
3. Ergebnisse

3.1 Veränderungen des MPD bei Dauerperfusion mit Tyrodelösung, Suramin, PPADS, NF023, α,β-meATP, ATPγS, MRS 2179, RB-2 und CPDPX

Der MPD der isoliert perfundierten Rattenniere betrug nach Äquilibrierung 65 \pm 5 mmHg (n=99). Dabei sank der MPD während der Perfusion mit Tyrodelösung in der ersten Stunde um 15 \pm 5 mmHg und in der zweiten Stunde um 5 \pm 2 mmHg (n=99). Die Reaktivität auf die verwendeten Kontrollsubstanzen Angiotensin II (100 nmol/l), α , β -meATP (1 μ mol/l), AP5A (1 μ mol/l) und Phenylephrine (1 μ mol/l) nahm innerhalb dieses Zeitraumes nicht signifikant ab (p > 0,05). Die Dauerperfusion mit den Agonisten α , β -meATP (10 μ mol/l), und ATP γ S (10 μ mol/l) führte zu keiner signifikanten Änderung des MPD. Außerdem verursachte die Dauerperfusion mit den Antagonisten Suramin (100 μ mol/l), PPADS (30 μ mol/l), NF023 (10 μ mol/l), MRS 2179 (10 μ mol/l), RB-2 (10 μ mol/l) oder dem P₁-Rezeptorantagonisten CPDPX (10 μ mol/l) keine signifikante Änderung des MPD.

3.2 Untersuchung der dosisabhängigen ED₅₀ von Ang II, α,β-meATP, Ap₇A und Ap₈A

Bei Basaltonus verursachten Ang II, α,β -meATP, Ap₇A und Ap₈A eine dosisabhängige Vasokonstriktion in der isolierten perfundierten Rattenniere (jeweils n=6). Die erhaltenen Dosis-Wirkungskurven sind in Abbildung 5 dargestellt. Die Kurven verhalten sich nicht parallel zueinander. Außerdem ist in Abbildung 5 erkennbar, daß die Dosis-Wirkungskurven der verschiedenen Substanzen bei unterschiedlichen Dosierungen ihre maximalen Wirkungen entfalten. Die vasokonstriktive ED₅₀ (log/mol) von Ap₈A (- 8,42 ± 0,05) und von Ap₇A (- 8,42 ± 0,05) war höher als die ED₅₀ von α,β -meATP (- 10,02 ± 0,07) und Ang II (- 11,32 ± 0,06). Ap₇A und Ap₈A wirken damit weniger effektiv auf den Gefäßwiderstand in der isoliert perfundierten Rattenniere als Ang II oder α,β -meATP.

Abbildung 5: Dosis-Wirkungs-Kurven von α,β -meATP, Ang II, Ap₇A, Ap₈A

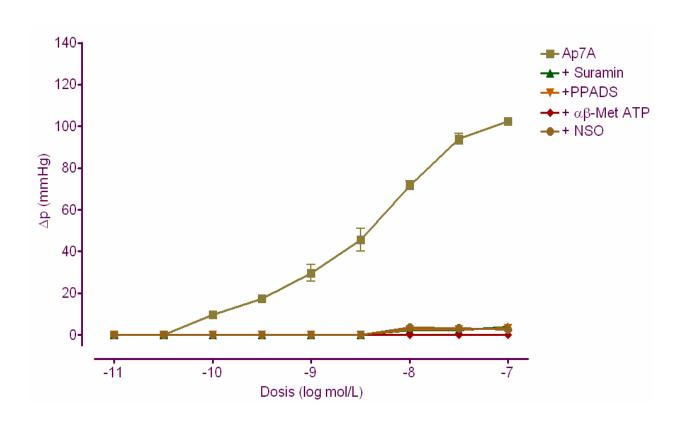
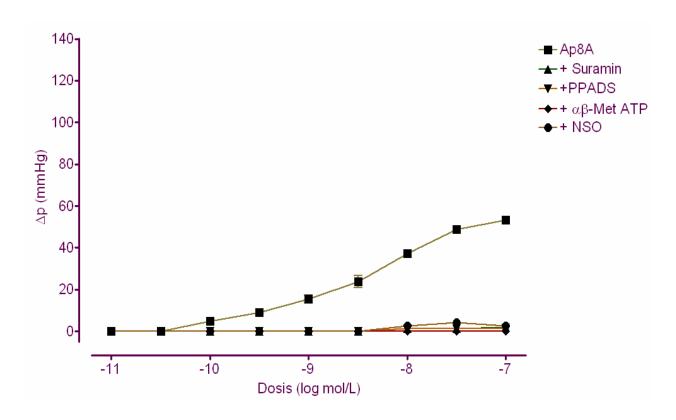

