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The determination of kinetics of high-dimensional dynamical systems, such as macromolecules,
polymers, or spin systems, is a difficult and generally unsolved problem — both in simulation,
where the optimal reaction coordinate(s) are generally unknown and are difficult to compute, and
in experimental measurements, where only specific coordinates are observable. Markov models,
or Markov state models, are widely used but suffer from the fact that the dynamics on a coarsely
discretized state spaced are no longer Markovian, even if the dynamics in the full phase space
are. The recently proposed projected Markov models (PMMs) are a formulation that provides
a description of the kinetics on a low-dimensional projection without making the Markovianity
assumption. However, as yet no general way of estimating PMMs from data has been available. Here,
we show that the observed dynamics of a PMM can be exactly described by an observable operator
model (OOM) and derive a PMM estimator based on the OOM learning. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4932406]

I. INTRODUCTION

High-dimensional Markov processes are ubiquitous in
physical systems. A recurring and hard problem is the task of
estimating effective dynamical models from low-dimensional
projections of such processes. Examples include effective
modeling of protein kinetics from all-atom simulations, the
estimation of transition rates from single-molecule force probe
experiments, or the detection of hidden states in ion channels
from patch-clamp voltage measurements.

A general formalism is that of Mori and Zwanzig,1,2

where the projected Markov dynamics lead to a generalized
Langevin equation. One may attempt to directly estimate such
Langevin models from data,3,4 but in general their parameters,
in particular the memory kernel, are difficult to deal with, and
require some regularization.

Many dynamical systems are metastable, i.e., the dy-
namics on large time scales is mainly governed by transitions
between “metastable subsets” in state space while the local
equilibrium within each metastable subset can be reached
quickly. In the fortunate situation that the observed subspace
resolves the coordinates indicative of these slow processes,
the Langevin memory kernel may decay sufficiently quickly,
such that the process can be described by Markov state models
(MSMs). MSMs use memoryless transition or rate matrices on
a set decomposition (e.g., Voronoi tessellation) of the observed
subspace.5–12 Due to the Markov assumption, the parameters of
MSMs can be efficiently estimated from simulation or exper-
imental data. Both thermodynamic and kinetic quantities of
the metastable systems can be easily obtained from MSMs —
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including equilibrium expectations, free energy differences,
the characteristic time scales of equilibrium processes, time
correlation functions, reaction rates, and transition pathways.
However, the Markov assumption relies heavily on an appro-
priately chosen state space discretization, generally requiring a
large number of discrete states that resolve the transition states
of metastable subsets.13,14 Such a discretization is difficult to
find in high-dimensional applications. In Refs. 10 and 15,
MSMs between “core sets” have been proposed to solve this
problem, which avoid the full partition of the state space by
using a set of core sets to define the discrete states instead.
However, the selection of core sets is still not satisfactorily
solved. For the analysis of single-molecule experimental data,
the direct application of MSMs is often impossible because the
observable subspace (e.g., a pulling coordinate in a force probe
experiment) is not Markovian, thereby inherently limiting the
discretization quality.

Here we pursue an approach that does not enforce
the assumption that the observed dynamics are (nearly)
Markovian. We developed a new framework in Ref. 16,
called projected Markov models (PMMs), which allows one
to investigate the coarse-grained metastable dynamics without
imposing the Markov assumption on the discretized state
space. A PMM consists of two sub-models: (a) a state evolution
model which is Markovian on the full state space without any
discretization and is assumed to have a spectral gap due to the
metastability, and (b) an observation model which describes
the system dynamics observed on the discrete state space as
a deterministic or stochastic projection of the state evolution
model. PMMs were successfully applied to the problem of
estimating the rates of a two-state system (see Ref. 17). But
until now, it has been an open problem how to characterize
the complete observed dynamics of a general PMM by a
low dimensional parametric model which can be efficiently

0021-9606/2015/143(14)/144101/11/$30.00 143, 144101-1 © 2015 AIP Publishing LLC
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estimated from the observation data. In Ref. 16, we have
proposed to replace the PMM by a discrete-state hidden
Markov model (HMM), for which efficient estimation methods
are known. However, PMMs can be accurately modeled by
HMMs only under a number of nontrivial assumptions on the
eigenfunctions of the dynamical system that cannot be verified
in practice.

Here we propose a general and efficient approach to the
modeling and estimation problems of PMMs. The approach
relies on establishing the observable operator model (OOM)
representation of PMMs, where OOMs are a class of dynamic
algebra systems developed in the field of machine learning as
an extension of HMMs.18 We show that the observed dynamics
of a strongly metastable PMM can be described by an OOM.
This allows us to characterize the non-Markovian dynamics
of metastable systems on the observable coarse-grained state
space through building OOMs, and the statistical and spectral
properties of the metastable dynamics can then be directly
computed from the OOM parameters.

