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SUMMARY

Hantaviruses are etiological agents of life-threat-
ening hemorrhagic fever with renal syndrome and
hantavirus cardiopulmonary syndrome. The nucleo-
protein (N) of hantavirus is essential for viral tran-
scription and replication, thus representing an
attractive target for therapeutic intervention. We
have determined the crystal structure of hantavirus
N to 3.2 Å resolution. The structure reveals a two-
lobed, mostly a-helical structure that is distantly
related to that of orthobunyavirus Ns. A basic RNA
binding pocket is located at the intersection between
the two lobes.We provide evidence that oligomeriza-
tion is mediated by amino- and C-terminal arms that
bind to the adjacent monomers. Based on these
findings, we suggest a model for the oligomeric
ribonucleoprotein (RNP) complex. Our structure pro-
videsmechanistic insights into RNA encapsidation in
the genus Hantavirus and constitutes a template for
drug discovery efforts aimed at combating hanta-
virus infections.

INTRODUCTION

Hantaviruses are single-stranded negative-sense RNA bunyavi-

ruses that mostly replicate in rodents, often without causing dis-

ease (Jonsson et al., 2010). In humans, hantavirus infections can

lead to potentially fatal hemorrhagic fever with renal syndrome

(HFRS) and hantavirus cardiopulmonary syndrome (HCPS), for

which no specific cure is available to date. HFRS is caused by

Old World hantaviruses like Hantaan virus (HTNV). New World

hantaviruses like Sin Nombre virus (SNV) are responsible for

the more severe HCPS.

The large (L) segment of the tripartite genome of hantavirus en-

codes the viral-RNA-dependent RNA polymerase (RdRp)

whereas the medium (M) and small (S) segments encode the

spike glycoproteins (called Gn and Gc), and the nucleoprotein

(N) and nonstructural (NS) proteins, respectively (Schmaljohn,

1995). The transcriptase and replicase functions of the virus
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reside in the ribonucleoprotein (RNP) complex, which comprises

the viral RdRp, N, and the viral RNA. Multiple pleiotropic func-

tions of N, such as in immune evasion, have previously been

demonstrated (Taylor et al., 2009). More recently, N was shown

to play a crucial role in ‘‘cap snatching’’ through the sequestra-

tion of cellular 50 RNA caps in P bodies, thus enabling viral tran-

scriptional regulation (Hussein and Mir, 2013). Furthermore, N

can functionally replace components of the eukaryotic eIF4F

cap binding complex to link the mRNA cap with the 43S pre-initi-

ation complex, therefore guaranteeing preferential translation of

viral RNA.

Recent studies have explored N structures of various bunya-

viruses. Thus, representative N structures of orthobunyaviruses,

such as LaCrosse (Reguera et al., 2013), Bunyamwera (Li et al.,

2013), Leanyer (Niu et al., 2013), and Schmallenberg virus (Dong

et al., 2013); of phleboviruses, such as Rift Valley fever (Ray-

mond et al., 2012) and Toscana virus (Olal et al., 2014; Raymond

et al., 2012); and of nairoviruses, such as Crimean-Congo hem-

orrhagic fever virus (Guo et al., 2012), have been determined.

Within each bunyavirus genus, the N structures are highly

similar. Between the various genera, however, only little struc-

tural similarity is apparent, in agreement with the missing

sequence similarity between these Ns: All bunyavirus Ns have

a bilobed, a-helical architecture. While orthobunyaviruses

employ amino- and C-terminal arms for N oligomerization, an

amino-terminal arm suffices for N oligomerization of phlebovi-

ruses. Hantavirus Ns bear no detectable sequence similarity

with the Ns of other genera or family. The structures of the

71-amino-acid N-terminal domain of Sin Nombre and Andes

hantaviruses show two antiparallel helices that intertwine to

form a coiled coil and may contribute to oligomerization

(Boudko et al., 2007).