Änderung des Perfusionsdruckes in der isolierten perfundierten Rattenniere, verursacht durch Ap_7A , Ap_8A , α,β -meATP und Ang II. Jedes Symbol präsentiert den Mittelwert von wenigstens 6 Messwerten. Die Fehlerbalken (\bot) zeigen die Varianzbreite.

Tabelle 6: ED₅₀-Werte mit Standardabweichungen für α , β -meATP, Ang II, Ap₇A, Ap₈A

Applikation	$ED_{50} (log/mol) + SD$
+ Ang II	- 11,32 ± 0,06
+ α,β-meATP	- 10,02 ± 0,07
+ Ap ₇ A	$-8,42\pm0,05$
$+Ap_8A$	$-8,42\pm0,05$


3.3 Untersuchung der dosisabhängigen ED₅₀ von Ap₇A und AP₈A unter Dauerperfusion mit Suramin, PPADS, α,β-meATP und NF023

In Gegenwart von Suramin (100 μ mol/l), PPADS (30 μ mol/l) und NF023 (10 μ mol/l) wurden die Reaktionen der Nierengefäße auf Ap₇A und Ap₈A signifikant bis nahezu vollständig aufgehoben (jeweils n=6, jeder p < 0,05 PPADS/Suramin/NF023 vs. Kontrolle ohne PPADS/Suramin/NF023). Dauerperfusion in der isolierten perfundierten Rattenniere mit α,β -meATP (10 μ mol/l) blockierte den vasokonstriktiven Effekt von Ap₇A und Ap₈A ebenfalls signifikant (jeweils n=6, jeder p < 0,05 α,β -meATP vs. Kontrolle ohne α,β -meATP). Die Antworten von Ap₇A und Ap₈A in Gegenwart und Abwesenheit von Suramin, PPADS, NF023 und α,β -meATP sind gezeigt in Abbildung 6 und 7. Sowohl bei Ap₇A als auch bei Ap₈A war die Vasoaktivität so stark eingeschränkt, daß kein signifikanter Anstieg der Kurven erkennbar ist.

Abbildung 6: Dosis-Wirkungs-Kurven von Ap₇A in Anwesenheit und Abwesenheit von Suramin, PPADS, NF023 und α , β -meATP

Änderung des Perfusionsdruckes in der isolierten perfundierten Rattenniere, verursacht durch Ap_7A in Anwesenheit und Abwesenheit von Suramin, PPADS, NF023 und α,β -meATP. Jedes Symbol präsentiert den Mittelwert von wenigstens 6 Messwerten. Die Fehlerbalken (\perp) zeigen die Varianzbreite.