II. PROJECTED MARKOV MODELS

Before presenting our results, we give a formal description
and some basic assumptions of the molecular dynamics, and
describe PMMs.

a. State evolution model: The molecular dynamics in full state
space is described by a stochastic process {xt}where x ∈ Ω, an
often high-dimensional state space that may include momenta,
and t is the time index. Trajectories from a molecular dynamics
implementation or a single-molecule experiment sample this
process and provide realizations of {xt}. Furthermore, we will
assume that the process itself is an ergodic and reversible Mar-
kov process with a unique and everywhere positive stationary
density µ (x). In practice this means: if the dynamical system is
a single-molecule experiment in equilibrium, these conditions
will be fulfilled. If the dynamical system is a molecular
dynamics (MD) simulation, we must choose an integrator
and thermostat that will sample from the correct Boltzmann
distribution µ(x) ∝ exp(−βu(x)) with inverse temperature
β. Secondly, reversibility means that when we simulate
the molecule in equilibrium, the absolute (unconditional)
probability to travel between two points x and x ′ is symmetric.
This property is important for physically realistic system and
is actually required by the second law of thermodynamics.
However, many practically used integrators and thermostats do
not exactly obey reversibility. Many dynamical models, such
as Langevin dynamics, obey some generalized reversibility
under the inversion of momenta. In fact these models can
also be dealt with, but here we will restrict the mathematical
description to reversible dynamics implementations in order
to keep the equations reasonably simple. See Refs. 14 and 19
for a more detailed discussion. In practice, most reasonable
MD implementations are sufficiently consistent with the
assumptions above for the purpose of this paper.

The operator theory of Markov processes was thoroughly
discussed in Refs. 13, 14, and 19. Here, we just summarize a
few aspects of the theory relevant for analyzing PMMs. The
dynamics of {xt} can be formally described by a propagator

P (τ) with

pt+τ (x) = (P (τ) pt) (x)
,


Ω

dx ′p (xt+τ = x |xt = x ′) pt (x ′) , (1)

where pt (x) denotes the probability density of the system state
xt at time t, P (τ) is an integral operator, and the transition
probability density p (xt+τ = x |xt = x ′) is the corresponding
integral kernel. From the ergodicity and reversibility of {xt},
we can conclude that P (τ) is a compact and self-adjoint
operator on a Hilbert space defined by the weighted inner
product

⟨u, v⟩ =

Ω

dxu (x) v (x) µ−1 (x) , (2)

and pt+τ can be decomposed by using spectral components of
P (τ) as

pt+τ =
∞
i=1

λi (τ) ⟨pt, φi⟩ φi, (3)

for a given state density pt at time t, where

λi (τ) = exp (−κiτ) = exp
(
− τ

ITSi

)
(4)

is the ith largest magnitude eigenvalue ofP with eigenfunction
φi. κi ≥ 0 is the (experimentally observable) relaxation rate of
the ith dynamical process, and ITSi = κ−1

i the corresponding
relaxation time scale. The eigenfunctions {φi} form an
orthonormal basis for the range of P, i.e.,



φi, φ j

�
= δi j

for all i, j. The largest eigenvalues is λ1 = 1 and dominant,
λ1 > λ2. Consequently, the first relaxation rate is κ1 = 0 and
κ1 < κ2. The corresponding eigenfunction is φ1 (x) = µ (x), the
stationary or equilibrium distribution. Note that (4) further-
more assumes that eigenvalues are positive, this assumption is
reasonable for most physical and chemical processes.

If {xt} is a metastable process, there may be a spectral gap
between the decay rates of the largest few eigenvalues and the
remaining ones which are separately denoted as {κi}mi=1 and
{κi}i>m with κm ≪ κm+1 (see, e.g., Refs. 20 and 21). The fast
rates quickly decay to zero as τ → ∞, and then the dynamics
of {xt} can be well approximated as

pt+τ ≈
m
i=1

λi (τ) ⟨pt, φi⟩ φi (5)

on sufficiently long time scales τ ≫ 1/κm+1. In this paper, we
restrict our discussion to the case that {xt} is “m-metastable”
with κi = ∞ for all i > m and the above approximation is
exact for convenience of the analysis. Note that in practice
τ > 3/κm+1 is already sufficient for this approximation to be
excellent.

Using (5), we can write down the joint probability to
observe the system in state xt at time t and state xt+τ at time
t + τ,

p(xt = x ′, xt+τ = x) ≈
m
i=1

λi (τ) φi(x ′)φi(x). (6)

b. Observation model: So far we have assumed the dynamics
to be Markovian. The strategy of Markov models is to directly
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approximate the eigenfunctions φi by seeking a suitable state
space approximation, which can be efficient for molecular
dynamics simulations, if an appropriate low-dimensional
state space can be found.22,23 However, for large molecular
systems, obtaining a good state space discretization may be
difficult. Moreover, if we want to model the kinetics of an
experimentally observed system, we do not have the freedom
of choosing a suitable space and making the state space
discretization arbitrarily good—we are forced to observe the
system dynamics projected on an experimentally observable
parameter.17 Such a projection will render the dynamics non-
Markovian and will deteriorate the estimation of the kinetics —
in general in such a way that eigenvalues and time scales are
underestimated, and rates are overestimated.17,24,25

Now we will explicitly assume that we discretize the
Markovian dynamics {xt} or observe its projection onto an
experimentally accessible parameter. For this, let us assume
that the observation yt at each time t is a function of xt.
In the present paper we assume that the observation space
O = {1, . . . ,N} is a finite set. For a molecular dynamics
simulation this can be achieved by conducting a state space
discretization using data clustering. For experimental data, it
is easily achieved by binning the experimental observable(s).

Considering that the observation might be noisy, here we
describe the relationship between yt and xt as

Pr (yt = n|xt = x) = χn (x) , (7)

where χn (x) is called the observation probability function
for the observed value n. Note that (7) can be used to
describe a Galerkin discretization with χn (x) ∈ {0,1}, where
each k represents a finite element space and χn (x) is the
corresponding characteristic basis function. This way we can
straightforwardly describe the case of fuzzy clustering or
smooth membership functions, e.g., Gaussian basis functions
used in Refs. 25–27.