The intrinsic flexibility of N and its propensity to oligomerize

into polymers at high concentrations has hampered its struc-

tural characterization. We addressed this challenge by crystal-

lizing a HTNV N construct fused to a maltose binding pro-

tein (MBP). The crystal structure of this construct reveals a

unique architecture of HTNV Ns and provides a framework for

understanding its mechanism of RNA sequestration and oligo-

merization. Furthermore, the structure offers a template for

rational drug design efforts aimed at combating hantavirus

infections.
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Figure 1. Structure of the HTNV N

(A) Domain organization of HTNV N. ATL, amino-

terminal arm; CTL, carboxy-terminal arm.

(B) Structure of the HTNV NDN showing a bilobed

core domain and the C-terminal arm.

(C) Topology plot of the HTNV NDN. a helices are

shown as circles and b strand as triangles, with

colors as in (A).

(D) Representative refined electron densities of

HTNVDN N around helix a1, contoured at 1 s.

See also Figure S1 and Tables S1–S3.
RESULTS

Structure of the HTNV N
To obtain structural and mechanistic insights into RNA encapsi-

dation in the hantavirus family, we crystallized a HTNV N

construct containing an amino-terminal deletion (residues 113–

429, HTNV NDN) fused to MBP and collected diffraction data to

3.2 Å (Table S1). The phase problem was solved by molecular

replacement using MBP (Table S1).

HTNVNDN is amostly a-helical protein composed of an amino-

terminal lobe (NL; residues 119–218 and 277–316) and a C-ter-

minal lobe (CL; residues 219–276 and 317-400) (Figure 1; Table

S2). Together, they form the N core (residues 119–400), from

which an a-helical extension projects away (residues 401-429).

The NL comprises an a-helical bundle formed by helices

a1–a4. In addition, helix a7 crosses over from the CL and partic-

ipates in the helical assembly of the NL, whereas a8 locates in

between the two lobes (Figures 1B and 1C). Two antiparallel

b strands, b1 and b2, and the intervening loop L4 form an

extension of the NL that connects a2 to a3. Parts of this exten-

sion are disordered, whereas other parts are stabilized by crystal
Cell Reports 14, 2092–209
contacts from the adjacent MBP mole-

cule. The amino-terminal arm (residues

1–119), which is mostly missing in our

construct, contains the previously crystal-

lized coiled-coil domain (residues 1–71;

Figure S1A) (Boudko et al., 2007). It is

connected to the NL via a predicted hinge

(hinge I, residues 72–118), of which only

the C-terminal portion is present in our

structure.

The CL comprises helices a5, a6, and

a9–a11. a5 and a6 are linked by a 22-res-

idue loop, L8, that bulges 13 Å out from

the bottom of the CL. Hydrophobic resi-

dues make up half of this partially disor-

dered loop, suggesting that it may act as

a binding platform or buttress (see below).

a9 and a10 form a mast-like helical protu-

berance that abuts 38 Å from the core

structure (Figure 1B). At the C terminus,

a helical arm (residues 405–429) extends

from the CL (Figures 1B and 1C). It is con-

nected to the globular core via a flexible

hinge region (hinge II, residues 401–404)
and binds into a hydrophobic pocket of the adjacent molecule

(see below).

Hantavirus N does not have significant sequence similarity to

Ns of other bunyaviruses. However, we found a distant structural

relationship to the Ns of orthobunyaviruses (Leanyer/LEAV,

LaCrosse, and Schmallenberg virus) and phleboviruses (Rift

Valley fever and Toscana virus) (Figures S1A–S1F; Table S3)

(Niu et al., 2013; Olal et al., 2014). Intriguingly, also the N of Lassa

virus (Hastie et al., 2011), an Arenavirus, bears weak similarity to

HTNV N (Table S3).