Abbildung 7: Dosis-Wirkungs-Kurven von Ap₈A in Anwesenheit und Abwesenheit von Suramin, PPADS, NF023 und α,β -meATP

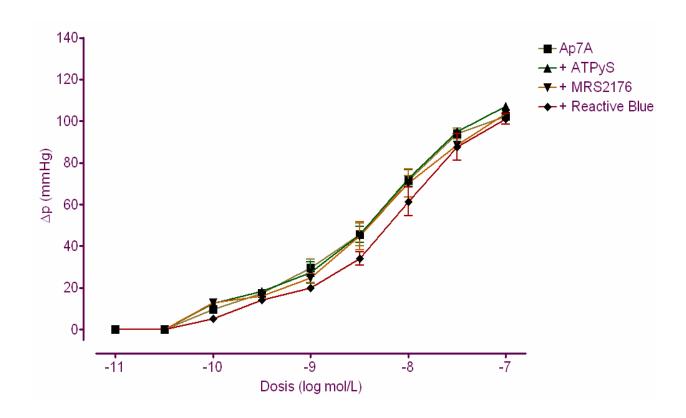
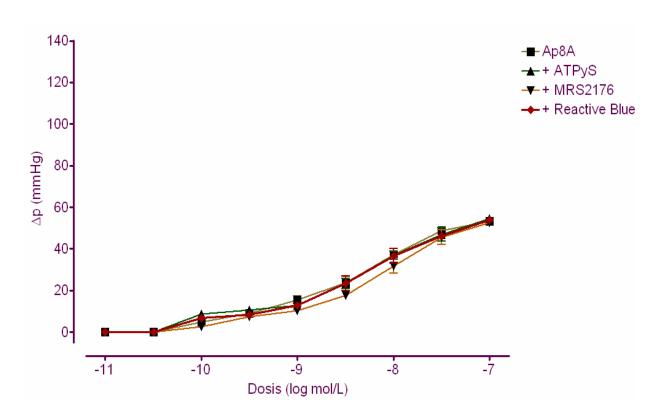

Änderung des Perfusionsdruckes in der isolierten perfundierten Rattenniere, verursacht durch Ap_8A in Anwesenheit und Abwesenheit von Suramin, PPADS, NF023 und α,β -meATP. Jedes Symbol präsentiert den Mittelwert von wenigstens 6 Messwerten. Die Fehlerbalken (\perp) zeigen die Varianzbreite.

Tabelle 7: ED₅₀-Werte mit Standardabweichungen für Ap_7A und Ap_8A in Anwesenheit und Abwesenheit von Suramin, PPADS, NF023 und α,β-meATP

$ED_{50} (log/mol) + SD$	Ap ₇ A	Ap ₈ A
+ Tyrode	- 8,42 ± 0,05	- 8,42 ± 0,05
+ PPADS	- 8,00 ± 0,26	- 8,00 ± 0,26
+ Suramin	- 7,73 ± 0,27	- 7,73 ± 0,27
+ NF023	- 8,22 ± 0,28	- 8,10 ± 0,29
+ α,β-meATP	- 10,02 ± 0,07	- 10,02 ± 0,07


3.4 Untersuchung der dosisabhängigen ED₅₀ von Ap₇A und Ap₈A unter Dauerperfusion mit MRS 2179, RB-2 und ATPγS

Unter Dauerperfusion mit MRS 2179 (10 μ mol/l) und RB-2 (10 μ mol/l) kam es zu keiner signifikanten Beeinflußung der ED₅₀ von Ap₇A und Ap₈A (siehe Abbildung 8 und 9, n=6, jeder p > 0,05 MRS 2179/RB-2 vs. Kontrolle ohne MRS 2179/RB-2). Ebenfalls wurde die ED₅₀ von Ap₇A und Ap₈A unter Dauerperfusion mit ATP γ S (10 μ mol/l) nicht signifikant verändert (siehe Abbildung 8 und 9, n=6, jeder p > 0,05 ATP γ S vs. Kontrolle ohne ATP γ S).

Abbildung 8: Dosis-Wirkungs-Kurven von Ap₇A in Anwesenheit und Abwesenheit von ATPγS, MRS 2179 und RB-2

Änderung des Perfusionsdruckes in der isolierten perfundierten Rattenniere, verursacht durch Ap_7A in Anwesenheit und Abwesenheit von ATP γ S, MRS 2179 und RB-2. Jedes Symbol präsentiert den Mittelwert von wenigstens 6 Messwerten. Die Fehlerbalken (\perp) zeigen die Varianzbreite.

