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Abstract: In this note we prove that in a set of n points in the plane, not all on a line, the maximum
area of a triangle is reached by at most n of the (g) triangles determined by these points, and this
number of maximum-area triangles is reached by several constructions. This answers a question of Erdds
and Purdy of 1971.

1. Introduction

It is a classical problem of combinatorial geometry, raised first by Erdds in 1946 and still
far from a solution, to bound the maximum number of occurences of the same distance
among n points in the plane. Numerous variants of this were considered, such as special
distances (largest, smallest,. . .), special pointsets (convex position, general position,...),
other metrics and higher dimensions. As a related problem Erdos and Purdy studied in
a sequence of papers [4,12,5,6,7] the maximum number of occurences of the same area
among the triangles determined by n points in the plane, and as a common generalization
the number of occurences of the same k-dimensional measure among the k-dimensional
simplices determined by n points in d-dimensional space (for £ = 1 this is the distances
problem, and for k¥ = d = 2 the area problem). Here the low-dimensional problems
are especially interesting, since for higher dimensions (d > 4) constructions of Lenz
type give large enough lower bounds that relatively weak combinatorial structures are
sufficient to obtain good upper bounds; but in the plane (and 3-dimensional space) such
constructions are not possible, and lattice sections seem to play a key role. For the
unit-distance as well as the unit-area problem, sections of a square or triangular lattice

log n

are the asymptotically best known constructions, giving (2 (necloglogn> unit distances

and Q(n?loglogn) unit-area triangles among n points in the plane. The corresponding
best known upper bounds are O(n3) and O(n3), respectively. Erdés and Purdy also
asked for the maximum number of maximum-area and minimum-area triangles [4], since
the corresponding distance problems are much simpler (at most n maximum [13] and
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[371 —V12n — 3J minimum [9] distances among n points in the plane), but remarked that
‘Unfortunately we have only trivial results’: O(n?) and Q(n) for the number of maximum-
area triangles. It is the aim of this note to show that the number of maximum-area
triangles is indeed similar to the number of maximum distances, and can be determined
exactly. The maximum number of minimum-area triangles, however, is quite unlike its
distance counterpart, since it grows at least quadratically (lattice sections, or points
equidistant on two parallel lines).

2. The result

Theorem: Among the triangles determined by n noncollinear points in the plane there
are at most n triangles of maximum area.

There are several constructions that reach this upper bound, e.g. the vertices of a square
together with the remaining n —4 points distributed arbitrarily on the sides of the square,
or the vertices of a regular n-gon for n not divisible by three (Figure 1).
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Figure 1.

To prove that a set of n noncollinear points in the plane determines at most n maximum-
area triangles we note first that a point in the interior of the convex hull can never be a
vertex of a maximum-area triangle. In a set with the maximum number of such triangles,
each point belongs to at least one triangle, so we can assume that the points are on a
convex curve. We need the following lemma, which captures the geometric content of the
problem.

Lemma: If A, A* are two maximum-area triangles determined by a pointset, then
each edge of A* has a point in common with some edge of A.

Proof of the Theorem: Let py,...,p, be the points in clockwise order. We construct
a directed graph on {pi,...,p,} by taking as graph edges all edges of maximum-area
triangles, oriented with the clockwise orientation of the triangle (Figure 2).

G=(V,E) with V. ={p1,...,pn}

E = {(pi,p;) | 3px such that p;p;pi is a clockwise oriented maximum-area triangle}
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Figure 2.
We claim that this graph contains at most 2n directed edges. To show this, we note
that the set of all oriented diagonals of a convex n-gon can be partitioned in 2n directed
‘formal parallel classes’: taking point-pairs with those indices that would give oriented
parallel classes if the underlying polygon were regular, i.e. for odd n

{(plapn)a (p27pn—1)7 sy (pngap(%W)}a {(pnapl)a (pn—17p2)7 R (p[%]apL%J)}

and their n cyclic index shifts, and for even n

{(p1spn1), P2, Pn2)s -5 (P21, p241) }s {(P1y o)y (P2, 90 1), - -+, (P2, P2 11)}

and their n cyclic index shifts. Now each of these classes can contain at most one directed
edge: if there were two such index-parallel edges belonging to maximum-area triangles,
then we can label these edges (pa,, Po,)s (Pas, Pb,) SO that they occur in the clockwise order
Days Pby» Pbys Pa, ON the convex hull. By the definition there are points p.,, p., such that
A; = pa;Dp,Pe; are clockwise oriented maximum-area triangles, so p., is in the clockwise
order between py, and p,,. Thus the line p,,py, separates the edge pg, pp, of A; from the
triangle A,, contradicting the Lemma (Figure 3, left).