Despite the much shorter size of the LEAV N compared to

HTNV N (235 versus 429 amino acids for the full-length N),

some structural elements in the NL, including b1 and b2, and he-

lices a1–a4 are conserved between the structures (Table S3; Fig-

ures S1A–S1D). However, marked differences are prevailing: The

‘‘exchange helix’’ a7 in HTNV N does not have a counterpart in

LEAV N. Furthermore, the amino-terminal arm containing the

coiled coil and hinge I has 118 residues in HTNV N and only 20

residues in LEAV N (Figure S1A) (Boudko et al., 2007). In fact,

hinge I in HTNV N may represent an independent functional

domain, since this region has been shown to encompass the
9, March 8, 2016 ª2016 The Authors 2093



Figure 2. The RNA Binding Groove of HTNV N

(A) Electrostatic surface representation (±5 kT) of HTNV NDN in a similar orientation as in Figure 1B, left. Positive and negatively charged surfaces are colored in

blue and red, respectively. A highly basic RNA binding groove is apparent in between the two lobes.

(B) Surface representation of HTNV NDN in the same orientation as in Figure 2A, colored according to evolutionary conservation (for the alignment, see Table S2).

Brown and cyan indicate conserved through variable surface-exposed residues.

(C) Cartoon representation showing select residues of HTNV NDN in the predicted RNA binding tunnel between the NL (green) and CL (red).

(D) ITC binding curve of the 11-mer poly U RNA oligo1: MBP-HTNV NDN (KD = 11.1 mM ± 1.4 mM, n = 0.5).

(E) The MBP-HTNV NDN R199D mutant did not show binding to RNA in ITC experiments.

See also Figure S2.
RPS19 binding site in HTNV N (Ganaie et al., 2014). The differ-

ences in the CLs between these two Ns are even more pro-

nounced. Helices a6, a9, and a10 in LEAV N do not have equiv-

alents in HTNV N. Conversely, the buttress (loop L8) is unique to

hantaviruses. This loop is also the most variable region within

hantavirus N. The helical protuberance (a9–a10, 50 residues) of

HTNV N has double the size compared to LEAV N (a11–a12,

25 residues). Also, the C-terminal arm of HTNV N is twice as

long as that of the orthobunyavirus counterpart (29 versus 15

residues). The differences between HTNV N and phlebovirus N

are even more conspicuous. The NL extension of phleboviruses

is mainly composed of a helices and thus has a different archi-

tecture compared to that of hantaviruses (Figures S1E and

S1F). In the CL, a11 and a14 do not bear equivalents in

HTNV N. Also the helical protuberance is greatly diminished in

size in phleboviruses. However, the starkest difference is the

loss of the C-terminal arm in phleboviruses. Taken together,

these results suggest that Ns of hanta-, orthobunya, and phlebo-

viruses arose from a common progenitor, yet they considerably

diverged during evolution.

Interestingly, we found that the CL of HTNVN shares structural

similarity with the two MA3 domains of the non-viral, eukaryotic

tumor suppressor protein programmed cell death 4 (PDCD4)

(Figures S1G and S1H; Table S3). In particular, helices a8–a12

of HTNV N were found to superimpose with the corresponding

counterparts in the MA3 domains.
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RNA Binding
HTNV Ns differentially interact with viral mRNA, genomic viral

RNA (vRNA), and complementary RNA (cRNA) (Severson et al.,

2001). To map the RNA binding site, we calculated the electro-

static surface potential of N (Figure 2A). A positively charged cleft

formed by a3 and a4 of the NL and a9 and a10 of the CL

was identified as a putative RNA binding interface. This groove

is highly conserved across all hantavirus species (Figures 2B

and 2C).