Abbildung 9: Dosis-Wirkungs-Kurven von Ap_8A in Anwesenheit und Abwesenheit von $ATP\gamma S$, MRS 2179 und RB-2

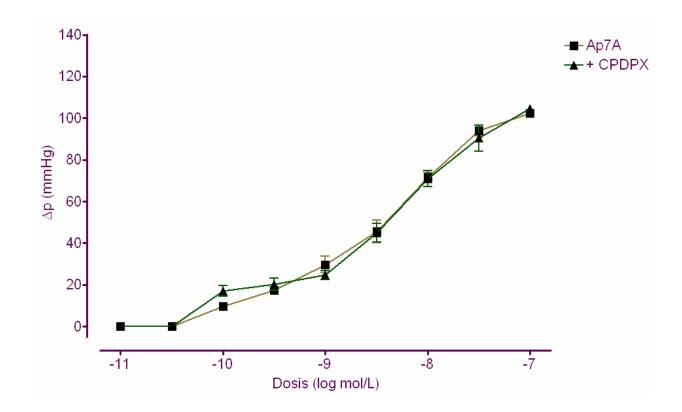
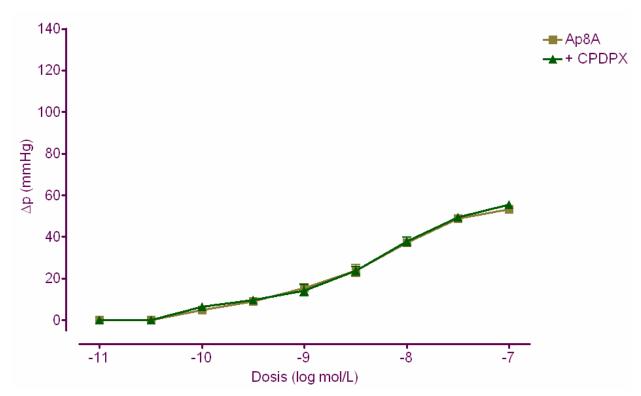

Änderung des Perfusionsdruckes in der isolierten perfundierten Rattenniere, verursacht durch Ap_8A in Anwesenheit und Abwesenheit von ATP γ S, MRS 2179 und RB-2. Jedes Symbol präsentiert den Mittelwert von wenigstens 6 Messwerten. Die Fehlerbalken (\perp) zeigen die Varianzbreite.

Tabelle 8: ED_{50} -Werte mit Standardabweichungen für Ap_7A und Ap_8A in Anwesenheit und Abwesenheit von $ATP\gamma S$, MRS 2179 und RB-2


$ED_{50} (log/mol) + SD$	Ap ₇ A	Ap ₈ A
+ Tyrode	- 8,42 ±0,05	- 8,42 ±0,05
+ MRS 2179	- 8,36 ±0,06	- 8,16 ±0,06
+ RB-2	- 8,16 ±0,06	- 8,36 ±0,06
+ ATPγS	- 8,36 ±0,06	- 8,35 ±0,07

3.5 Untersuchung der dosisabhängigen ED₅₀ von Ap₇A und Ap₈A unter Dauerperfusion mit CPDPX

In Gegenwart von CPDPX (10 μ mol/l) im Perfusat kommt es in der isoliert perfundierten Rattenniere im Vergleich zu Experimenten mit alleiniger Dauerperfusion mit Tyrode zu keiner signifikanten Änderung der Ap₇A- und Ap₈A- induzierten dosisabhängigen ED₅₀ (siehe Abbildung 10 und 11, n=6, jeder p > 0,05 CPDPX vs. Kontrolle ohne CPDPX).

