ') < e PE(Y) < ePE( H et Xy

0<i<r—1

Put Z; = ¢ and Q; = Zy Z1 -+ Z;. Then, for ¢ > 1,

E(Q;) =E(Qi-17;) = E(Q-1E(Z|Qi-1)) .
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But 1
E(Zi|Qi—1) = E (etdl 4. 4+ etdn—i) 7

where dy,dy,---,d,_; are the weights of the edges emanating from the node corre-
sponding to ();_1. Since d; < d(n—1i)for 1 < j <n—iand El<j<n—i di < M(n—1),
the last expression is maximized when |M(n —¢)/d(n — i)| weights d; are equal to
d(n — 1), one weight is equal to M(n —i) — |[M(n —¢)/d(n —t)]d(n — i) and the

remaining weights are equal to zero. It follows that

M=) tdnmi) 4y _ M=)
d(n—1 d(n—1
B(Z]Qi-) < — ()
M(n —1) :
-1 td(n—i) 1) .
T dn = )

the case ¢+ = 0 is treated similarly, except that no conditional probability is used.
Hence,

M(n—1) td(n—1) _
E( H etXi) < eZOSigr—l ey (¢4 —-1) 7
0<i<r—1
since [[ocrer1 (1 + 4:) < Ilocie,_q €% = e2osis—1Y% for all reals Yoy s Yri-

Remark: If d(-) is a nondecreasing function, then

This simplifies Lemma 1 to

M(n—z)

PI‘Ob(X > B) < 6_tB—l_((etd(n)_l)/d(n)).ZOSiST—l n—t

In what follows we will use this revised bound.

3 The Space Complexity of Randomized Incremental Con-
structions

Randomized incremental constructions take a random permutation of some set S
of n objects, e.g., points in the plane, and construct a set of so-called regions,
e.g., regions of the Voronoi diagram, in an incremental fashion. The algorithm
maintains the collection of regions for the current subset of objects, and updates it
after each insertion of a new object. The space complezity of the algorithm is defined
to be the overall number of regions created during the random insertion process.
This notation is appropriate because one of the main techniques for randomized
incremental constructions maintains all regions ever constructed “on top of each
other” without erasing old regions; see [1,2,5,12,11].



Whenever an object is added, an incremental space cost occurs. In most appli-
cations this space cost depends only on the object  added and the set R of objects
previously added (i.e. it is independent of the order in which the elements in R
have been inserted). For R C S and # € S — R let ¢(R, ) denote the incremental
space cost when object = is added to set R of objects. For the analysis of the total
space cost, we define a space cost tree Ty as follows. In tree Ty the nodes of depth
1, 0 <2 < n, have exactly n — ¢ children. The nodes of depth ¢ correspond to the
subsets of S of size n — ¢ in a natural way. The root corresponds to S and if a
node v corresponds to a subset £ C S then the children of v correspond to the sets
R — {x}, where z ranges over R. The edge connecting the nodes corresponding to
R and R —{x} is labeled by ¢(R — {x}, ). For a path 7 in Ty, let X(7) be the sum
of the edge labels on path m. Then X (7) is the total space cost when the elements
of S are inserted in the order specified by 7. Let X = X (7) be the random variable
defined by the uniform distribution on the paths in Ty, We call X the space cost
random variable. We note that paths in Ty represent “backward” executions of the
insertion process.

Let
M(r) = maX{Z e(R—{z},2); RCS,|R|=r}

and

d(r) = max{c(R — {a},2); RCS,|R|=r,x € R} .

Then Tg is an (n, n)-tree respecting M and d and hence Lemma 1 gives a tail estimate
for the total space cost. For many randomized incremental constructions, e.g., planar
Voronoi diagrams and Delaunay triangulations, trapezoidal decompositions, and
convex hulls in three dimensions, one has M(r) = d(r) = ar for some constant a.
Then, as shown in [9], if we choose ¢ = % Inc and r = n in Lemma 1, we obtain

Prob(X > c¢-an) < ! <E>C

e \C

for all ¢ > 1. We will now discuss an application where d is much smaller than M.