Now we can model the dynamics on the observed state
space. Using (6), we can write down the joint probability of
observing the system in two states yt at time t and yt+τ at time
t + τ,

Ci j , Pr(yt = i, yt+τ = j)
≈

xt ∈Ω

dxt χi(xt)

xt+τ∈Ω

dxt+τ χi(xt+τ)

×
m
k=1

λk (τ) φk(xt)φk(xt+τ)

=

m
k=1

λk (τ) qikqjk, (8)

where qk = (q1k, . . . ,qNk)⊤ is the projection of eigenfunction
φk onto the observed state space with

qik =

Ω

φk (x) χi (x) dx. (9)

We can also express the correlation matrix C = [Ci j] in a
compact form as

C = QΛ (τ)Q⊤, (10)

where the columns of Q = (q1, . . . ,qm) ∈ RN×m contain the
elements of the first m eigenfunctions projected onto the

observed states, and Λ(τ) ∈ Rm×m contain the first m eigen-
values of the dynamical systems. In the rest of the paper, we
write the eigenvalue matrix as Λ with omitting τ from the
notation if there is no understanding.

Eq. (10) provides a spectral description of the observation
process {yt} of a PMM as derived in Ref. 28. It is these two
quantities, Q and Λ that are of our primary interest and that
are important for spectral analysis of the system’s kinetics,
although they cannot fully describe the dynamics of the PMM
on the observation space due to the non-Markovianity of {yt}.
If we have them, we can compute the temporal evolution of
the observation distribution and a lot of physically interesting
quantities on the PMM. See Ref. 28 for more details on a
quantitative analysis of PMMs based on (Λ,Q).

Now we address the question: how can we efficiently
approximate the dynamics of a PMM on the observation
space and estimate projected spectral components (Λ,Q) from
observation data?

III. REPRESENTATION AND ESTIMATION
OF PROJECTED MARKOV MODELS BY OBSERVABLE
OPERATOR MODELS

A. Observable operator models

In this subsection, we formally define the elements of an
OOM and explain how the model represents a discrete-valued
stochastic process. According to Refs. 18 and 29, an OOM can
be characterized by the following variables.

1. m, the dimension of states in the model. The OOM state at
each time t is represented by a row vector ωt ∈ R1×m.

2. N , the number of distinct observable states. We denote the
observation space as O = {1, . . . ,N}, and the observation
at time t as yt.

3. The initial state vector ω with ω0 = ω.
4. An observable operator Ξ(y) ∈ Rm×m for each observation

value y ∈ O. For a given observation sequence yτ, y2τ, . . .,
the evolution equation of model states can be expressed as

ωkτ = ω(k−1)τΞ(ykτ). (11)

5. The evaluation vector σ ∈ Rm×1, which maps the model
state ωt to the probability of the observation sequence up
to time t as

ωkτσ = Pr (yτ, y2τ, . . . , ykτ) . (12)

Consequently, we can write the probability of observing an
observation sequence (yτ, y2τ, . . . , ykτ) in terms of the OOM
parameters as:

Pr (yτ, y2τ, . . . , ykτ) = ωΞ(yτ)Ξ(y2τ) . . .Ξ(ykτ)σ (13)

for all k ≥ 0 (assuming the convention that Pr(empty sequence)
= 1).

OOMs are closely related to another class of non-
Markovian models called HMMs. In Ref. 30, it was shown
that each m-state HMM can be expressed as a m-dimensional
OOM. Conversely, however, there exist finite-dimensional
OOMs which cannot be formulated as HMMs with a finite
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number of states. In other words, OOMs are a strict general-
ization of HMMs and are therefore able to model a wider class
of stochastic processes.

B. Converting projected Markov models
into observable operator models

Considering that efficient estimation algorithms for
OOMs have been developed, we want to estimate the observed
dynamics of a PMM and projected spectral components
through OOM learning in this paper. To this end, it must be
shown that the observation process {yt} produced by a PMM
can also described by an OOM.

Let us consider a metastable PMM which contains only m
nonzero eigenvalues as described in Section II. According to
(6), the transition probability density of the state process {xt}
in the PMM can be expressed as

p (xt+τ |xt) = 1
µ (xt) p (xt, xt+τ)

=
1

µ (xt)φ(xt)⊤Λφ (xt+τ) , (14)

where φ (x) = (φ1 (x) , . . . , φm (x))⊤ denotes the vector of
eigenfunctions. Combining (14) and (7) yields the probability
of the observation sequence,

Pr (yτ, . . . , ykτ) = ωPΞ
(yτ)
P . . .Ξ

(ykτ)
P σP (15)

(see proof in Appendix A), where the OOM parameters can be
expressed in terms of the PMM spectral components as

ωP = (⟨p0, φ1⟩ , . . . ,⟨p0, φm⟩) (16)

Ξ
(y)
P = Λ





χy · φ1, φ1

�
· · ·



χy · φ1, φm

�

...
. . .

...

χy · φm, φ1

�
· · ·



χy · φm, φm

�



(17)

σP = (1,0, . . . ,0)⊤ (18)

and
�
χy · φi

� (x) , χy (x) φi (x). Thus, the observed process
{yt} produced by the PMM can also be described by the
m-dimensional OOMMP = (ωP,{Ξ(y)P }y∈O,σP).

With the above discussions, we can now present our main
conclusion in this paper: The observed dynamics of a PMM
can be exactly characterized by a m-dimensional OOM under
the assumption of m-metastability. This conclusion shows that
we can analyze the dynamical characteristics and evaluate the
path probabilities of a PMM in the observation space by a
simple and small-sized linear algebra system if the PMM is
strongly metastable.

