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We study the spin and thermal conductivity of spin-1/2 ladders at finite temperature. This is
relevant for experiments with quantum magnets. Using a state-of-the-art density matrix renormal-
ization group algorithm, we compute the current autocorrelation functions on the real-time axis
and then carry out a Fourier integral to extract the frequency dependence of the corresponding
conductivities. The finite-time error is analyzed carefully. We first investigate the limiting case
of spin-1/2 XXZ chains, for which our analysis suggests non-zero dc-conductivities in all interact-
ing cases irrespective of the presence or absence of spin Drude weights. For ladders, we observe
that all models studied are normal conductors with no ballistic contribution. Nonetheless, only the
high-temperature spin conductivity of XX ladders has a simple diffusive, Drude-like form, while
Heisenberg ladders exhibit a more complicated low-frequency behavior. We compute the dc spin
conductivity down to temperatures of the order of T ∼ 0.5J , where J is the exchange coupling along
the legs of the ladder. We further extract mean-free paths and discuss our results in relation to
thermal conductivity measurements on quantum magnets.

I. INTRODUCTION

Low-dimensional quantum magnetism is a field in
which an extraordinary degree of quantitative agree-
ment between experimental results and theory has been
achieved due to the availability of both high-quality sam-
ples and powerful theoretical tools such as bosonization
[1], Bethe ansatz [2], series expansion methods [3, 4], or
the density matrix renormalization group [5, 6]. This
includes the thermodynamics [7, 8], inelastic neutron
scattering data [9, 10], as well as various other spec-
troscopic methods [11]. While there are also exciting
experimental results for spin diffusion probed via NMR
[12, 13] or µsr [14, 15] as well as for the thermal con-
ductivity [16, 17], the calculation of finite-temperature
linear-response transport coefficients poses a formidable
problem for theorists (see Refs. 18 and 19 for a review),
which is further complicated by the need to account for
phonons and impurities (see Refs. 20–26 for work in this
direction).
Very recently, significant progress has been made in

the computation of linear response transport properties
of the seemingly simplest one-dimensional model, the in-
tegrable spin-1/2 XXZ chain with an exchange anisotropy
∆. Its Hamiltonian reads:

H = J

L−1
∑

n=1

[

Sx
nS

x
n+1 + Sy

nS
y
n+1 +∆Sz

nS
z
n+1

]

, (1)

where Sx,y,z
n is a spin-1/2 operator acting on site n. The

spin and thermal conductivities generally take the form

Reσ(ω) = 2πDs δ(ω) + σreg(ω) ,

Reκ(ω) = 2πDthδ(ω) + κreg(ω) ,
(2)

where Ds,th denote the Drude weights, and σreg and
κreg are the regular parts. The exact conservation of
the energy current [27] of the XXZ chain renders the
zero-frequency thermal conductivity strictly divergent at
all temperatures, i.e., Dth > 0, κreg = 0. The ther-
mal Drude weight has been calculated exactly [28, 29].
For spin transport, the following picture emerges: while
there is a regular contribution σreg > 0 for all |∆| > 0
[30], the Drude weight Ds is non-zero for |∆| < 1 but
vanishes for |∆| > 1. Initially, these results were largely
based on numerical simulations [31–37] as well as ana-
lytical approaches using the Bethe ansatz [38–40]. Re-
cently, a rigorous proof of finite spin Drude weights for
|∆| < 1 has been obtained [41, 42] by relating Ds > 0
to the existence of a novel family of quasi-local conser-
vation laws via the Mazur inequality [27]. For the ex-
perimentally most relevant case of the spin-1/2 Heisen-
berg chain (∆ = 1), it is still debated whether or not a
ballistic contribution exists at finite temperatures (see
Refs. 35, 37, 43, and 44 for recent work). The same
questions of diffusive versus ballistic transport can be
addressed in non-equilibrium setups [45–48] or for open
quantum systems [49–52]. A recent quantum gas exper-
iment, in which the ferromagnetic Heisenberg chain was
realized with a two-component Bose gas, studied the de-
cay of a spin spiral, and the results were interpreted in
terms of diffusion [53]. Other non-equilibrium experi-
ments with quantum gases have investigated the mass
transport of fermions [54] and bosons [55] in optical lat-
tices.

Another very interesting question pertains to the func-
tional form of the regular part σreg(ω). A field-theoretical
study [56, 57], which incorporates the leading irrelevant
umklapp term, suggests that σreg(ω) has a simple diffu-
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sive form at low temperatures T ≪ J . This is consis-
tent with early results [58] for the generic behavior of
a Luttinger liquid in the presence of umklapp scatter-
ing as well as with Quantum Monte Carlo simulations
for ∆ = 1 [59]. At higher temperatures, a suppression
of weight at low frequencies according to σreg(ω) ∝ ω2

has been suggested [60]. Most studies of |∆| > 1 are in-
terpreted in terms of diffusive spin dynamics, i.e., finite
dc-conductivities [48–50, 61–63]; however, indications of
an anomalous low-frequency response were reported in
Ref. 64. The theory by Sachdev and Damle provides a
semi-classical interpretation for the emergence of diffu-
sive dynamics in gapped spin models and predictions for
the low-temperature dependence of the diffusion constant
[65–67].