The purified amino-terminal truncated HTNV N had an optical

density 260 (OD260)/OD280 ratio of 0.6, suggesting that it was

free of nucleic acids. Accordingly, in isothermal titration calorim-

etry (ITC) experiments, MBP-HTNV NDN bound to 11- and 14-

mer polyU RNA with modest affinity (KD of �10 mM; Figures

2D and S2A–S2C). To confirm the putative RNA binding site,

the surface-exposed conserved Arg199 in this region was

mutated to aspartate. Indeed, the R199D substitution within

the MBP-HTNV NDN construct completely abrogated the inter-

action with RNA (Figure 2E). Two regions in the NL termed N1

(residues 175–196) and N2 (residues 197–218) were previously

shown to contain RNA binding residues (Figures S2D and

S2E) (Xu et al., 2002). Our structure shows that N1 residues

Ser180, Asn183, Ser186, Ser187, and Thr194 line the deduced

RNA binding groove and could form hydrogen bonds to the

RNA bases or the phosphate backbone. In addition, the posi-

tively charged Lys189, Arg197, and Arg199 from N2 could



Figure 3. Oligomerization Studies of the HTNV N

(A) Gel filtration analysis (Superose 6 10/300) coupled to RALS of full-length refolded HTNV N. UV absorbance is shown in violet and refers to the left y axis, while

the apparent molecular mass (in multiples of the molecular weight of the monomer) is shown in green and refers to the right y axis.

(B) Negative stain EM of refolded full-length HTNV N in the absence of RNA.

(C) Gel filtration analysis (Superdex S200 10/300) coupled to RALS of the monomeric MBP-HTNV NDN.

(D) Negative-stain EM of chimeric MBP-HTNV NDN incubated with an 8 kb ssRNA.

(E) Gel filtration analysis (Superose 6 10/300) coupled to RALS of HTNV NDC.

(F) Negative-stain EM of HTNV NDC in the absence of RNA.

See also Figures S3 and S4.
form salt bridges with the phosphate backbone (Figure S2D).

Also residues 335-429 were suggested to be involved in RNA

binding (Figure S2E) (Gött et al., 1993). This region encom-

passes the helical protuberance (a9 and a10) in the CL and

the C-terminal arm. Our structure shows that residues of the he-

lical protuberance, including Arg339 (a9), Arg367, and Arg368

(both a10), may indeed project into the RNA binding cleft to

neutralize the charge of the RNA phosphate groups. Further-

more, the highly basic disordered loop L12 between a9 and

a10 could contribute to nucleic acid stabilization. Taken

together, our data suggest that residues in between the NL

and CL, and possibly in the hinge regions, constitute a highly

conserved RNA binding site in HTNV Ns.

Oligomerization of HTNV N
Previous biochemical data indicated essential roles of amino-

and C-terminal regions in HTNV N for oligomerization (Alfadhli

et al., 2001). In particular, residues 100–125 in the amino-termi-

nal arm and residues 404–429 in the C-terminal arm were impli-

cated in this process (Yoshimatsu et al., 2003). Furthermore, a

conserved hexapeptide motif preceding the C-terminal arm

(393-VNHFHL-398) (Figure S3A) was suggested to be involved

in themultimerization of Tula hantavirus N (Kaukinen et al., 2003).
Ce
To further study themechanism of oligomerization, we purified

and refolded full-length HTNV N. Right-angle laser scattering

analysis (RALS) in conjunction with analytical size-exclusion

chromatography (SEC) indicated that HTNV N exists mostly as

a hexamer in solution (Figure 3A), rather than as trimer, as re-

ported earlier (Hussein and Mir, 2013). In negative-stain electron

microscopy (EM), HTNV N formed toroidal rings with a diameter

of 10–13 nm (Figures 3B and S4). In contrast, MBP-HTNV NDN

eluted as a monomer under identical conditions (Figure 3C).

This supports the suggested role of the amino-terminal arm for

oligomerization in HTNV Ns.

In the presence of a long ssRNA, MBP-HTNV NDN assem-

bled into long filaments, as visualized by EM (Figure 3D).