C. Observable operator model learning for projected
Markov models

According to the conclusion in Subsection III B, we
can approximate the dynamics of a m-metastable PMM from
its observations {yt} by an OOM learning algorithm if the
following assumptions holds:

1. The underlying stochastic process {xt} is stationary,
i.e., the initial probability density of the system state

p0 (x) = µ (x). Under this assumption, we can estimate the
stationary distribution vector π, the correlation matrix C
and two-step correlation matrices {C(y)}y∈O consistently
and without a bias, through simple counting. Here, π, C
and C(y) are defined as

π = [πi] = [Pr(yt = i)], (19)
C = [Ci j] = [Pr(yt = i, yt+τ = j)], (20)

C(y) = [C(y)
i j ] = [Pr(yt−τ = i, yt = y, yt+τ = j)]. (21)

2. The m projected eigenfunctions q1, . . . ,qm are linearly
independent, i.e., rank (Q) = m. We can conclude from this
assumption that rank (C) = rank (QΛQ⊤) = m.

3. All the m dominant eigenvalues λ1, . . . , λm are positive,
which implies that each λi is related to a valid relaxation
time scale as in (4).

From these assumptions and the reversibility of the PMM, it
can be shown that C and C(y) have the following structural
properties:

C ≽ 0

C(y) = C(y)⊤, ∀y ∈ O
(22)

where C ≽ 0 means that C is a positive semidefinite matrix,
which is a direct consequence of the third assumption.

We can exploit Algorithm 1 to perform the OOM learning
of the PMM observed dynamics. This algorithm is similar
to the weighted spectral learning algorithm29 for OOM
estimation, and it is asymptotically correct, i.e., the OOM M̂
given by the estimation algorithm satisfies

ω̂Ξ̂
(yτ)

. . . Ξ̂
(ykτ)σ̂ → Pr (yτ, . . . , ykτ) , (23)

if the estimates π̂, Ĉ and {Ĉ(y)}y∈O of π, C and {C(y)}y∈O
converge to their true values. The only difference between
Algorithm 1 and the weighted spectral learning algorithm is
that the estimates of C and {C(y)} obtained by simple counting
are numerically modified according to the algebraic constraints
(22) (see line 2 of Algorithm 1). This modification ensures that
the sum of all estimated observable operators is diagonalizable
over the real numbers, i.e., that there exist a diagonal matrix
Λ̂ ∈ Rm×m and a nonsingular matrix Ŵ ∈ Rm×m such that

Ξ̂
(0)
,


y∈O
Ξ̂
(y)
= ŴΛ̂Ŵ−1 (24)

even in the presence of statistical noise (see Appendix B). It
will be seen in Section IV that the diagonalizability is very
important for the spectral analysis. In this paper, we perform
the numerical modification via Algorithm 2.

Remark 1. Note that an OOM generally has multiple
equivalent OOMs which have different parameters.18 So (23)
implies thatM̂ is asymptotically equivalent toMP constructed
in Subsection III B, but we cannot conclude from the
equivalence that

ω̂ → ωP, Ξ̂
(y) → Ξ(y)P , σ̂ → σP.

Remark 2. An important issue for PMM estimation is
determining the number m of dominant eigenvalues. In our
results, we assume that m is given. For practical applications
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ALGORITHM 1. OOM learning for PMMs.

1. Calculate the estimates π̂, Ĉ, and {Ĉ(y)}y∈O of π, C, and {C(y)}y∈O by counting frequencies of occurrence of
the corresponding observation values and subsequences as follows:

π̂ = [π̂i] = 1
Zπ

[|{t |yt = i}|],
Ĉ= [ĉi j] = 1

ZC
[|{t |(yt, yt+τ)= (i, j)}|],

Ĉ(y)= [ĉ(y)i j ] =
1
Z ′
C

[|{t |(yt−τ, yt, yt+τ)= (i, y, j)}|],
(25)

where Zπ, ZC, and Z ′C are normalizing constants determined by
i

π̂i = 1,
i, j

ĉi j = 1,
i, j, y

ĉ
y
i j = 1.

(26)

2. Modify the estimates Ĉ and {Ĉ(y)} to satisfy the constraint (22).
3. Define the matrix

S= diag(π̂)− 1
2 Ĉdiag(π̂)− 1

2 (27)

and perform the eigenvalue decomposition of S to get the diagonal matrix Σm ∈Rm×m which contains the
m largest eigenvalues of S, and the matrix Um ∈Rn×m consisting of the corresponding right orthonormal
eigenvectors.

4. Using V := diag(π̂)− 1
2 Um, compute

ω̂ = π̂⊤V

Ξ̂
(y)
= Σ−1

mV⊤Ĉ(y)V
σ̂ = Σ−1

mV⊤π̂

(28)

5. return OOM M̂ = (ω̂, {Ξ̂(y)}y∈O, σ̂).

where the assumption of the linear independence of projected
eigenfunctions holds, m can be determined by calculating
the numerical rank of the estimates of C since rank (C)
= m.

Remark 3. If Q is rank deficient, it is still possible to
determine the value of m and perform the OOM learning
by using the stationary distribution, correlation matrix, and
two-step correlation matrices of observation subsequences.29

However, it is an open problem on how to achieve a
diagonalizable Ξ̂

(0)
in this case.

D. Comparison with other modeling approaches

The most popular approach for estimating PMMs are
Markov state models, where the observed process {yt}
is modeled as a Markov chain. This is, of course, an
oversimplified description of the non-Markovian dynamics of
PMMs and can achieve an accurate approximation only in the
case that the coarse-graining defined by the observation model
is fine enough and can be conducted in the space spanned by
the slow process eigenvectors. The HMM approach provides
a non-Markovian description of PMMs by treating each

ALGORITHM 2. Modification of Ĉ and { ˆC(y)}.