Many transport experiments on quantum magnets
probe materials which are described by quasi-one di-
mensional models more complicated than the integrable
XXZ chain. Most notably, very large thermal conductiv-
ities due to spin excitations have been observed in spin-
ladder compounds [17, 68, 69], which more recently have
also been investigated using real-time techniques [70–72].
Most theoretical studies of non-integrable models suggest
the absence of ballistic contributions [31, 33, 73–77] (pos-
sible exceptions have been proposed in Refs. 51, 78, and
79). Numerical results for the expansion of local spin
and energy excitations in real space are consistent with
diffusive dynamics [45, 48]. A qualitatively similar pic-
ture has emerged from studies of transport in open quan-
tum systems [49, 80]. Despite the relevance for exper-
iments, however, transport properties of generic non-
integrable systems are still not fully understood quan-
titatively. Two important and largely open problems in
the realm of spin ladders are (a) the question of whether
they exhibit standard diffusive dynamics or a more com-
plicated low-frequency behavior, and (b) a quantitative
calculation of their dc spin and thermal conductivities. It
turns out that a Drude-like σreg(ω) rarely exists in quasi
one-dimensional spin Hamiltonians with short-range in-
teractions (see, e.g., Refs. 75 and 81). A notable exam-
ple in which standard diffusion is realized in the high-
temperature regime is the XX spin ladder [82], which is
equivalent to hard-core bosons and thus relevant for re-
cent experiments on mass transport of strongly interact-
ing bosons in optical lattices in one and two dimensions
[55, 83].

The main goal of our work is to compute the frequency
dependence of the spin and thermal conductivity of spin
ladders as well as of the spin-1/2 XXZ chain. We use a
finite-temperature, real-time version of the density ma-
trix renormalization group method (DMRG) [36, 84–86]
based on the purification trick [87]. This method al-
lows one to calculate both thermodynamics [88] but also
the time dependence of current autocorrelation functions.
We calculate the conductivities from Kubo formulae. For
the accessible time scales, our results are free of finite-size
effects [37] and thus effectively describe systems in the
thermodynamic limit. Exploiting several recent method-

ological advances and using an optimized and parallelized
implementation allows us to access larger time scales than
in earlier applications of the method [36, 37, 48]. Our
data agree well with exact diagonalization approaches
[75] for the thermal conductivity of spin ladders and the
spin transport in XX ladders [82]. The latter results have
been obtained from a pure state propagation method
based on the dynamical typicality approach, which has
recently been applied to the calculation off transport co-
efficients [43, 82, 89].
Our key results are as follows. For the spin-1/2 XXZ

chain with 0 < ∆ < 1, we provide evidence that σreg(ω)
remains finite in the dc limit, but its low-frequency be-
havior is not of a simple Lorentzian form. For ∆ = 0.5,
we observe a suppression of weight for ω ≪ J in the high-
temperature regime. In the case of spin ladders, σreg(ω)
also generically exhibits a complicated low-frequency de-
pendence, and a simple Drude-like form is recovered only
in the XX case ∆ = 0 in agreement with the results of
Ref. 82. We extract the dc spin conductivity for tem-
peratures T ≥ 0.5J and discuss how it depends on the
exchange anisotropy ∆. We translate the high-T spin
and thermal conductivities of the Heisenberg ladder into
mean-free paths by fitting to a simple phenomenological
expression often used in the interpretation of experimen-
tal data [69]. It turns out that the values of the mean-free
paths depend on which type of transport is considered.
The structure of this exposition is as follows. We in-

troduce the model and definitions in Sec. II. Section III
provides details on our numerical method. Our results
are summarized in Sec. IV, where we discuss the real-
time dependence of current correlations and the methods
to convert them into frequency-dependent conductivities,
which we then study for spin chains and ladders. Our
conclusions are presented in Sec. V.

II. MODEL AND DEFINITIONS

The prime interest of this work is in two-leg spin lad-

ders governed by the Hamiltonian H =
∑L−1

n=1 hn and
local terms

hn = J
∑

λ=1,2

[

Sx
n,λS

x
n+1,λ + Sy

n,λS
y
n+1,λ +∆Sz

n,λS
z
n+1,λ

]

+
J⊥
2

∑

m=n,n+1

[

Sx
m,1S

x
m,2 + Sy

m,1S
y
m,2 +∆Sz

m,1S
z
m,2

]

,

(3)

where Sx,y,z
n,λ are spin-1/2 operators acting on the rung

λ = 1, 2. The model is non-integrable and gapped for all
J⊥ > 0. At J⊥ = 0, one recovers two identical, decoupled
XXZ chains, which (at zero magnetization) are gapless
for |∆| ≤ 1 and gapped otherwise [1].
Both the Drude weights and the regular parts of the

spin (s) and thermal (th) conductivities defined in Eq. (2)
can be obtained from the corresponding current corre-
lation function Cs,th(t). Their long-term asymptote is
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related to Ds,th via

Ds,th = lim
t→∞

lim
L→∞

Cs,th(t)

2Tαs,th
, Cs,th(t) =

Re 〈Is,th(t)Is,th〉

L
,

(4)

where αs = 1 and αth = 2. The regular part of the
conductivity is determined by

Re

{

σreg(ω)

κreg(ω)

}

=
1− e−ω/T

ωTαs,th−1
×

Re

∫ ∞

0

dteiωt lim
L→∞

[Cs,th(t)− 2Tαs,thDs,th] .