Thus, even in the absence of the amino-terminal arm, MBP-

HTNV NDN can bind in some regular fashion around an RNA

template. In contrast, the RNA-binding-deficient R199D

mutant assembled into amorphous supercoiled structures

that were distinct from the HTNV RNP filaments (Figure S4).

These experiments point to a coupling of RNA binding and

oligomerization.

Surprisingly, a structure-based construct devoid of the entire

C-terminal arm (HTNV NDC) eluted as a high-molecular-weight

oligomer with an apparent molecular mass >700 kDa in SEC
ll Reports 14, 2092–2099, March 8, 2016 ª2016 The Authors 2095



Figure 4. Structural Determinants of Oligo-

merization in Hantavirus N

(A) Surface representation of one LEAV N subunit

within the tetramer (molecule B, PDB: 4J1G)

showing opposite binding interfaces for the amino-

and C-terminal arms of two flanking subunits (from

molecule A to the left and molecule C to the right).

(B) Cartoon representation of the HTNV N CL (light

blue). The C-terminal arm of the adjacent molecule

(brown) binds into a similar pocket as in LEAV N,

close to the helical protuberance.

(C) Hydrophobic surface representation showing

interaction details of the C-terminal arm in HTNVN.

Hydrophobic and polar residues are shown in

green and red, respectively. The orientation cor-

responds to that of LEAV N in Figure 4A.

(D) Surface conservation plots of the HTNV NDN LL

(view on the CL) showing that the binding groove

for the C-terminal arm is conserved in hantavi-

ruses. Conserved residues are shown in maroon,

whereas non-conserved residues are shown in

cyan. The orientation relative to (C) is indicated by

the arrow.

(E) Surface conservation plots of HTNV NDN UL

(view along the NL) showing the predicted, highly

conserved binding groove for the amino-terminal

arm. The orientation relative to (D) is indicated by

an arrow.

(F) Ribbon representation of a hexameric HTNV N

model showing how the C-terminal arms could

mediate the assembly.

(G) Side view of (F).

(H) Side view on a left-handed helical model of the

HTNV RNP, based on a related model of Toscana

virus RNP.

(I) Top view of this helix. The RNA binding site

is located in a continuous groove in the interior of

the RNP.

See also Figures S3 and S4.
(Figure 3E). EMmicrographs of the negatively stained HTNV NDC

samples showed toroidal assemblies that range from compact

regular hexamers to larger amorphous rings (Figure 3F). Thus,
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in the presence of the amino-terminal

arm, the C-terminal arm may regulate

the oligomerization process.

A comparison of the HTNV and LEAV N

structures suggested that the oligomeri-

zationmechanismmay be related in these

two N families (Figure 4). In the RNA-

bound LEAV tetramer, the C-terminal

arm of the first subunit binds into a hydro-

phobic pocket of the CL in the adjacent

subunit (Figure 4A). Also in our HTNV N

structure, the C-terminal arm binds to a

similar surface-exposed groove of an

adjacent N in the crystals (Figure 4B). In

contrast to LEAV, this assembly results

not in the formation of a closed tetramer

but in a linear N oligomer in the crystal lat-

tice (Figure S3B). The exchanged armbur-
ies a surface area of 860 Å2, primarily via hydrophobic contacts

(Figure 4C). The binding groove of the C-terminal arm in

HTNV N includes the helical protuberance and a11 in the CL



(Figures 4B and 4C) and is highly conserved between hantavi-

ruses (Figure 4D). In agreementwith theseobservations, residues

340–379 partially constituting the hydrophobic groove were pre-

viously shown to be required for N-N interactions (Kaukinen et al.,

2003). In addition to the C-terminal arm, the amino-terminal arm

of LEAVNbinds into apolar pocket of the second adjacentN (Fig-

ure 4A). The equivalent surface in the NL of HTNV N includes res-

idues of b1, b2, and the intervening loop L4 and is highly

conserved among different hantavirus species (Figure 4E).