1. Calculate

Ĉ′(y) = 1
2

(
Ĉ(y)+ Ĉ(y)⊤) , ∀y ∈ O

Ĉ′ =
1
2

(
Ĉ+ Ĉ⊤

)
.

(29)

2. Perform the eigenvalue decomposition of Ĉ′ to get

Ĉ′=UCΣCU⊤C, (30)

where ΣC is a diagonal matrix consisting of eigenvalues of Ĉ′, and UC consists of the corresponding right
orthonormal eigenvectors.

3. Let Ĉ(y) := Ĉ′(y) for all y and

Ĉ :=UCmax{ΣC,0}U⊤C . (31)

4. return Ĉ and {Ĉ(y)}.
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metastable state as a hidden state and can robustly approximate
PMM dynamics even when the state discretization is very
poor. In Ref. 16, it was shown that the observation process
of a m-metastable PMM can only be described by a m-
state HMM if the eigenfunctions of the state process can be
expressed as linear combinations of a set of probability density
functions with non-overlapping supports. This assumption is
obviously unrealistic in real world scenarios and can only
be approximately satisfied when the transition probabilities
between metastable states in the state space are very close
to zero in most practical cases. In contrast with MSMs and
HMMs, OOMs can exactly describe the PMM dynamics
without any assumption on the state evolution and observation
models except the m-metastability. While being only slightly
more complex, OOMs provide a much improved model of
state-discretized molecular dynamics and are less affected by
model mismatching than MSMs and HMMs.

Interestingly, both MSM and OOM parameters can be
simply extracted from correlation functions (or high-order
correlation functions) of observed processes {yt}. Therefore,
both MSMs and OOMs can be efficiently learned from
observation data, and the statistical errors would go to zero
with increasing size of observation data almost surely. Note
that HMMs do not have this property: HMM parameters
can only be iteratively optimized through an expectation-
maximization procedure, which often suffers from slow
convergence and susceptibility to local optima and is generally
not asymptotically correct.

IV. OBSERVABLE OPERATOR MODEL BASED
SPECTRAL ANALYSIS

We now investigate how to recover the PMM eigenvalues
Λ and projected eigenfunctions Q defined in (10) from the
corresponding OOM parameters.

Let us consider a m-metastable PMM, which can
be exactly described as a m-dimensional OOM M = (ω,
{Ξ(y)}y∈O,σ) and denote by Ξ(0) ,


y∈OΞ

(y) the sum of
all observable operators in M. Furthermore, we assume for
simplicity that all assumptions listed in Subsection III C are
satisfied and all the m dominant eigenvalues of the Markov
propagator of the state process are distinct, i.e., 1 = λ1 > λ2
> · · · > λm > 0. Then it can be proven that Ξ(0) is a
nonsingular matrix and similar to a real diagonal matrix (see
Eq. (C4) in Appendix C). According to Eq. (13), the correlation
matrix C of the PMM can be calculated by

C =



ωΞ(1)
...

ωΞ(N )




Ξ(1)σ · · · Ξ(N )σ


. (32)

After some algebraic manipulations, we can get

C =



ωΞ(1)
...

ωΞ(N )



WΛ̃W−1
(
Ξ(0)

)−1 
Ξ(1)σ · · · Ξ(N )σ



= Q̃Λ̃Q̃′⊤, (33)

where Ξ(0) =WΛ̃W−1 is an arbitrary eigenvalue decomposi-
tion of Ξ(0), and

Q̃ = [q̃i j] =


ωΞ(1)
...

ωΞ(N )



W, (34)

Q̃′ = [q̃′i j] =


σ⊤Ξ(1)⊤
...

σ⊤Ξ(N )⊤



(
Ξ(0)

)−⊤
W−⊤. (35)

Note the form of (33) is similar with that of PMM equation
(10). According to the equivalence theorem of OOMs,29 it can
be proved that the (Λ̃,Q̃,Q̃′) in (33) are related to the PMM
quantities (Λ,Q) as

Λ = Λ̃, (36)

Q = [qi j] = [1
2

(
sgn

�
q̃i j

�
+ sgn

(
q̃′i j

)) 
q̃i jq̃′i j], (37)

where diagonal elements of Λ and Λ̃ are both sorted in
the descending order, and sgn (·) denotes the sign function
with sgn (a) = 1 for a ≥ 0 and sgn (a) = −1 for a < 0. (See
Appendix C for the detailed proof.) The above two equations
give a simple way to extract the PMM spectral components
from the parameters ofM.

Remark 4. It is obvious that we cannot utilize (36) and
(37) to compute the projected spectral components if Ξ̂

(0)
is

not diagonalizable over the real numbers due to the influence
of statistical error. That is the reason why it is required to
perform the numerical modification of C and C(y) as shown in
Algorithm 2.