(5)

Only finite times can be reached in the DMRG calcu-
lation of Cs,th(t), which leads to a ‘finite-time’ error of
σreg(ω) that can be assessed following Ref. 63. We will
elaborate on this below.
The current operators Is,th =

∑

n j(s,th),n are defined
via the respective continuity equations [27]. The local
spin-current operators of the XXZ chain take the well-
known form js,n = iJSx

nS
y
n+1 +h.c.. For the spin ladder,

one finds

js,n = iJ
∑

λ

(

Sx
n,λS

y
n+1,λ − Sy

n,λS
x
n+1,λ

)

, (6)

jth,n = i[hn, hn+1] . (7)

Note that our definition for the local energy density hn

preserves all spatial symmetries of the ladder, and our
energy-current operator Ith is the same as the one used
in Ref. 75. The full expression for Ith is lengthy and not
given here.

III. NUMERICAL METHOD

We compute the spin- and energy-current correlation
function

〈Is,th(t)I〉 ∼ Tr
[

e−H/T eiHtIs,the
−iHtIs,th

]

(8)

using the time-dependent [90–94] density matrix renor-
malization group [5, 6] in a matrix-product state [95–99]
implementation. Finite temperatures [84, 87, 100–103]
are incorporated via purification of the thermal density
matrix. Purification is a concept from quantum infor-
mation theory in which the physical system is embedded
into an environment. The wave-function of the full sys-
tem is then a pure state and the mixed state describing
the system is obtained by tracing out the degrees of free-
dom of the environment. When using this approach in
DMRG, one typically simply chooses a copy of the sys-
tem degrees of freedom to be the environment. Details of
purification based finite-T DMRG methods can be found
in Refs. [48, 84, 87, 88, 99]. Our actual implementation
follows Ref. [48].
The real- and imaginary time evolution operators in

Eq. (8) are factorized by a fourth-order Trotter-Suzuki
decomposition with a step size of dt = 0.05, . . . , 0.2. We

keep the discarded weight during each individual ‘bond
update’ below a threshold value ǫ. This leads to an ex-
ponential increase of the bond dimension χ during the
real-time evolution. In order to access time scales as
large as possible, we employ the finite-temperature dis-
entangler introduced in Ref. 36, which uses the fact that
purification is not unique to slow down the growth of
χ. Moreover, we ‘exploit time translation invariance’
[84], rewrite 〈Is,th(t)Is,th(0)〉 = 〈Is,th(t/2)Is,th(−t/2)〉,
and carry out two independent calculations for Is,th(t/2)
as well as Is,th(−t/2). Our calculations are performed us-
ing a system size of L = 100 for spin ladders and L = 200
for the XXZ chain, respectively. By comparing to other
values of L we have ensured that L is large enough for
the results to be effectively in the thermodynamic limit
[37].

IV. RESULTS

A. Current autocorrelation functions

Figure 1 shows typical results for the decay of spin-
current autocorrelations of the XXZ chain as a function of
time. Some of these data have previously been shown in
Refs. 37, 48, and 63 and are here included for comparison.
For ∆ < 1, we clearly observe the saturation of Cs(t) at
a non-zero value at long times that at T = ∞ agrees well
with an improved lower bound [42] for limT→∞ TDs(T )
and Zotos’ Bethe-ansatz calculation [38]. At ∆ = 0.5,
the values for Ds obtained in Ref. 38 coincide with our
tDMRG data also for the finite temperatures T < ∞
considered here (see the inset to Fig. 1; compare Ref. 37).
In the case of ∆ > 1, the current correlators appear to
decay to zero, consistent with predictions of a vanishing
finite-temperature Drude weight in this regime [31, 33,
39, 48]. At the isotropic point ∆ = 1, Cs(t) does not
saturate to a constant on the time scale reached in the
simulations [37], and no conclusion on the presence or
absence of a ballistic contribution is possible.
We next turn to the case of spin ladders. Exem-

plary DMRG data for Cs and Cth at three different tem-
peratures T ∈ {∞, J, 0.5J} are shown in Fig. 2. The
thermal current autocorrelation function is strictly time-
independent in the chain limit J⊥ = 0 [27] (data not
shown in the figure) but decays to zero for any J⊥ > 0,
which is consistent with earlier studies that suggested
the absence of ballistic contributions in spin-ladder sys-
tems [33, 75]. For the isotropic ladder ∆ = J⊥/J = 1
at high temperatures, this decay takes place on a fairly
short time scale tJ . 8 [see Fig. 2(a)]. In Figs. 2(b,c),
we compare the behavior of Cs(t) on chains to isotropic
ladders (J⊥ = J) for two different exchange anisotropies
∆ = 0.5 and ∆ = 1. In both cases, Cs(t) decays much
faster if J⊥ > 0, and our data suggest the absence of bal-
listic contributions to spin transport in agreement with
Refs. 33 and 82. Moreover, oscillations in Cs(t) emerge
in the case of ladders. They become very pronounced at



4

0 10 20 30 40
tJ

0

0.05

0.1

0.15
C

s(
t)

/J
2 0 30

tJ
0

0.2

C
s(

t)
/T

J

∆=0.309

∆=0.5

∆=0.707

∆=0.901 improved
Prosen bounds

∆=1∆=2

T=∞ ∆=0.5
T/J=0.5

T/J=1

T/J=3.33

Zotos BA

FIG. 1. (Color online) Real-time spin current correlation
functions of the XXZ chain [see Eq. (1)] at infinite temper-
ature T = ∞ (main panel) and fixed exchange anisotropy
∆ = 0.5 (inset). The model is integrable, and the spin Drude
weight Ds is finite for |∆| < 1 [35, 37, 41, 42]. The horizontal
lines show the lower bounds for Ds established in Ref. 42 as
well as the Bethe-ansatz result from Ref. 38.

lower temperatures and are related to the existence of a
spin gap for J⊥ > 0.

