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Abstract. An expression for the dynamic density response function has been obtained for an interacting quantum gas in
Random Phase Approximation (RPA) including first order self and exchange contribution. It involves the single particle wave
functions and eigen values. The expression simplifies when diagonal elements are considered. The diagonal elements of the
imaginary part of Fourier transformed response function is relevant in the measurement of Bragg scattering cross-section and in

several other applications.
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INTRODUCTION

Trapped quantum gases have interesting properties
due to finite number of particles, its temperature, and
inter-particle interactions. Various aspects of these
have been studied during the last fifteen year [1, 2, 3,
4]. In this paper we present the derivation of the
density response function of inhomogeneous quantum
gases using the Green’s function method treating the
interaction in the Random Phase Approximation
(RPA) including first order self energy and exchange
contribution to it.

THEORETICAL FORMALISM

We consider a system of N particles. The
Hamiltonian for the system in the second quantized
form is given as H=H, + Hy,
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is the matrix element of inter-atomic potential
v( F-7’ ) (taken as central) between the single

particles states defined by ¢, ° corresponding to eigen

values ¢° In Eq. (1) o’s are the spin components
corresponding to particle of spin s. Henceforth we
suppress the explicit consideration of spin degrees of
freedom.

We define the retarded response function as [5]
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where G is the Green’s function. In Eq.(2)
Py (1) = 0, (Mg, (Na, M3, (1) s the partial density
operator which on summing over v’, v gives the
density operator o() , @ (t) is the unit-step function
and the angular brackets denote the grand canonical
ensemble  average. The  Green’s  function
G,  (f,T,t) satisfies the equation of motion,
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Evaluation of the commutators in the first and second
term is straight forward. The last commutator in Eq.
(3) contains four terms, which on using the fact that
the matrix elements of inter atomic potential is
symmetric under particle interchange, reduces to
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Substituting (4) in Eq. (3) gives higher order Green’s
function. Equation of motion for these Green’s
functions will lead to still higher order Green’s
function and so on. In order to close the infinite
hierarchy of coupled equations, we truncate this
Green’s function using the approximation,
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where n=%1for bosons & fermions respectively.
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In Eq. (5) first & second terms gives RPA & Hartree
(dynamical) contributions respectively, third & fourth
gives the first order self & exchange contribution to
RPA.. Using the approximation Eq. (5) in Eq. (3) &
taking the Fourier transform w. r. t time thereafter
summing over v', v We get,
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where @ stands for w+:0 and N, is the average

occupation number for the state v, symbols are defined
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Now the integral equation obtained in Eq. (6) can be

solved for the Green’s function G, (F". 7' @) by
iteration and we obtain,
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Further we define
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With the above notations, Eq. (7) can be written in a
matrix (for I, ") form as,
1=t RtaRy +iFs = Fy - Rl 70V - RV =Ry - Ry + BV +R + UFEV)_l
(ot -Vl ©)
where y; =(Fy +1 FotnFs-F4-nFs-nFe ) is the first order
contribution to RPA. This is believed to be new result
[6] for Quantum gases and valid for any dimension. It
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provides dynamics beyond RPA where y;=0. The
interaction potential V(| F—F' |)can be considered to

be an effective two-body potential obtained from S-
matrix theory or simply bare potential. It can be seen
that for contact potential result simplifies.

DISCUSSION

The expression for the density response function
given in Eq. (8) is very general and is expected to be
quite useful in discussing the dynamical properties of
quantum gases under various situations at least for
small interaction parameter. It contains dynamics
beyond RPA. It is easy to obtain Eg. (8) in the
momentum space and with the help of fluctuation,
dissipation theorem; the diagonal element of the
imaginary part of the response function can be used to
obtain the Bragg scattering cross-section. Further it
has been checked that for the homogenous interacting
electron gas our approximation yields the result first
obtained by Geldart and Taylor [7] and it has also been
found that Eq. (8) gets simplified for homogenous
interacting quantum atomic gases for any temperature.
We note that we have already calculated the density
response function for an inhomogeneous Bose gas in
the high temperature limit [8]. The numerical result for
interacting inhomogeneous quantum atomic gases will
be presented elsewhere.
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