V. APPLICATIONS

A. Two-dimensional diffusion process

In order to demonstrate the usefulness of OOMs to
estimate the kinetics of metastable systems, let us first study
an example of two-dimensional Brownian dynamics on the
domain Ω = [−2,2] × [−1.5,2.5] with a three-well potential
and a simple box discretization observation model, as shown
in Fig. 1(a) (see Appendix D for details). The six largest
eigenvalues of the propagator with lag time τ = 0.6 are

λ1 λ2 λ3 λ4 λ5 λ6

1.0000 0.9524 0.6372 0.0956 0.0424 0.0202
,
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FIG. 1. Comparison of OOM, MSM, and HMM for modeling the diffusion in a three-well potential. (a) Illustration of the potential function and ob-
servation model, where each grid represents a finite element space of the observation model. (b) Estimates of implied time scales ITSi =−τ/lnλi (τ)
for i = 2,3 (ITS1≡∞). (c) Mean square errors between the true second and third projected eigenfunctions and their estimates. (d) Log-likelihood-ratios
lnp(ytest(τ)|estimatedmodel)− lnp(ytest(τ)|truemodel) between estimated models and the true model, where ytest(τ) denotes an observation sequence of length
5×106τ and sampling step size τ generated from the true model. Solid lines in ((b)-(d)) represent average over 30 simulations and dash lines show the
corresponding one-sigma confidence intervals.

so the dynamics are clearly dominated by three metastable
states.

We have performed 30 independent simulations of the
system with sampling step size 0.1 and length 105 and have
built the following three models from the observation data for
comparison in each run: a three dimensional OOM, a MSM
and a three-state HMM which describes the dynamics of the
state evolution as a reversible Markov chain that transitions
between three metastable substates.16 Fig. 1 summarizes the
performances of the three models, where the estimation results
at τ > 0.1 are obtained by using the subsequences with lag
time τ extracted from simulated trajectories. It is obvious
that the MSM is actually a finite element approximation of
the state evolution. The poor finite element mesh defined
by the observation model — a mesh that cannot accurately
capture boundaries between the metastable states — leads to
slow convergence and large errors in the estimated relaxation
time scales. The HMM overcomes this limitation by searching
for a suitable metastable subspace partition of the underlying
dynamics through the HMM learning process.16 From Fig. 1(b)
it can be seen that the HMM performs significantly better than
the MSM on the implied time scale estimation. However, the
local dynamics within each metastable subspace is ignored in
the HMM, so that the estimates of projected eigenfunctions
and observation likelihood obtained by the HMM are even
worse than that obtained by the MSM especially when τ is
small (see Figs. 1(c) and 1(d)). The OOM outperforms the
other two models, yielding accurate and precise time scale
and eigenvector estimates and providing the largest likelihood
ratio when τ ≥ 0.6, because it is close to an “exact” model
of the system without model mismatch for a large τ. (All the
three models achieve similar estimation results on q1 as it can
easily be estimated as the stationary distribution of {yt}.)

B. Bovine pancreatic trypsin inhibitor

We now investigate the conformation dynamics of
the bovine pancreatic trypsin inhibitor (BPTI) protein (see
Fig. 2(a) for the secondary structure) by using a 1 ms
molecular dynamics simulation which was generated by
the Anton supercomputer.31 It was reported in Ref. 16 that
this system has three dominant spectral components which
are associated with conformational transitions between three
metastable states, and the free energy function in the IC(1)-
IC(2) coordinates (see Fig. 2(b)) shows the three metastable
states which are centered at about (IC(1), IC(2)) = (−0.25,0.7),
(−0.3,−1.65), and (6.4,−0.6), where IC(1) and IC(2) denote
the slowest independent components given by the time-lagged
independent component analysis.23,24 We utilize the regular
space clustering algorithm14 to discretize the independent
component space into 8 and 87 clusters and then model the
corresponding coarse-grained dynamics with OOM, MSM
and HMM, where both the dimension of the OOM and the
state number of the HMM are set to be three. Fig. 2(c) plots
implied time scale estimation results. It can be observed that
the MSM fails to give stable estimates of implied time scales
with lag time τ ≤ 1 µs due to the non-Markovian projected
dynamics. The HMM estimates of ITS2 and ITS3 converge to τ-
independent constants about 45 µs and 22 µs at τ = 0.2 µs with
87 clusters. But for the coarser discretization with 8 clusters,
the HMM converges to much smaller estimates of 22 µs and
18 µs. In contrast with the MSM and HMM estimates, the
OOM estimates quickly converge to around 45 µs and 22 µs
for both 87- and 8-cluster partitions.

Moreover, we evaluate the mean square errors be-
tween the estimated autocorrelation functions of independent
components,
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FIG. 2. Comparison of OOM, MSM, and HMM for modeling the conformation dynamics of BPTI. (a) Illustration of the structure of BPTI. (b) Free energy
landscape obtained by direct population inversion of the trajectory data (in units of kBT ), where the blue dots show the centers of 87 clusters for coarse-graining.
(c) Estimates of implied time scales ITS2 and ITS3. (d) Mean square errors of autocorrelation functions acf(IC(1);∆t) and acf(IC(2);∆t) obtained by comparing
the model prediction with the Monte Carlo estimation. (e) The first three projected eigenvectors for the 87 cluster discretization extracted from the OOM with
lag time τ = 1 µs. Dashed and solid lines in ((c) and (d)) represent estimation results given by using 8 clusters and 87 clusters, respectively.

acf
(
IC(i),∆t

)
= E


IC(i)

t IC(i)
t+∆t


, (38)

for ∆t ∈ {kτ |0 < kτ ≤ 10 µs} given by the dynamical models
and direct Monte Carlo estimation. The computation of (38)
from models is described in Appendix E. (The time cross
correlation of IC(1) and IC(2) is close to zero for the time-lagged
independence between them.) It can be seen from Fig. 2(d) that
the OOM achieves the smallest errors, which implies that the
OOMs characterize the conformation dynamics of BPTI in the
projected space more accurately than the MSM and HMM.