Line Segment Intersections. Randomized incremental algorithms for line seg-
ment intersection are described in [3] and [10]. These algorithms have expected
running time O(nlogn 4+ m) and expected space cost O(n + m), where n is the
number of segments and m is the number of intersections. Both algorithms main-
tain the trapezoidal decomposition T(R) of the plane with respect to the set R of
segments. This decomposition is defined as the planar map obtained by drawing,
from each endpoint and intersection point of the segments in R, a vertical segment
up and down and extend it until it meets other segments of R. The incremental
space cost ¢(R,s) of adding a segment s € S — R to the current set R of segments
is the number of trapezoids in T(R U {s}) incident to s. Since each trapezoid is
incident to at most four segments and since the number of trapezoids in T'(R) is at
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most 1 4 3| R| 4+ 3m(R), where m(R) is the number of pairs of intersecting segments
in R, we have

M(R):=> " c(R—{s},s) <A(1 +3|R| + 3m(R)).
sER
Clearly, 0 < m(R) < |R|*/2. We can therefore apply Lemma 1 with d(r) = M(r) =
O(r + min(r?,m)) to derive a tail estimate for the total space cost, albeit with a
fairly weak bound of the form:

Prob(X > ¢(n 4+ m)logn) < ¢

for all constants ¢. We leave it to the reader to verify this bound, which we now
proceed to improve. There are two weak spots in the argument just offered. First,
the expected value of m(R) is only O(r+m- ;—2), so the upper bound M(r) is a gross
overestimation for most values of M(R). Second, as will be shown momentarily, d(r)
is always much smaller than the bound given above.

To obtain a sharper tail estimate we thus proceed as follows. We first show
that d(r) = O(ra(r)), where « is the functional inverse of Ackermann’s function
(cf. [7, page 156] for a definition). We next prove a tail estimate for (a quantity
related to) m(R), and then finally use this tail estimate to apply Lemma 1 with a
function M(r) smaller than O(r + min(r?,m)).

Lemma 2 Let RC S, s € S— R, andr = |R|. Then ¢(R,s) < pra(r), where « is
the functional inverse of Ackermann’s function and (3 is some constant independent

of r.

Proof.  Let [ be the line supporting s. Then ¢(R,s) < 6 + ¢(R,[) since every
trapezoid in T(R U {s}) incident to s but not incident to an endpoint of s is also
incident to [ in T'(RU{l}), and each endpoint of s is incident to only three trapezoids
in T(RU {s}). In order to bound the number of trapezoids incident to [ and above
[, perform a scan along [ and consider the list of top segments of these trapezoids.
This list is an (r,3) Davenport—Schinzel sequence (cf. [7, page 151] for a definition)
as there can be no five indices 11 < 15 < 13 < 14 < 15 in this list such that the
trapezoids at places 21, 13, 5 have top segment a and the trapezoids at places 5,
i4 have top segment b, for b # a. Since the length of an (r,3) Davenport—Schinzel
sequence is bounded by O(ra(r)) (cf. [7, page 156]), the lemma follows.
For a line segment s € S let deg(s) be the number of intersections between s
and the other segments in S. For R C 5, let D(R) = ) _pdeg(s). Then, clearly,
D(R) > 2m(R); in fact, D(R) counts all intersections between segments in R and
segments in S, where intersections between two segments in R are counted twice.

Lemma 3 Let a; > 4e?, a3 >0, 2 > 1, and 1 <r <n. Then

Y

azm/(nz)
2 (4
Prob(D(R) > (U 4 “2) m) < min {m/ () }

n x asn

where R is a random subset of S of size r.



Proof. For r > i—? there is nothing to prove since D(R) < 2m always holds. For
r < Z—? < %, we use Lemma 1, as follows. Consider the following (n,r)-tree T'. The
nodes of T" of depth 7, 0 < ¢ < r, correspond to subsets of S of cardinality z; the
correspondence is many to one. If node v of T corresponds to R C S then the
n — |R'| children of v correspond to the sets R'U {s}, where s € S — R'. Also, the
edge connecting R and R U {s} is labeled with deg(s). In this way, the edge labels
on a leaf-to-root path sum to D(R), where R is the subset of S corresponding to
the leaf. Also, with d(¢) = n and M({) = 2m the tree T respects d and M and,
by symmetry, each subset R C S with |R| = r corresponds to the same number of

leaves of T'. Thus

2m tn
e_tB—l—ZOSiSr—l (n—t)n (6 _1)

e_tB-l—%(em_l)

Prob(D(R) > B)

IA A

for all B> 0 and t > 0. Put B = m(“" 4 %2) and { = l11(1(4]37”70). Then

n

E(1-n(£2))

en 4mr
LB (1-In( )
_aymr

e n?

Prob(D(R) > B)

IA A TN

Similarly, we have

Prob(D(R) > B) ¢ Fa(1I-In(5E)

azm 4
_ (i)

IA

Theorem 4 There are absolute constants C,v > 0 such that Prob(X > Cm) <

e "Ghw) form > nlnninlnlnn.

Proof. Put x = Inn. Let Ty be the space cost tree. Let a; = 4¢?, ay = 16¢, and let
M(r) =8(1+3r + 2m(4L + 2)).