B,

R, R, Figure 3.

We now count the triangles containing a point p;. Let N°“(p;) = {px | (pi,pr) € E},
outdeg(p;) = [N (p;)|, and N™(p;) = {p | (px,p:i) € E}, indeg(p;) = [N"(p;)]. We
claim that p; is contained in at most outdeg(p;) 4+ indeg(p;) — 1 triangles. To show this,
we note that all points of N (p;) precede all points of N(p;) in clockwise order, for if
we have an ingoing edge before an outgoing edge, we find again two triangles violating
the intersection condition of the Lemma (Figure 3, right). So for each triangle there is
one edge going from a point in N°"(p;) to a point of N®(p;), and the number of triangles
containing p; is at most the number of such edges. Any two such edges must have a
common point, for otherwise we again have a violation of the condition of the Lemma.
Thus the edges of triangles containing p; define a set of line-segments between points of
Nevt(p,) and N'"(p;) with the property that any two segments have a common point.
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Since each point belongs to at least one triangle, we have indeg(p;),outdeg(p;) > 1;
if indeg(p;) = 1 or outdeg(p;) = 1, our claim is trivially satisfied. So we can assume
outdeg(p;) > 2. We extend the set of segments by one segment joining the first point of
N°"(p;) to the last point; again this set of segments between outdeg(v) +indeg(v) points
has the property that any two segments have a common point. But any such set consists of
at most outdeg(v)+indeg(v) segments [13,10], so there are at most outdeg(v)+indeg(v)—1
triangles containing p;. Therefore

n
3« number of triangles = Z number of triangles containing p;

i=1
<Y (outdeg(p;) + indeg(p;) — 1)
i—1

[E(G)] = n

n,

IN
W

so there are at most n triangles.

Proof of the Lemma: Let A be a maximum-area triangle with vertices aq, as, az. Each
point of a set in which A is a maximum-area triangle must be in the triangle bounded by
the three lines through a; parallel to a;11a;12, © = 1,2,3: any point outside this region
will generate together with two vertices of A a triangle with area larger than that of
A. This large triangle is cut by A into three translates of —A; we will denote them by
V1,Vs3, V3. The vertices of A* are contained in V; U V, U V3. If all vertices of A* are
in the same V;, then A* coincides with that V;, since they have the same area, and the
claim of the Lemma is satisfied. If each V; contains one vertex of A* then the edges of
A* intersect A, and again our claim is satisfied. In the remaining case two vertices are in
one V;, and the third in another; we can assume A* = pqr with p,q € Vi, p,q € A, and
r € Vy (Figure 4). Then the line through p parallel to qr separates as from gr, so the
triangle asqr has an area larger than that of A*, violating the assumption of the Lemma.
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Figure 4.
3. Related Problems

Let uaq(n) denote the maximum number of unit area triangles among n points in IR%,

The best currently known bounds are

d =2 uay(n) = Qn2loglogn) [4] and uay(n) = O(n3) [11], the lower bound by lattice
sections;



d = 3 uaz(n) = O(n?) [4], no better lower bound known
(uaz(n) > uas(n) = Q(n?loglogn));
d = 4 no better upper or lower bounds known
(uas(n) < was(n) = O(n*°) and was(n) > uaz(n) = Q(n?loglogn));
d=5 uas = Q(n?) and uas(n) = O(n~¢) for some e > 0 [12], the lower bound is ob-
tained by taking & points with 2(n3) unit distances on a sphere in a 3-dimensional
subspace [3], and § points on a circle in an orthogonal plane;
d > 6 uaq(n) = O(n*) by a Lenz-type construction: % points on three concentric circles
in pairwise orthogonal planes [12].
Analogous to the distance problems one can also ask for the minimum number of distinct
areas determined by n points in IRY [6]; here the conjectured value is VTAL which is
reached by n points distributed equidistant on d parallel lines orthogonal to a regular d—1-
simplex. In the plane one obtains a lower bound of (1 — 3Jr;ﬂ)n—O(l) ~ 0.4142n—0(1)
by combining the method of [2] and the result of [14], improving previous bounds in [2]
and [6].
Another generalization of the unit distances problem is the question for the maximum

number of congruent triangles determined by n points in IR? [4]. In the plane this is
the same as the unit distances problem, since each unit distance can belong to at most
four triangles; the upper bounds are O(n’s) in three-dimensional space [5], O(n2) in
dimension four [1], and ©(n?) for dimension d > 6.
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