Fig. 2(e) display the three projected eigenvectors given
by the OOM with 87 clusters. It is interesting to see that the
sign patterns of the projected eigenvectors clearly indicates the
metastable conformations.

VI. CONCLUSIONS

PMMs provide a general theoretical framework for
describing observed (projected) Markov processes, which are
especially relevant for complex dynamical systems where
the optimal reaction coordinate(s) are either unknown in

simulations or inaccessible in experiments. When the dy-
namics are metastable, the PMM can be specified by a few
spectral components. In this paper, we show that OOMs are
a powerful modeling tool for PMM systems. In contrast to
the widely used MSMs, the assumption of the Markovianity
in the observation space is not required for OOMs, and the
PMM dynamics on the observation space can be exactly
modeled by OOMs for any choice of the coarse graining
operation. Furthermore, although OOMs are non-Markovian,
they can also be asymptotically correctly estimated with very
low computational complexity as do MSMs. Therefore, OOMs
appear to be an efficient and effective alternative to MSMs for
modeling and analyzing metastable systems. We are currently
developing a new estimation code package for OOMs and
related methods and this code will be released as a subpackage
of PyEMMA (http://www.pyemma.org).

The focus of our future research includes OOM estima-
tion methods for nonequilibrium and continuous-observation
PMMs and exploration of other possible applications of OOMs
to metastable systems such as analysis of reaction trajectories
and convoluted time-series.
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APPENDIX A: PROOF OF Eq. (15)

According to (14) and (7), we have

p (x0, xτ, yτ, . . . , xkτ, ykτ)
= p0 (x0)

k
l=1

p
�
xlτ |x(l−1)τ

�
Pr (ylτ |xlτ)

= p0 (x0)
k
l=1

χylτ (xlτ)
µ
�
x(l−1)τ

�φ
�
x(l−1)τ

�⊤
Λφ (xlτ)

=
p0 (x0)
µ (x0) φ(x0)⊤

k−1
l=1

χylτ (xlτ)
µ (xlτ) Λφ (xlτ)φ(xlτ)⊤

· χykτ (xkτ)Λφ (xkτ) . (A1)

Noticing that φ1 (x) = µ (x), we can rewrite the last term on
the right-hand side of the above equation as

χykτ (xkτ)Λφ (xkτ) = χykτ (xkτ)
µ (xkτ) Λφ (xkτ)φ(xkτ)⊤σP, (A2)

with σP = (1,0, . . . ,0)⊤. Substituting (A2) into (A1), we get

p (x0, xτ, yτ, . . . , xkτ, ykτ)
=

p0 (x0)
µ (x0) φ(x0)⊤

·
k
l=1

χylτ (xlτ)
µ (xlτ) Λφ (xlτ)φ(xlτ)⊤σP. (A3)

Note that
Ω

dx
p0 (x)
µ (x) φ(x)

⊤ = (⟨p0, φ1⟩ , . . . ,⟨p0, φm⟩)
= ωP (A4)

and 
Ω

dx
χy (x)
µ (x) Λφ (x)φ(x)⊤

= Λ


Ω

dx
χy (x)
µ (x) φ (x)φ(x)⊤

= Λ





χy · φ1, φ1

�
· · ·



χy · φ1, φm

�

...
. . .

...

χy · φm, φ1

�
· · ·



χy · φm, φm

�


= Ξ

(y)
P , (A5)

where ⟨·, ·⟩ denotes the weighted inner product defined by
(2). Thus, integrating over x0, . . . , xkτ on both the left- and
right-hand sides of (A3) leads to

Pr (yτ, . . . , ykτ)
=

(
Ω

dx0
p0 (x0)
µ (x0) φ(x0)⊤

)
·

k
l=1

(
Ω

dxlτ
χylτ (xlτ)
µ (xlτ) Λφ (xlτ)φ(xlτ)⊤

)
·σP

= ωPΞ
(yτ)
P . . .Ξ

(ykτ)
P σP. (A6)

APPENDIX B: DIAGONALIZABILITY OF Ξ̂(0)
IN ALGORITHM 1

In this appendix, we show that the sum of all estimated
observable operators given by Algorithm 1 is diagonalizable
in the real sense if π̂, Ĉ, and Ĉ(y) satisfy the constraints in (22)
and

rank
(
Ĉ
)
≥ m, (B1)

π̂ > 0, (B2)

where π̂ = [π̂i] > 0 means all elements of π̂. Note that if
rank

(
Ĉ
)
< m, we can reduce the value of m to rank

(
Ĉ
)

according to the analysis in Remark 2, and if π̂y = 0 for some
observation value y ∈ O, we can simply leave y out of the
observation set O since it does not appear in data. So it is
reasonable to assume that (B1) and (B2) are always satisfied
in applications.

Since S = diag(π̂)− 1
2 Ĉdiag(π̂)− 1

2 , S is also a positive
semidefinite matrix with rank (S) ≥ m. Therefore the m largest
eigenvalue of S are all positive and the diagonal matrix
Σm obtained in line 3 of the algorithm is positive definite.
Considering that Ξ̂

(0)
can be written as

Ξ̂
(0)
=


y∈O
Ξ̂
(y)

= Σ−1
m ·

*.
,


y∈O

V⊤Ĉ(y)V+/
-
, (B3)

where the first term on right hand side is a positive definite
matrix and the second term is a symmetric matrix, we can
conclude that Ξ̂

(0)
is diagonalizable over the real numbers

according to Theorem 12.19 in Ref. 32.