HTNV NDN polymerizes around its tripartite genome forming

helical RNPs that have a diameter of�10 nm (Figure 3D) (Battisti

et al., 2011). On the evidence of our RALS, EM and structural

data, we modeled a hexameric HTNV N assembly with a diam-

eter of�10 nm using the helical model of the related Toscana vi-

rus RNP as a template (Figures 4F–4I) (Olal et al., 2014). In this

HTNV model, the C-terminal arm binds into the hydrophobic

groove of the CL in the adjacent subunit (i+1; Figures 4F and

4G). Furthermore, the amino-terminal coiled-coil domain would

be in close apposition to the conserved surface in the NL of

the previous (i�1) subunit (Figure 4E) and may bind to this sur-

face. Similarly as previously suggested for Toscana virus

RNPs, long RNA sequences could be incorporated in a contin-

uous RNA binding groove in the interior of the N helix (Figures

4H and 4I).

DISCUSSION

Phylogenetic analyses inBunyaviridaehavemainly beenbasedon

sequence comparisons of theRNApolymerase,which is themost

highly conserved protein in this family (Marklewitz et al., 2015). In

contrast, N sequences could not be employed for phylogenetic

comparisons, due to their low degree of sequence similarity.

The degree of structural similarity of HTNV N was highest for or-

thobunyavirus N, decreased for Phlebovirus, and decreased

even further for arenavirus Ns. No structural similarity was found

for the Ns of nairoviruses. Not only the structure but also the as-

sembly mode of hantavirus Ns via amino- and/or C-terminal

arms appears to be related to that of orthobunyavirus Ns. These

results are in close agreement with the phylogenetic relations

deduced from RNA polymerase sequence analyses (Marklewitz

et al., 2015). They demonstrate the versatility of structural com-

parisons for phylogenetic analyses, when sequence conservation

is sparse (Marsh and Teichmann, 2015).

In eukaryotes, HTNV N is most closely related to the two MA3

domains of the tumor suppressor PDCD4. Both M3 domains of

PDCD4 were shown to bind to the translation initiation factor

eIF4A (Chang et al., 2009), an ATP-dependent RNA helicase,

which interacts with the scaffold protein eIF4G and the cap-

binding protein eIF4E to form the eIF4F complex. PDCD4 was

shown to block the interaction of eIF4A with eIF4G, resulting

in the suppression of cap-dependent translation. Interestingly,

HTNV N was shown to substitute for the entire eIF4F function re-

sulting in the preferential translation of viral RNAs (Hussein and

Mir, 2013). Our structural studies raise the interesting possibility

that HTNV N structurally mimics PDCD4 to promote translation

of viral mRNAs or to actively repress translation of host mRNA.

We identified a basic RNA binding cleft between the NL and

CL. In particular, residues of the helical protuberance, of L12
Ce
and of the two hinge regions may be involved in RNA binding.

The location of the RNA binding groove between the two lobes,

at the inside of the N oligomer, is similar to that of other bunya-

virus Ns. Like most viruses, hantaviruses lack mRNA capping

machinery. An endonuclease function encoded by the viral

RdRp typically cleaves host mRNA and uses the capped sub-

strates as primers in a process termed ‘‘cap snatching’’ (Hussein

and Mir, 2013). Also HTNV N was suggested to harbor an m7 G

cap-binding site (CBS) that is distinct from the RBD (Hussein and

Mir, 2013). In our HTNV N structure, however, we did not find ev-

idence for a conserved CBS with basic or aromatic clusters on

the surface of the protein (Mazza et al., 2001). Thus, it is currently

unclear whether such CBS exists in HTNV N and if, where it may

be located.

Also the oligomerization mode of HTNV and orthobunyavirus

Ns appears related. It entails the insertion of a C-terminal arm

of the Ni protomer into the core domain of the Ni+1 subunit. In

agreement with such model, our data indicate that the C-termi-

nal arm of HTNVN regulates the assembly of N into a regular olig-

omer. A similar role may be envisaged for the amino-terminal

arm, which is crucial for the hexameric assembly of HTNV N.