For 1 < r < n, define the random variable Y, on the paths of Ty so that Y, (7) =1
it M(R) > M(r) for the set R corresponding to the node of depth n — r on path ,

and 0 otherwise. Let Y = max Y..
1<r<n

Let T} be the following (n,n)-tree respecting M and d, where d(r) = pra(n)
and /3 is as in Lemma 2. Let v be any node of T, let R be the set corresponding
to v, and let w be the node corresponding to v in T7. If M(R) < M(|R]), then the
labels of the edges emanating from w in 7} are identical to the labels of the edges
emanating from v in To; if M(R) > M(|R|), then the labels of the edges emanating
from w are arbitrary, but respect M and d. Let X be the random variable defined
by the sum of the edge labels along the paths in Tj.

Claim 1 Prob(X > B) < Prob(X; > B) + Prob(Y =1) for any B > 0.
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Proof. For paths © with Y (7) =0 we have X(7) = Xi(x). Thus

Prob(X > B) < Prob(Y =1)+Prob(X >B and Y =0)
= Prob(Y =1)+Prob(X; > B and Y =0)
< Prob(Y =1)+ Prob(X; > B)

We next bound Prob(Y = 1), proceeding in two steps. First we use a standard
“power-of-two-trick” to show that we may essentially concentrate on Y, for r being
a power of two and then use Lemma 3 to bound the probability that Y, is 1.

Claim 2 Let © be a path in Ty. If Y (7w) = 1 then there is an v = 2! for some [ such
that M(R) > M(r)/2 where R is the set corresponding to the node of depth n —r
on path .

Proof. 1t Y(r) =1 then there is an 1 <’ < n, such that M(R') > M(r'"), where
R’ is the set corresponding to the node of depth n —’ on x. Let r = 2M°87"1_ Then
r < n, since M(R') < M(r') for all v > 2. Let R be the set corresponding to the

node of depth n — r on path 7. Then M(R) > M(R') > M(r") > @

Claim 3 Let R C S, |R| = r, and M(R) > M(r)/2. Then D(R) > m(ayr/n +
az/x).

Proof. We have M(R) < 4(14 3|R|+ 3m(R)) and M(r) = 8(1 4 3r + Sm(air/n +
az/x)). Thus M(R) > M(r)/2 implies m(R) > %m(alr/n + ay/x). Since D(R) >
2m(R), the claim follows.

Claim 4 Let m > na. Then

Prob(Y = 1) < 1og(2x) . 6_462m/(m)‘

Proof. Let
e=anmr/n? it r>n/z
= azm/(nz)
/() <‘Z—9‘Z> it r<n/x
Then
[logn]|—1

Prob(Y =1)< Y f(2)

according to Lemma 3, and Claims 2 and 3. Next observe that this sum can be split
into two subsumes, the first is

logz/2)] |
Z f(?“) < e—(a1m/n2)~(n/x) . Z 6_(a1m/n2)21
ré€[n/z,n/2] =0

r=2! for some !

< e—alm/(nx) . logx



and the second is

[log(n/x)] aosm/(nz) [log
cxr
ey = ()

n
2 ]

azm/(nz)
(‘*ﬁ) oz (ne)-(1+ log(n/2)])

aoM

hex On azm/(nz) 1 16em/(nx)
it < (=
(agn x ) - (2)

< e—4e2m/(nx)

(Qagm/(nx))l

)

(n/z)]
=0

(because (%)4 < e~°). Hence

Prob(Y = 1) < log(2z) - e 74 m/(n0)
as claimed.
Claim 5 Let © = Inn and assume that m > n. Then, for all B > 0,

B >—B/(ﬁna(n))

3asem

Prob(X; > B) < (

where as = 12a, = 192¢.

Proof. The tree Ty respects M and d. Since m > n, it is easily verified that T; also
respects M and d where M(r) = asm(r/n 4+ 1/x). Thus, Lemma 1 and the remark
following it imply, for any B > 0,

agm(r/ntl/z na(n
B n Lar (P 1)

Prob(X; > B)

<
S e_tB—I—e/Btna(n) Zz?:z) Zl<r<n(7ll+flr)
<

—tB-l—eth"a(") Zzz’;) (2_|_1HTW)

e—tB+e/3tna<n> 3:2(’;1) ‘

IA

Put t = 1/(pna(n))In(B/(3asm)). Then

B (B
PI‘Ob(Xl > B) <e Bria(ny | (3ea3m)

We can now complete the proot of Theorem 4 by combining Claims 1, 4 and
5. Since m > nzlnlnz, we have —46 m/(nx) + Inlog(22) < —m/(nx), so that, by
Claim 4, Prob(Y = 1) < e7/("®)_ Claim 5 with B > 576¢%*m implies Prob(X1 >
B) < ¢$m/na(n))  The Theorem now follows from Claim 1.
Remark: The constants C', v in Theorem 4 that can be derived from our analysis are
probably much too large and much too small, respectively. It would be interesting
to obtain finer calibration of these constants.
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