Abbildung 10: Dosis-Wirkungs-Kurven von Ap_7A in Anwesenheit und Abwesenheit von CPDPX Änderung des Perfusionsdruckes in der isolierten perfundierten Rattenniere, verursacht durch Ap_7A in Anwesenheit und Abwesenheit von CPDPX. Jedes Symbol präsentiert den Mittelwert von wenigstens 6 Messwerten. Die Fehlerbalken (\bot) zeigen die Varianzbreite.

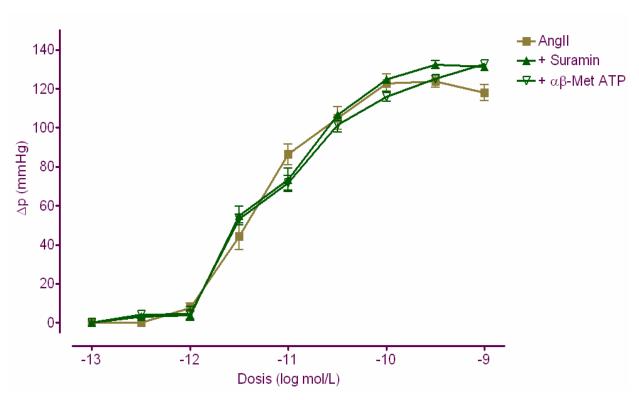

Abbildung 11: Dosis-Wirkungs-Kurven von Ap_8A in Anwesenheit und Abwesenheit von CPDPX Änderung des Perfusionsdruckes in der isolierten perfundierten Rattenniere, verursacht durch Ap_8A in Anwesenheit und Abwesenheit von CPDPX. Jedes Symbol präsentiert den Mittelwert von wenigstens 6 Messwerten. Die Fehlerbalken (\bot) zeigen die Varianzbreite.

Tabelle 9: ED_{50} -Werte mit Standardabweichungen für Ap_7A und Ap_8A in Anwesenheit und Abwesenheit von CPDPX

$ED_{50} (log/mol) + SD$	Ap ₇ A	Ap ₈ A
+ Tyrode	- 8,42 ±0,05	- 8,42 ±0,05
+ CPDPX	- 8,35 ±0,07	- 8,36 ±0,06

3.6 Untersuchung der dosisabhängigen ED_{50} von Ang II unter Dauerperfusion mit α,β -meATP und Suramin

Der vasokonstriktive Effekt von Ang II wurde unter kontinuierlicher Perfusion mit α,β -meATP oder Suramin nicht signifikant beeinflußt (siehe Abbildung 12, n=6, jeder p > 0,05 α,β -meATP/Suramin vs. Kontrolle ohne α,β -meATP/Suramin).

Abbildung 12: Dosis-Wirkungs-Kurven von Ang II in Anwesenheit und Abwesenheit von Suramin und α,β -meATP

Änderung des Perfusionsdruckes in der isolierten perfundierten Rattenniere, verursacht durch Ang II in Anwesenheit und Abwesenheit von Suramin und α,β -meATP. Jedes Symbol präsentiert den Mittelwert von wenigstens 6 Messwerten. Die Fehlerbalken (\bot) zeigen die Varianzbreite.

Tabelle 10: ED_{50} -Werte mit Standardabweichungen für Ang II in Anwesenheit und Abwesenheit von Suramin und α,β-meATP

$ED_{50} (log/mol) + SD$	Ang II
+ Tyrode	- 11,32 ±0,06
+ α,β-meATP	- 11,20 ±0,06
+ Suramin	- 11,20 ±0,06