B. Extraction of conductivities

We compute the spin and heat conductivities from the
corresponding real-time current correlation functions via
Eq. (5). However, only finite times t < tmax can be
reached in the DMRG calculation of Cs,th(t), which gives
rise to a ‘finite-time error’ in σreg(ω) and κreg(ω). We
assess this error as follows.
Our data suggest (in agreement with the results of

Refs. 33, 75, and 82) that for any J⊥ > 0 the spin and
thermal Drude weights vanish; the current correlators
decay to zero for t → ∞. We first compute the fre-
quency integral in Eq. (5) using only the finite-time data.
Thereafter, we extrapolate Cs,th(t) to t = ∞ using linear
prediction [101] and re-compute the frequency integral.
Linear prediction attempts to obtain data for correlation
functions of interest at times t > tmax as a linear com-
bination of the available data for a discrete set of times
points tn < tmax (see [101] for details). We perform the
linear prediction for a variety of different fitting param-
eters (such as the fitting interval) and then define the
error bar as twice the largest deviation to the conductiv-
ity computed without any extrapolation at all.
For the XXZ chain with |∆| > 1, the Drude weight

also vanishes, and the finite-time error of σreg(ω) can
be assessed analogously to ladders. The same holds at
|∆| < 1 and T = ∞ where a lower bound for Ds is
known analytically from Prosen’s work (see the discus-
sion in Sec. IVA). For the values of ∆ considered here,
this bound agrees with the Drude weight computed using
other methods [35, 37, 38]; hence, we assume that it is
exhaustive, which allows us to subtract Ds in Eq. (2).

0

0.2

0 6 12 18 24
tJ

0

0.1

0.2

T=∞
T=J
T=0.5J

2 4 6
0

0.2

C
th

(t
)/

J4
C

s(
t)

/J
2

∆=0.5

∆=1.0

∆=1.0 (a)

(b)

(c)
J⊥ =0

J⊥ =J

J⊥ =0

J⊥ =J

J⊥ =J

FIG. 2. (Color online) Current correlation functions of two-leg
spin ladders governed by the Hamiltonian of Eq. (3). ∆ and
J⊥ denote the exchange anisotropy and the rung coupling,
respectively. (a) Energy current autocorrelation function of
isotropic ladders J⊥/J = 1,∆ = 1 for various T . (b,c) Spin
current autocorrelation functions at ∆ = 1 and ∆ = 0.5, re-
spectively. For J⊥ = 0, one recovers two identical, decoupled
XXZ chains.

At |∆| < 1 and T < ∞, the Drude weight needs to be
extracted from the numerical data [36, 37], which is an
additional source of error, or it has to be taken from other
methods such as the Bethe-ansatz calculation of Ref. 38.
We estimate the corresponding uncertainty of the con-
ductivity as follows. For ∆ = 0.5 and T = ∞, Cs(t)
oscillates around the value for TDs known from the im-
proved lower bound from [42] (see Fig. 1); for finite tem-
peratures T ∈ {3.3J, J, J/2}, Cs(t) oscillates around the
Bethe-ansatz resultDBA

s of Ref. 38. An upper as well as a
lower bound Du,l

s can be determined from the magnitude
of the oscillations. For each DBA

s , Du
s , and Dl

s, we carry
out the procedure used at T = ∞ and define the uncer-
tainty in σreg(ω) as either twice the difference between
the curves computed with and without extrapolation or
twice the maximum difference between the curves at the
different DBA,u,l

s , whatever is larger.
For other exchange anisotropies, the accessible time

scales are either too short to fully resolve the oscilla-
tions around Ds, or Cs(t) decays monotonicly for large
times. The latter seems to be true, in particular, close
to the isotropic point ∆ = 1. For ∆ = 0.901 (see Fig. 1)
and at T = ∞, the value of Cs(t) at the largest time
reached is approximately 10 percent larger than the im-
proved bound from [42]. For finite but not too small
T/J , we assume that Cs(t)/(2T ) = rDs at the maximal
time reached, where we typically choose r ∼ 1.2. Given
this estimate for Ds, we assess the error analogously to
the infinite-temperature case. Note that the larger r, the
larger the error bars. We stress that this way of esti-
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mating the error is less controlled than in those cases for
which the value of the Drude weight is known.
Exemplary error bars are shown in Figs. 3-6. The data

for σreg(ω) displayed in the figures are the ones obtained
using linear prediction; the conductivities for the XXZ
chain at ∆ = 0.5 and T < ∞ shown in Fig. 3(c) were
calculated using the Bethe-ansatz value of Ref. 38 for
the Drude weight. Note that the numerical error of the
bare DMRG data for Cs,th(t) is negligible compared to
the finite-time error.
The finite-time data used for the above procedure is