Similar to LEAV, it may bind to the related, highly conserved sur-

face of the NL in Ni�1 subunit. Interestingly, both hinge regions of

LEAV N were shown to directly contribute to RNA binding (Niu

et al., 2013), and we envisage that similar contacts with the

RNA base may occur in HTNV N. Via these contacts, RNA bind-

ing could be coupled to oligomerization, allowing a concerted

mechanism of RNA encapsidation. In agreement with such

hypothesis, a yeast two-hybrid assay identified the invariant

Trp119 in hinge I in the Seoul hantavirus as crucial determinant

for N assembly (Yoshimatsu et al., 2003). In our RNA-free struc-

ture, Trp119 interacts with Arg197 in a3 via cation-p stacking

(Figure S3C) andmay allow the proper folding of hinge I as a pre-

requisite for assembly.

Crystal structures of negative-strand RNA virus nucleocapsid

proteins interacting with RNA were initially reported for the non-

segmented Rhabdoviridae (Albertini et al., 2006; Green et al.,

2006). Similar oligomerization and RNA interactions modes

between two lobes, as suggested here for the HTNV N, were

identified. Helical reconstructions of respiratory-syncytial-virus

(RSV) RNP showed a left-handed helix with a pitch of 68–100 Å

and 10–11 subunits per turn (Bakker et al., 2013; Tawar et al.,

2009). In contrast, Sendai and measles virus RNPs exist in mul-

tiple conformations that have a shorter pitch ranging from 52–

68 Å corresponding to �13 N subunits per turn (Egelman et al.,

1989; Maclellan et al., 2007). Toscana virus RNP crystallized as

a staggered hexamer, which provides the basis for a helical

model of RNPs assembly in phleboviruses (Olal et al., 2014).

Based on this model, we suggest an analogous helical model

for the HTNV RNP. The dimensions of our RNP model (10 nm

diameter) are in agreement with the dimensions of the RNP

observed by EM analyses (Battisti et al., 2011).

Our analyses identified three unique, highly conserved sur-

faces in the HTNV N that correspond to the predicted binding

pocket of the amino-terminal coiled coil in the NL, the binding

pocket of the C-terminal arm in the CL, and the RNA binding

cleft. Small molecules that bind into these pockets with

high affinity would likely interfere with RNA binding and/or
ll Reports 14, 2092–2099, March 8, 2016 ª2016 The Authors 2097



oligomerization and therefore block viral replication, similar to

related drugs targeting the nucleoproteins of RSV and influenza

viruses (Challa et al., 2015; Kao et al., 2010). In such way, the

HTNV N structure can guide structure-based drug design efforts

aimed at developing anti-hantavirus compounds.

EXPERIMENTAL PROCEDURES

Expression and Crystallization

His-tagged full-length (1–429) or C-terminally truncated (1–401) HTNV N in the

pET46 vector and MBP-tagged HTNV N (113–429) in the pET21 vector were

expressed in E. coli and purified via standard procedures (see also Supple-

mental Experimental Procedures). MBP-HTNV NDN crystallized in 17%–20%

PEG3350 and 0.2 M ammonium citrate (pH 5.0–5.5).

Data Collection and Structure Determination

Diffraction data of single crystals were collected at BESSY-II BL14.1 and DESY

BL P11. The structure was determined by molecular replacement. DALI was

used for structural comparisons (Holm and Rosenström, 2010).

Electron Microscopy

1.5 mg/ml protein and an 8,000-base ssRNA were mixed and diluted 10-fold.

15 ml of the sample was spotted on carbon-coated grids stained with 2% ura-

nyl acetate.

ITC

Experiments were carried out at 15�C using stepwise titrations of a 400-mM

RNA solution into a 25-mM protein solution in the reaction cell.
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