3.7 Bestimmung der beteiligten Purin-Rezeptoren

Vergangenheit konnte in verschiedenen Arbeiten aufgezeigt werden, In der Diadenosinpolyphosphate vor allem unterschiedliche P₂-Rezeptoren aktivieren. In unseren Experimenten konnten wir zeigen, daß Ap₇A und Ap₈A potente Vasokonstriktoren sind. Nach Applikation eines 10 nmol/l Bolus kam es unter Ap₇A und Ap₈A zu einem signifikanten Anstieg des Perfusionsdruckes. Bei AP₇A betrug dieser 74 mmHg ± 5 und bei AP₈A 38 mmHg ± 3. Der vasokonstriktive Effekt konnte durch Suramin, PPADS und NF023 aufgehoben werden (je p < 0,05), was auf eine Aktivierung von P_{2X}-Rezeptoren hindeutet. Unter Suramin ließ sich der Perfusionsdruckanstieg bei Ap₇A auf 2 mmHg \pm 1 und bei Ap₈A auf 0 mmHg \pm 1 senken. Unter PPADS minimierte sich der Perfusionsdruckanstieg bei Ap₇A auf 3 mmHg ± 2 und bei Ap₈A auf 4 mmHg \pm 2. Mit Hilfe von NF023 zeigte sich bei Ap₇A ein Druckanstieg von 2 mmHg \pm 1 und bei Ap₈A von 3 mmHg \pm 2. Auch unter kontinuierlicher Perfusion mit α , β -meATP kam es zu einer vollständigen Inhibierung der Wirkung von Ap₇A und Ap₈A, was ebenfalls für eine P_{2X}-Rezeptoraktivierung spricht. Diese Substanz ist dafür bekannt, daß sie als P2X-Rezeptoragonist den P_{2X}-Rezeptor für weitere Aktivierung blockiert. Der Perfusionsdruckanstieg ließ sich unter α ,β-meATP bei Ap₇A auf 2 mmHg \pm 1 und bei Ap₈A auf 3 mmHg \pm 2 senken. Außerdem konnten wir nachweisen, daß es unter Dauerperfusion mit den P2Y-Rezeptorantagonisten MRS 2179, RB-2 beziehungsweise dem P2Y-Agonisten ATPYS im Vergleich zu den Versuchen mit Dauerperfusion von P_{2X}-Rezeptoragonisten und –antagonisten zu keiner signifikanten Hemmung (je p > 0,05) der kontraktilen Potenz von Ap₇A und Ap₈A kommt. Damit kommt ein P_{2Y} -Rezeptorsubtyp, über den AP₇A und AP₈A ihre Wirkung vermitteln, nicht in Frage. Auch ein P₁-Rezeptor kommt als Effektor für Ap₇A und Ap₈A nicht in Frage, denn unter Dauerperfusion mit CPDPX, einem potenten P₁-Rezeptorantagonisten, kam es ebenfalls nicht zu einer signifikanten vasokonstriktiven Potenz von Beeinflussung der Ap_7A und Ap_8A . purinrezeptorunabhängig fungierendes Agens zeigte unter Dauerperfusion mit α,β-meATP und Suramin keine Veränderung seiner vasoaktiven Wirkung.

3.8 Desensitisierungsexperimente

Um den Rezeptor über den Ap_7A und Ap_8A ihre Wirkung entfalten genauer zu charakterisieren, wurde eine mögliche Desensitisierung über repetitive Applikationen von Ap_7A und Ap_8A untersucht. Bolusgaben von Ap_7A (10 nmol/l) und Ap_8A (10 nmol/l) in einminütigen und später halbminütigen Abständen induzierten eine schnelle und deutliche, jedoch nicht komplette Desensitisierung der durch Ap_7A und Ap_8A bewirkten Vasokonstriktionen. Verlängerte man die Zeit zwischen den einzelnen Bolusgaben von 30 s auf 1, 2, 4, 8 und 16 Minuten ließ sich eine Regredienz der Desensitisierung und nach 16 Minuten schließlich kein Desensitisierungseffekt mehr nachweisen. Die Vasokonstriktionen unterschieden sich dann nicht signifikant von der Antwort nach einmaliger Gabe (n=6, p > 0,05).