the DMRG data up to the maximum time tmax reached
in the simulation. In the case of the XXZ chain, this time
is fairly large compared to 1/J , and it is thus instructive
to re-calculate σreg(ω) using only the data for half of the
maximum time (both with and without extrapolation).
Results are shown in the insets to Fig. 3; they illustrate
that linear prediction provides a fairly reliable way to
estimate the error.
As an additional test for the accuracy of the conduc-

tivities, one can verify the optical sum rule. In the spin
case it reads

∫ ∞

0

dωReσ(ω) =
π〈−T̂ 〉

2L
, (9)

where T̂ is the kinetic energy, i.e., all terms in Eq. (3)
computed at ∆ = 0. We show exemplary data for the
validity of the sum rule in the insets of Figs. 3(c) and 5(b),
which illustrate that Eq. (9) holds with great accuracy.

C. Spin conductivity of the spin-1/2 XXZ chain

Figure 3 gives an overview over the behavior of σreg(ω)
for the spin-1/2 XXZ chain for various values of the ex-
change anisotropy ∆ (results for ∆ > 1 have previously
been shown in Ref. 63). At infinite temperature [see
Fig. 3(a)] and for all ∆ > 0 considered, we find a finite
dc conductivity σdc = limω→0 σreg(ω) within the error
bars of our extrapolation method. This is at odds with
the predictions of Ref. 60, where σreg(ω) ∝ ω2 was sug-
gested in the low-frequency limit. For the special value of
∆ = 0.5, however, there clearly is a suppression of weight
around ω = 0 accompanied by a pronounced maximum
at ω ≈ 0.25J . For other values of ∆ < 1, σreg(ω) seems
to exhibit a global maximum at ω = 0 as well as addi-
tional lower maxima at higher frequencies that shift to
larger values of ω as ∆ increases. The spin conductiv-
ity at ∆ = 2 has also been analyzed in Ref. 64, and
large anomalous, L-dependent fluctuations in Reσ(ω)
have been observed at low frequencies. Those are not
present in our data.
Returning to the regime of ∆ < 1, we cannot rule out

that the disagreement between our result for the low-
frequency behavior of the conductivity and the predic-
tion of Ref. 60 is attributed to finite-time effects. How-
ever, there is no obvious indication for this in our data:
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(a) T=∞
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T=0.33J

T=0.67J
T=J

T=3.3J

∆=0.309

∆=0.901

∆=2∆=0.5

T=∞
∆=0.5

T=∞
∆=0.901

(c) ∆=0.5

T=3.3J
T=J

T=0.5J

T=∞

FIG. 3. (Color online) Regular part of the spin conductivity of
the XXZ chain at (a) infinite temperature and various values
of ∆, and (b,c) at a fixed value of ∆ < 1 and various T . The
‘finite-time’ error can be estimated following the procedure
outlined in Sec. IVB. The insets to (a) and (b) show the con-
ductivity obtained from the finite-time data t < tm without
extrapolation (‘no LP’) as well as from using linear prediction
to extrapolate to t → ∞ (‘LP’). The inset to (c) illustrates
that the optical sum rule Eq. (9) is fulfilled accurately.

At T = ∞, the Drude weight is known from [42], and
limT→∞[Tσdc] is simply given by the integral of Cs(t)
with 2TDs subtracted. The real-time data are shown in
Fig. 1; the errors due to the finite system size and the
finite discarded weight are negligible. As illustrated in
the insets to Fig. 3(a,b), our extrapolation scheme using
linear prediction provides a stable and meaningful way to
establish finite-time error bars. As an additional test, it
is instructive to assume that the improved lower bound
– which at T = ∞ and for the exchange anisotropies
considered here coincides with the Bethe-ansatz result of
Ref. 38 – is not fully saturated. At ∆ = 0.5, an upper
bound Du

s to the Drude weight can be estimated from the
magnitude of the oscillations of Cs(t). Using Du

s instead
of the lower bound from [42] decreases σdc by 15% but
does not yield σdc = 0.

To summarize, a vanishing dc conductivity suggested
by Ref. 60 could only be caused by oscillations at large
times around the asymptote 2TDs, which would need
to cancel out the large positive contribution from times
tJ . 40. Put differently, if σreg(ω) ∼ ω2 holds, it only
holds for very small frequencies ω ≪ J . This is further
corroborated by the fact that the optical sum rule of
Eq. (9) is fulfilled accurately [see the inset to Fig. 3(c)].

Even though σdc > 0 is supported by our tDMRG cal-
culation in combination with the results for Ds(T ) from
Refs. 38 and 42, the emergence of very narrow peaks in
the data for ∆ = 0.309, 0.901 at low frequencies should
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FIG. 4. (Color online) Spin conductivity of two-leg ladders
at infinite temperature T = ∞ for (a) fixed rung coupling
J⊥ = J and (b) fixed anisotropy ∆ = 1. At ∆ = 0 and
J⊥ . J , σreg(ω) is of the simple Lorentzian form (see the
inset).

be taken with some caution. For these parameters, the
time scale tJ . tmax = 40/J reached in the simulation
is too short to resolve potential oscillations around the
long-time asymptote. A very conservative estimate of the
accessible frequencies is ωmin = 2π/tmax ∼ 0.15J . It is
possible that redistributions of weight below ωmin would
occur if longer times were available.