APPENDIX C: PROOF OF Eqs. (36) and (37)

We first show that the m-dimensional OOM M is a
minimal OOM, i.e., there exists no equivalent model of
lower dimension. According to the assumption of rank (Q)
= m and Eq. (32), we have rank([Ξ(1)⊤ω⊤ · · · Ξ(N )⊤ω⊤])
= rank([Ξ(1)σ · · · Ξ(N )σ]) = rank (C) = m. Then M is
trimmed and therefore minimal (see Definition 5 and Corollary
8 in Ref. 29).

We now show Eq. (37). Let MP = (ωP,{Ξ(y)P }y∈O,σP)
denote the m-dimensional OOM constructed in Subsection
III B and note thatM andMP are both exact m-dimensional
models of the observable dynamics of the PMM and therefore
equivalent. We can then conclude from the minimality ofM
and the OOM equivalence theorem (see Proposition 12 in
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Ref. 29) that there is a matrix R ∈ Rm×m such that

ω = ωPR−1, (C1)

Ξ(y) = RΞ(y)P R−1, ∀k ∈ O, (C2)

σ = RσP, (C3)

and Ξ(0) can be written as

Ξ(0) = RΞ(0)P R−1 = RΛR−1. (C4)

This means for an arbitrary eigenvalue decomposition Ξ(0)
=WΛ̃W−1 of Ξ(0), we have

Λ̃ = Λ (C5)

and

W = RΓ, (C6)

if diagonal elements of Λ and Λ̃ are both sorted in the
descending order, where Γ = diag (γ1, . . . , γm) is a full-rank
diagonal matrix.

Next, we show Eq. (37). Using (C1)–(C3), (C5), and (C6).
Note that

ωP = (⟨p0, φ1⟩ , . . . ,⟨p0, φm⟩)
= (1,0, . . . ,0) = σᵀP (C7)

due to the stationarity. We can write the nth row of Q̃ and Q̃′
as

ωΞ(n)W = ωPΞ
(n)
P Γ,

= (qn1, . . . ,qnm) Γ (C8)

σ⊤Ξ(n)⊤
(
Ξ(0)

)−⊤
W−⊤ = σ⊤PΞ

(n)⊤
P Λ−1Γ−1

= (qn1, . . . ,qnm)ΛΛ−1Γ−1

= (qn1, . . . ,qnm) Γ−1, (C9)

which imply that

Q̃ = QΓ (C10)

Q̃′ = QΓ−1. (C11)

Then we have

q2
i j = q̃i jq̃′i j, (C12)

sgn
�
qi j

�
= sgn

�
γ j

�
sgn

�
q̃i j

�
= sgn

�
γ j

�
sgn

(
q̃′i j

)
. (C13)

Combining the above two equations yields

qi j =
sgn

�
γ j

�

2

(
sgn

�
q̃i j

�
+ sgn

(
q̃′i j

)) 
q̃i jq̃′i j . (C14)

Note that for the PMM, both q j = (q1 j, . . . ,qN j)⊤ and
�
−q j

�

can be viewed as the jth projected eigenfunction, where
�
−q j

�

is equal to the projection of the eigenfunction (−φi) on the
observation space. Hence we can neglect the term sgn

�
γ j

�
in

(C14) and get

qi j =
1
2

(
sgn

�
q̃i j

�
+ sgn

(
q̃′i j

)) 
q̃i jq̃′i j . (C15)

APPENDIX D: DIFFUSION PROCESS MODEL
DESCRIPTION AND SIMULATION

The diffusion process model used for the numerical study
in Subsection V A is driven by the following stochastic
differential equation:

dxt = −∇V (xt) dt +


2β−1dWt, (D1)

with xt =
(
x(1)t , x(2)t

)
∈ Ω = [−2,2] × [−1.5,2.5], and the

observation model is defined by

yt (xt) = k, if xt ∈ the i-th finite element space (D2)

with observation space O = {1, . . . ,16}, where Wt denotes
standard Brownian motion, β = 1.67 denotes inverse temper-
ature,

V
(
x(1), x(2)

)
= 3 exp *

,
−
(
x(1)

)2
−

(
x(2) − 1

3

)2
+
-

− 3 exp *
,
−
(
x(1)

)2
−

(
x(2) − 5

3

)2
+
-

− 5 exp
(
−
(
x(1) − 1

)2
−

(
x(2)

)2
)

− 5 exp
(
−
(
x(1) + 1

)2
−

(
x(2)

)2
)

+
1
5

(
x(1)

)4
+

1
5

(
x(2) − 1

3

)4

, (D3)

and the finite elements for observation are obtained by the
uniform rectangular partition of Ω.

For convenience of simulation and analysis, here we uti-
lize a reversibility preserving numerical discretization scheme
proposed in Ref. 33 with spatial mesh size 0.2 × 0.2 to generate
the simulation trajectories and calculate the eigenvalues and
eigenfunctions of the system.

APPENDIX E: CALCULATION OF AUTOCORRELATION
FUNCTIONS

For a MSM, HMM, or OOM of the molecular kinetics of
the BPTI protein investigated in Subsection V B, if we can
assume that the simulation within each cluster achieves local
equilibrium, then the autocorrelation function of IC(k) can be
calculated by

acf
(
IC(k),∆t

)
= E


IC(k)

t IC(k)
t+∆



=

i, j

E

IC(k)

t |yt = i

E

IC(k)

t |yt = j


· Pr (yt = i, yt+∆t = j) , (E1)

whereE

IC(k)

t |yt = i


represents the mean value of IC(k) of the
ith cluster and can be simply estimated by the empirical mean
of simulation data, and the joint distribution Pr (yt, yt+∆t) can
be computed according to the model parameters.
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