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Abstract

We give tail estimates for the space complexity of randomized incremental algorithms
for line segment intersection in the plane� For n the number of segments� m is the

number of intersections� and m � n ln n ln��� n� there is a constant c such that

the probability that the total space cost exceeds c times the expected space cost is
e
���m��n lnn���
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� Introduction

Randomized incremental algorithms have received considerable attention recently�
cf� 	
�� 	�
� and 	��� They solve a large number of geometric problems� including the
construction of Voronoi diagrams and convex hulls and intersection of line segments�
in optimal expected time and space� Mehlhorn 	�� has given a tail estimate for the
space complexity of some of these algorithms� In particular� he has shown that� for
the construction of planar Voronoi diagrams and Delaunay triangulations �using the
algorithm of 	���� the probability that the space cost exceeds c times the expected
value is at most �c�e��c�e for every constant c � �� In this paper we obtain a
considerably sharper bound for line segment intersection which is exponential in the
size of the problem�

This paper is structured as follows� In Section � we prove a simple probabilistic
lemma which we then apply in Section 
 to derive the tail estimate mentioned above�

� A Probalistic Lemma

For functions M � N� N and d � N� N and integers n and r with n � r � 
� call
a rooted tree T an �n� r��tree respecting M and d i� either r � 
 and T consists of a
single node� or r � 
� the root of T has n subtrees each of which is an �n��� r����
tree respecting M and d� and the n edges incident to the root are labeled with
non�negative weights di so that di � d�n� for � � i � n and

P
��i�n di �M�n��

For a path � in T � let X � X� be the sum of the weights of the edges along the
path� The uniform distribution on the n�n� �� � � � �n� r � �� paths in T makes X
a random variable with expectation E�X� �

P
��i�r��M�n� i���n� i��

Lemma � For all t � 
 and B � 


Prob�X � B� � e
�tB�

P
��i�r��

M�n�i�
�n�i�d�n�i� 
etd�n�i����

�

Remark� The proof is an adaption of the standard proof for Hoe�ding�s inequality�
cf� 	��� The case r � n and d�i� �M�i� for all i was previously treated in 	���

Proof� For 
 � i � r� �� let Xi be the weight of the �i����st edge on the path ��
Then X �

P
��i�r�� Xi and

Prob�X � B� � e�tBetBProb�etX � etB� � e�tBE�e
tX� � e�tBE�

Y
��i�r��

etXi� �

Put Zi � etXi and Qi � Z� Z� � � � Zi� Then� for i � ��

E�Qi� � E�Qi��Zi� � E�Qi��E�ZijQi���� �
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But

E�ZijQi��� �
�

n � i
�etd� � � � � � etdn�i� �

where d�� d�� � � � � dn�i are the weights of the edges emanating from the node corre�
sponding to Qi��� Since dj � d�n�i� for � � j � n�i and

P
��j�n�i dj �M�n�i��

the last expression is maximized when bM�n� i��d�n� i�c weights dj are equal to
d�n � i�� one weight is equal to M�n � i� � bM�n � i��d�n � i�cd�n � i� and the
remaining weights are equal to zero� It follows that

E�ZijQi��� �

M
n�i�
d
n�i�

etd
n�i� � n� i� M
n�i�
d
n�i�

n� i

� � �
M�n� i�

�n� i� d�n � i�
�etd
n�i� � �� �

the case i � 
 is treated similarly� except that no conditional probability is used�
Hence�

E�
Y

��i�r��

etXi� � e
P

��i�r��
M�n�i�

�n�i�d�n�i�

etd�n�i����

�

since
Q

��i�r���� � yi� �
Q

��i�r�� e
yi � e

P
��i�r��

yi for all reals y�� � � � � yr���

Remark� If d��� is a nondecreasing function� then

etd
n�i� � �

d�n� i�
�

etd
n� � �

d�n�
�

This simpli�es Lemma � to

Prob�X � B� � e
�tB�

etd�n�����d
n���

P
��i�r��

M�n�i�
n�i �

In what follows we will use this revised bound�

� The Space Complexity of Randomized Incremental Con�

structions

Randomized incremental constructions take a random permutation of some set S
of n objects� e�g�� points in the plane� and construct a set of so�called regions�
e�g�� regions of the Voronoi diagram� in an incremental fashion� The algorithm
maintains the collection of regions for the current subset of objects� and updates it
after each insertion of a new object� The space complexity of the algorithm is de�ned
to be the overall number of regions created during the random insertion process�
This notation is appropriate because one of the main techniques for randomized
incremental constructions maintains all regions ever constructed �on top of each
other� without erasing old regions� see 	�������������



�

Whenever an object is added� an incremental space cost occurs� In most appli�
cations this space cost depends only on the object x added and the set R of objects
previously added �i�e� it is independent of the order in which the elements in R
have been inserted�� For R � S and x � S � R let c�R�x� denote the incremental
space cost when object x is added to set R of objects� For the analysis of the total
space cost� we de�ne a space cost tree T� as follows� In tree T� the nodes of depth
i� 
 � i � n� have exactly n � i children� The nodes of depth i correspond to the
subsets of S of size n � i in a natural way� The root corresponds to S and if a
node v corresponds to a subset R � S then the children of v correspond to the sets
R � fxg� where x ranges over R� The edge connecting the nodes corresponding to
R and R�fxg is labeled by c�R�fxg� x�� For a path � in T�� let X��� be the sum
of the edge labels on path �� Then X��� is the total space cost when the elements
of S are inserted in the order speci�ed by �� Let X � X��� be the random variable
de�ned by the uniform distribution on the paths in T�� We call X the space cost

random variable� We note that paths in T� represent �backward� executions of the
insertion process�

Let
M�r� � maxf

X
x�R

c�R � fxg� x�� R � S� jRj � rg

and
d�r� � maxfc�R� fxg� x�� R � S� jRj � r� x � Rg �

Then T� is an �n� n��tree respectingM and d and hence Lemma � gives a tail estimate
for the total space cost� For many randomized incremental constructions� e�g�� planar
Voronoi diagrams and Delaunay triangulations� trapezoidal decompositions� and
convex hulls in three dimensions� one has M�r� � d�r� � ar for some constant a�
Then� as shown in 	��� if we choose t � �

an
ln c and r � n in Lemma �� we obtain

Prob�X � c � an� �
�

e

�e
c

�c
for all c � �� We will now discuss an application where d is much smaller than M �

Line Segment Intersections� Randomized incremental algorithms for line seg�
ment intersection are described in 	
� and 	�
�� These algorithms have expected
running time O�n log n � m� and expected space cost O�n � m�� where n is the
number of segments and m is the number of intersections� Both algorithms main�
tain the trapezoidal decomposition T �R� of the plane with respect to the set R of
segments� This decomposition is de�ned as the planar map obtained by drawing�
from each endpoint and intersection point of the segments in R� a vertical segment
up and down and extend it until it meets other segments of R� The incremental
space cost c�R� s� of adding a segment s � S � R to the current set R of segments
is the number of trapezoids in T �R � fsg� incident to s� Since each trapezoid is
incident to at most four segments and since the number of trapezoids in T �R� is at
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most ��
jRj�
m�R�� where m�R� is the number of pairs of intersecting segments
in R� we have

M�R� ��
X
s�R

c�R � fsg� s� � ��� � 
jRj � 
m�R���

Clearly� 
 � m�R� � jRj���� We can therefore apply Lemma � with d�r� � M�r� �
O�r � min�r��m�� to derive a tail estimate for the total space cost� albeit with a
fairly weak bound of the form�

Prob�X � c�n�m� log n� � c��
c�

for all constants c� We leave it to the reader to verify this bound� which we now
proceed to improve� There are two weak spots in the argument just o�ered� First�
the expected value of m�R� is only O�r�m � r

�

n�
�� so the upper bound M�r� is a gross

overestimation for most values ofM�R�� Second� as will be shown momentarily� d�r�
is always much smaller than the bound given above�

To obtain a sharper tail estimate we thus proceed as follows� We �rst show
that d�r� � O�r��r��� where � is the functional inverse of Ackermann�s function
�cf� 	�� page ���� for a de�nition�� We next prove a tail estimate for �a quantity
related to� m�R�� and then �nally use this tail estimate to apply Lemma � with a
function M�r� smaller than O�r �min�r��m���

Lemma � Let R � S� s � S �R� and r � jRj� Then c�R� s� � �r��r�� where � is

the functional inverse of Ackermann�s function and � is some constant independent

of r�

Proof� Let l be the line supporting s� Then c�R� s� � � � c�R� l� since every
trapezoid in T �R � fsg� incident to s but not incident to an endpoint of s is also
incident to l in T �R�flg�� and each endpoint of s is incident to only three trapezoids
in T �R � fsg�� In order to bound the number of trapezoids incident to l and above
l� perform a scan along l and consider the list of top segments of these trapezoids�
This list is an �r� 
� Davenport�Schinzel sequence �cf� 	�� page ���� for a de�nition�
as there can be no �ve indices i� 	 i� 	 i� 	 i� 	 i� in this list such that the
trapezoids at places i�� i�� i� have top segment a and the trapezoids at places i��
i� have top segment b� for b 	� a� Since the length of an �r� 
� Davenport�Schinzel
sequence is bounded by O�r��r�� �cf� 	�� page ������ the lemma follows�

For a line segment s � S let deg�s� be the number of intersections between s
and the other segments in S� For R � S� let D�R� �

P
s�R deg�s�� Then� clearly�

D�R� � �m�R�� in fact� D�R� counts all intersections between segments in R and
segments in S� where intersections between two segments in R are counted twice�

Lemma � Let a� � �e�� a� � 
� x � �� and � � r � n� Then

Prob�D�R� � �
a�r

n
�
a�
x
� m� � min

�
e�a�mr�n� �

�
�exr

a�n

�a�m�
nx�
�

where R is a random subset of S of size r�



�

Proof� For r � �n
a�

there is nothing to prove since D�R� � �m always holds� For

r 	 �n
a�
� n

�
� we use Lemma �� as follows� Consider the following �n� r��tree T � The

nodes of T of depth i� 
 � i � r� correspond to subsets of S of cardinality i� the
correspondence is many to one� If node v of T corresponds to R� � S then the
n � jR�j children of v correspond to the sets R� � fsg� where s � S � R�� Also� the
edge connecting R� and R� � fsg is labeled with deg�s�� In this way� the edge labels
on a leaf�to�root path sum to D�R�� where R is the subset of S corresponding to
the leaf� Also� with d�i� � n and M�i� � �m the tree T respects d and M and�
by symmetry� each subset R � S with jRj � r corresponds to the same number of
leaves of T � Thus

Prob�D�R� � B� � e
�tB�

P
��i�r��

�m
�n�i�n 
e

tn���

� e�tB�
�mr
n�


etn���

for all B � 
 and t � 
� Put B � m�a�r
n
� a�

x
� and t � �

n
ln� Bn

�mr
�� Then

Prob�D�R� � B� � e
B
n

��ln
 Bn�mr

��

� e
a�mr

n�

��ln


a�
�
��

� e�
a�mr

n� �

Similarly� we have

Prob�D�R� � B� � e
a�m
nx


��ln

a�n
�rx ��

� e
a�m
nx

ln
 �erx
a�n

�
�

Theorem � There are absolute constants C� 
 � 
 such that Prob�X � Cm� �
e��


m
n lnn � for m � n lnn ln ln lnn�

Proof� Put x � lnn� Let T� be the space cost tree� Let a� � �e�� a� � ��e� and let
M�r� � ��� � 
r � �

�m�a�r
n
� a�

x
���

For � � r � n� de�ne the random variable Yr on the paths of T� so that Yr��� � �
if M�R� � M�r� for the set R corresponding to the node of depth n� r on path ��
and 
 otherwise� Let Y � max

��r�n
Yr�

Let T� be the following �n� n��tree respecting M and d� where d�r� � �r��n�
and � is as in Lemma �� Let v be any node of T�� let R be the set corresponding
to v� and let w be the node corresponding to v in T�� If M�R� �M�jRj�� then the
labels of the edges emanating from w in T� are identical to the labels of the edges
emanating from v in T�� if M�R� � M�jRj�� then the labels of the edges emanating
from w are arbitrary� but respect M and d� Let X� be the random variable de�ned
by the sum of the edge labels along the paths in T��

Claim � Prob�X � B� � Prob�X� � B� �Prob�Y � �� for any B � 
�
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Proof� For paths � with Y ��� � 
 we have X��� � X����� Thus

Prob�X � B� � Prob�Y � �� �Prob�X � B and Y � 
�

� Prob�Y � �� �Prob�X� � B and Y � 
�

� Prob�Y � �� �Prob�X� � B�

We next bound Prob�Y � ��� proceeding in two steps� First we use a standard
�power�of�two�trick� to show that we may essentially concentrate on Yr for r being
a power of two and then use Lemma 
 to bound the probability that Yr is ��

Claim � Let � be a path in T�� If Y ��� � � then there is an r � �l for some l such
that M�R� � M�r��� where R is the set corresponding to the node of depth n � r
on path ��

Proof� If Y ��� � � then there is an � � r� � n� such that M�R�� � M�r��� where
R� is the set corresponding to the node of depth n� r� on �� Let r � �dlog r

�e� Then
r � n� since M�R�� 	 M�r�� for all r� � n

� � Let R be the set corresponding to the

node of depth n� r on path �� Then M�R� �M�R�� � M�r�� � M
r�
� �

Claim � Let R � S� jRj � r� and M�R� � M�r���� Then D�R� � m�a�r�n �
a��x��

Proof� We have M�R� � ��� � 
jRj�
m�R�� and M�r� � ��� � 
r� �
�m�a�r�n�

a��x��� Thus M�R� � M�r��� implies m�R� � �
�m�a�r�n � a��x�� Since D�R� �

�m�R�� the claim follows�

Claim � Let m � nx� Then

Prob�Y � �� � log��x� � e��e
�m�
nx��

Proof� Let

f�r� �

�
e�a�mr�n� if r � n�x�
�exr
a�n

�a�m�
nx�

if r 	 n�x
�

Then

Prob�Y � �� �

blognc��X
l��

f��l�

according to Lemma 
� and Claims � and 
� Next observe that this sum can be split
into two subsums� the �rst is

X
r�	n�x�n��


r��l for some l

f�r� � e�
a�m�n���
n�x� �

blog
x���cX
i��

e�
a�m�n���i

� e�a�m�
nx� � log x



�

and the second is

blog
n�x�cX
l��

f��l� �

�
�ex

a�n

�a�m�
nx�

�

blog
n�x�cX
l��

��a�m�
nx��l

�

�
�ex

a�n

�a�m�
nx�

�a�m�
nx��
��blog
n�x�c�

�

�
�ex

a�n
�
�n

x

�a�m�
nx�

�

�
�

�

���em�
nx�

� e��e
�m�
nx�

�because
�
�
�

	�
	 e�e�� Hence

Prob�Y � �� � log��x� � e��e
�m�
nx�

as claimed�

Claim � Let x � lnn and assume that m � n� Then� for all B � 
�

Prob�X� � B� �

�
B


a�em

��B�
�n�
n��

where a� � ��a� � ���e�

Proof� The tree T� respects M and d� Since m � n� it is easily veri�ed that T� also
respects M and d where M�r� � a�m�r�n � ��x�� Thus� Lemma � and the remark
following it imply� for any B � 
�

Prob�X� � B� � e
�tB�

P
��r�n

a�m�r�n���x�
�rn��n� �e�tn��n����

� e
�tB�e�tn��n�

a�m
�n��n�

P
��r�n�

�
n
� �
xr �

� e�tB�e
�tn��n� a�m

�n��n� ���
ln n
x �

� e
�tB�e�tn��n�

�a�m
�n��n� �

Put t � ����n��n�� ln�B��
a�m��� Then

Prob�X� � B� � e
� B
�n��n� ln

�
B

�ea�m

�

We can now complete the proof of Theorem � by combining Claims �� � and
�� Since m � nx ln lnx� we have ��e�m��nx� � ln log��x� � �m��nx�� so that� by
Claim �� Prob�Y � �� � e�m�
nx�� Claim � with B � ���e�m implies Prob�X� �
B� � e��
m�n�
n��� The Theorem now follows from Claim ��
Remark� The constants C� 
 in Theorem � that can be derived from our analysis are
probably much too large and much too small� respectively� It would be interesting
to obtain �ner calibration of these constants�
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