The temperature dependence of σreg(ω) is shown in
Figs. 3(b,c) for two different exchange anisotropies. At
∆ = 0.901, the global maximum is always at ω = 0,
σdc increases with decreasing temperature, and the ω-
dependence seems to become smoother the smaller T is.
For ∆ = 0.5, the suppression of weight at low frequencies
survives down to temperatures of T & 0.5J (at T = 0.5J ,
the error bars become too large to draw any conclusions).

To guide our ensuing discussion of ladders, we summa-
rize the ∆-dependence of σ(ω) in the chain limit J⊥ = 0.
At ∆ = 0, Reσ(ω) = 2πDs(T )δ(ω), and the perturbation
J⊥ > 0 thus breaks both the integrability of the model
and the conservation of the spin current. For ∆ > 0, the
spin current is no longer conserved even for J⊥ = 0, which
gives rise to a non-zero regular contribution σreg(ω) to the
conductivity. According to recent studies [35, 37, 41, 42],
the Drude weight is finite for any 0 ≤ |∆| < 1, but no
final conclusion on Ds(T ) at ∆ = 1 has been reached yet.
At T = ∞, the relative contribution of σreg(ω) to the
total spectral weight increases monotonicly from zero at
∆ = 0 to a value of the order of 90% close to ∆ = 1
[37]. For ∆ > 1, the commonly expected picture is that
Ds(T > 0) = 0; hence, all weight is concentrated in the
regular part. Based on these qualitative differences of
σ(ω) that depend on ∆ and the interplay of the ballis-
tic contribution with finite-frequency weight at small ω,
we expect significant changes in the spin conductivity of
ladders as a function of ∆.
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FIG. 5. (Color online) Spin conductivity of two-leg ladders
with fixed J⊥ = J but various T and anisotropies ranging
from ∆ = 0 (XX ladder) to ∆ = 1 (isotropic ladder). Note
that the curve at ∆ = 1, T = 0.29J (at ∆ = 0, T = 0.5J)
is plotted only for frequencies ω ≥ J (ω ≥ 0.2J). The insets
show the DC conductivity, the optical sum rule, and the ∆-
dependence of the spin gap (calculated for L = 128 at J > 0),
respectively.

D. Spin conductivity of ladders

We now turn to the spin conductivity σ(ω) of two-leg
ladders and contrast our results to the limiting case of
isolated chains (J⊥ = 0), where the behavior of σ(ω)
crucially depends on ∆. We first discuss the infinite-
temperature case; data for J⊥ = J are presented in
Fig. 4(a). At ∆ = 0, σreg(ω) has a simple Lorentzian
shape [see the inset to Fig. 4(a)]:

Reσ(ω) =
πσdc/τ

2

ω2 + (1/τ)2
. (10)

This follows directly from the results of Ref. 82, where the
spin-autocorrelation function of the XX two-leg ladder
was studied numerically and analytically as a function of
J⊥/J . It turned out that Cs(t) decays exponentially at
small values of J⊥ . J and with a Gaussian for larger
values of J⊥. The results of Ref. 82 in conjunction with
our data altogether identify the XX spin-1/2 ladder as a
textbook realization of a diffusive conductor with a single
relaxation time τ ∝ (J/J⊥)

2. Systems with ∆ = 0 are
rarely found in real materials, but the XX model on a
ladder can easily be realized with hard-core bosons in
optical lattices (see, e.g., Ref. 55 and the discussion in
Refs. 82 and 83).
For the special case of ∆ = 1, we show exemplary

data for J⊥ 6= J in Fig. 4(b). Even at T = ∞, the
conductivity does not have a simple functional form but
features side maxima at finite frequencies that shift to
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larger ω as J⊥/J increases.
In Figs. 5(a)-(c), we illustrate how σreg(ω) of isotropic

ladders J⊥ = J evolves as the temperature decreases
from T = ∞ down to T = 0.29J . It turns out that it is
easier to reach low temperatures for larger values of ∆.
In the case of ∆ = 0 [see Fig. 5(a)], we observe a Drude-
like conductivity down to temperatures of T ∼ 3J . At
lower temperatures, however, Reσ(ω) deviates from a
simple Lorentzian (see Ref. 89 for similar observations
for a chain with a staggered field). This is a consequence
of the existence of a spin gap ∆spin in the two-leg ladder
which at low temperatures manifests itself by a suppres-
sion of weight below the optical 2∆spin (see, e.g., the case
of dimerized chains studied in Ref. 104) and a sharp in-
crease of σreg(ω) at ω ∼ 2∆spin. As a consequence, the
dc conductivity is expected to diverge with T−α, α > 0
as T is lowered [63, 65–67]. Next, we investigate how
the Drude-like conductivity observed for ∆ = 0 evolves
as ∆ increases. We find that (i) the current autocorre-
lations at ∆ = 0.5 and ∆ = 1 do not follow a simple
exponential or Gaussian decay even at infinite tempera-
ture, and hence (ii) the low-frequency conductivity is not
well-described by a simple Lorentzian. Pragmatically, we
associate the (zero-frequency) current relaxation time τ
with the inverse of the half-width-half-maximum of the
zero-frequency peak in Reσ(ω) for ∆ ≫ 0.
The presence of these two scales, the optical gap 2∆spin

and the inverse high-temperature relaxation time 1/τ ,
which controls the low-frequency behavior, is more visi-
ble in the data for ∆ = 0.5 and ∆ = 1 [shown in Figs. 5(b)
and (c)] even at the highest temperatures T = 3.3J .
Clearly, there are two maxima in Reσ(ω), one at ω = 0
and one at ω & 2∆spin (in fact, at very low T , Reσ(ω)
has a an edge at the optical gap). The reason is the de-
pendence of the optical gap on the exchange anisotropy
∆. The spin gap in a two-leg ladder as a function of ∆
is, in the limit of J = 0, given by

∆spin =
J⊥
2
(1 + ∆) . (11)

This monotonic dependence of ∆spin on ∆ survives at
finite values of J⊥ ∼ J . This is shown in the inset of
Fig. 5(c), which has been obtained from ∆spin = E0(S

z =
1) − E0(S

z = 0) using standard DMRG [5, 6], where
E0(S

z) is the ground state in the subspace with total
magnetization Sz for L = 128.
Our data are compatible with a leading temperature

dependence of the form σdc(T ) ∝ 1/T . Moreover, σdc

is a monotonicly decreasing function of ∆ in the high-
temperature regime. The latter can be understood by
the nature of the single-particle spin-1 excitations of the
two-leg ladder that originate from the local triplet exci-
tations of the J/J⊥ → 0 limit. Finite values of J ren-
der these triplets dispersive and give rise to interactions
between the quasi-particles. A nonzero value of ∆ intro-
duces additional scattering terms, and it is thus intuitive
to expect smaller quasi-particle life times and hence also
smaller dc-conductivities.
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2 κ
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J⊥ =J

J⊥ =2J

J⊥ =0.5J

J⊥ =J

FIG. 6. (Color online) Thermal conductivity of two-leg lad-
ders at fixed ∆ = 1 and T = ∞ but various J⊥. We compare
our data with the exact diagonalization result of Ref. 75.

E. Thermal conductivity of Heisenberg ladders

For experiments with quantum magnets, the thermal
conductivity is the most easily accessible transport co-
efficient, which has been investigated in a large number
of experiments on ladders [68, 69], chains [105–108], and
two-dimensional antiferromagnets [109, 110] (see Refs. 16
and 17 for a review). These experiments have clearly
established that magnetic excitations can dominantly
contribute to the thermal conductivity of these insulat-
ing materials at elevated temperatures, exceeding the
phononic contribution (see, e.g., [108]). The contribu-
tion of magnetic excitations to the full thermal conduc-
tivity in these low-dimensional systems manifests itself
via a prominent anisotropy of the thermal conductivity
measured along different crystal axes [16, 17]. Open and
timely questions include a comprehensive and quantita-
tive theoretical explanation for the magnitude of the ther-
mal conductivity, a theory of relevant scattering channels
beyond pure spin systems (see, e.g., [20–26]), a full under-
standing of the spin-phonon coupling including spin-drag
effects [23–25], and the understanding of a series of exper-
iments studying the effect of doping with nonmagnetic or
magnetic impurities and disorder onto the thermal con-
ductivity (see, e.g., [111, 112]). Here we solely focus on
pure spin Hamiltonians. Given that most of the materi-
als realize spin Hamiltonians that are more complicated
than just spin chains with nearest-neighbor interactions
only, one needs to resort to numerical methods to get a
quantitative picture.
The real-time energy current autocorrelations for the

Heisenberg ladder (∆ = 1) are shown in Fig. 2(a). At
T = ∞, Cth(t) decays fast, and κ(ω) can be obtained
down to sufficiently low frequencies. For lower tempera-
tures, however, the accessible time scales are at present
too short to reach the dc-limit in a reliable way. We
therefore focus on T = ∞.
Our results for the thermal conductivity are shown in

Fig. 6 for J⊥/J = 0.5, 1, 2. They are in reasonable agree-
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ment with the exact diagonalization data of Ref. 75 that
were obtained using a micro-canonical Lanczos method
for L = 14 sites. Note that our data for κdc is typi-
cally larger than the ED results. The behavior at low
frequencies is anomalous – it does not follow a Drude-
like Lorentzian shape (this was already pointed out in
Ref. 75). The actual form of the low-frequency depen-
dence of κreg(ω) (discussed in Ref. [75]) cannot be clar-
ified using the existing data. The knowledge of the in-
finite temperature dc-conductivity κ∞

dc still gives access
to a wide temperature regime since the leading term is
κdc(T ) = κ∞

dc/T
2, and we can therefore address the ques-

tion of mean-free paths.

F. Mean-free paths for the Heisenberg spin ladder

In the analysis of experimental data for κ, one often
uses a kinetic equation to extract magnetic mean-free
paths [17, 69]. An analogous equation can also be em-
ployed for σ, and we obtain the following set of kinetic
equations:

κ =
1

L

∑

k

vk
d(ǫknk)

dT
lκ,k (12)

σ =
1

L

∑

k

vk

(

−
dnk

dǫk

)

lσ,k , (13)

where ǫk is the dispersion of the threefold degenerate
triplet excitations, vk = ∂kǫk, and nk is a distribution
function which accounts for the hard-core boson nature
of the triplets [69]:

nk =
3

exp(βǫk) + 3
. (14)

The actual form of the dispersion is not important since
vk drops out in one dimension when the integration over
k is replaced by an integral over energy ǫ. The mean-
free paths lκ,k and lσ,k are taken to be independent of
quasi-momentum, lκ(σ),k = lκ(σ),mag. In order to analyze
the total thermal conductivity measured experimentally,
one assumes κtotal = κph + κmag, where κph and κmag

represent the phononic and magnetic contribution, re-
spectively. Such a separation is an approximation and
should be understood as an operational means to extract
mean-free paths – in general, spin-drag effects can lead
to additional contributions to κtotal [21, 23, 25].
In the high-temperature limit, one needs to keep only

the leading terms in a 1/T expansion of Eqs. (12) and
(13). The mean-free paths can then be extracted from
κdc = κ∞

dc/T
2 and σdc = σ∞

dc/T via

κ∞

dc =
1

16π
(ǫ3max − ǫ3min)lκ,mag , (15)

σ∞

dc =
3

4π
(ǫmax − ǫmin)lσ,mag , (16)

where ǫmax and ǫmin are the band minimum and band
maximum of the single-triplet dispersion, respectively.

For an isotropic ladder system such as the one realized
in La5Ca9Cu24O41 (the actual Hamiltonian is more com-
plicated, though [9]), ǫmin = ∆spin ≈ J/2 and ǫmax ≈ 2J
are reasonable estimates [113] for J⊥ = J . We can thus
approximate ǫmax − ǫmin = 3J/2 and ǫ3max − ǫ3min ≈ 8J3,
which then leads to

κ∞

dc =
J3

2π
lκ,mag , (17)

σ∞

dc =
9J

8π
lσ,mag . (18)

For the isotropic ladder J⊥/J = 1,∆ = 1, we have
κ∞

dc ≈ 0.66J3 and σ∞

dc ≈ 0.39J2 and thus lκ,mag ≈ 4.2
and lσ,mag ≈ 1.1. Hence, lκ,mag > lσ,mag such that the
(averaged) mean-free paths differ from each other. In this
framework the mean-free paths in the high-temperature
regime are T -independent, which seems reasonable since
at large T ≫ J, J⊥ (i.e., T larger than the band-width of
triplets) all states are populated equally. In other words,
the qualitative difference with phonons, the most typi-
cal bosonic quasi-particle that contributes to the thermal
conductivity in solids, is that the number of triplet exci-
tations saturates at large T due to their hard-core nature,
reflecting the fact that the spin system has a spectrum
that is bounded from above.
Our results demonstrate that the extraction of mean-

free paths as commonly employed in the analysis of the
experimental data, while providing very useful intuition,
cannot easily be related to single-excitation mean-free
paths, due to the different results obtained for κ and
σ and the gap in the excitation spectrum (see also the
discussion in Ref. 21). We stress that the observation
of different mean-free paths for different transport chan-
nels is not unusual. Even in metals (more generally,
Fermi-liquids) momentum and energy can relax differ-
ently via inelastically scattering processes [114]. More-
over, more dramatic deviations from the Wiedemann-
Franz law are well-known for non-Fermi-liquids (see, e.g.,
[115]), in Luttinger liquids [116, 117] and mesoscopic sys-
tems [118, 119].

V. SUMMARY

In this work, we studied the spin and thermal conduc-
tivity of spin chains and ladders using finite-temperature,
real-time density matrix renormalization group tech-
niques. We first computed the spin conductivity of
the spin-1/2 XXZ chain as a function of the exchange
anisotropy ∆ > 0. Our data suggest finite dc-
conductivities for all ∆ > 0, yet a suppression of weight
at low frequencies for special values such as ∆ = 0.5.
While the main drawback of the numerical method is that
only finite times can be reached in the simulations, the
comparison of various schemes to extract the frequency
dependence supports our conclusion.
Our results for two-leg spin ladders are consistent with

the absence of ballistic contributions in agreement with
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Refs. 33, 75, 77, and 82. At high-temperatures, the XX
ladder – which is equivalent to a system of hard-core
bosons – exhibits a simple, Drude-like spin conductivity
[82]. This property is lost as either the temperature is
lowered or the exchange anisotropy is increased. At low
temperatures, the spin conductivity features a two-peak
structure with a maximum at ω = 0 and a large weight
for frequencies above the optical spin gap. We further
computed the dc spin conductivity; it decreases as the
exchange anisotropy increases from ∆ = 0 towards ∆ = 1
and is a monotonicly increasing function of temperature.
The thermal conductivity was obtained in the infinite-

temperature limit, and our data agree reasonably well
with earlier exact diagonalization results [75]. We ex-
tracted estimates for mean-free paths via kinetic equa-
tions that are used in the analysis of experimental data
[69]. The (momentum-averaged) mean-free paths lmag

obtained from κ are larger than the ones calculated from

σ. Thus, lmag depends on the type of transport consid-
ered, and it is therefore not obvious that values for lmag

can directly be interpreted as a mean-free path of single-
particle excitations. Future time- and real-space exper-
iments could provide additional insight into the connec-
tion between single-excitations and the mean-free paths
observed in transport measurements.
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