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ABSTRACT: Phase transitions have been investigated for silver deposition onto In2S3 

precursor layers by spray chemical vapor deposition from a trimethylphosphine 

(hexafluoroacetylacetonato) silver (Ag(hfacac)(PMe3)) solution. The formation of Ag 

nanoparticles (Ag NPs) on top of the semiconductor layer set on concomitant with the 

formation of AgIn5S8. The increase of the diameter of Ag NPs was accompanied by the 

evolution of orthorhombic AgInS2. The formation of Ag2S at the interface between Ag NPs 

and the semiconductor layer was observed. Surface photovoltage spectroscopy indicated 

charge separation and electronic transitions in the ranges of corresponding band gaps. The 

phase transition approach is aimed to be applied for the formation of plasmonic 

nanostructures on top of extremely thin semiconducting layers. 

Keywords: In2S3, Ag nanoparticles, surface photovoltage spectroscopy, phase transitions, 

ILGAR, LA-ICP-MS 
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1. Introduction 

    In the past few years, the field of plasmonics for materials and device research has 

witnessed an explosive growth [1-3]. The integration of plasmonic structures into 

photovoltaic devices brings up promising applications. Plasmonic light trapping opens the 

opportunity for enhancing absorption near the band gap and for further reducing the absorber 

thickness [4]. Silver nanoparticles (Ag NPs) show pronounced plasmonic effects which have 

been applied, for example, for absorption enhancement in silicon thin-film [5-8] or organic 

solar cells [9] and which are of great interest for ultra-thin chalcopyrite solar cells [10, 11]. 

However, the integration of Ag NPs especially into solar cells with chalcopyrite or sulfide 

absorbers remains challenging, for example, due to dissolving of silver in the matrix [10]. On 

the other side, plasmonic nanoparticles would be very useful for absorption enhancement in 

solar cells with extremely thin absorber (local absorber thickness tens of nm) since the folding 

of the internal surface and therefore the diode saturation current density could be strongly 

reduced [12, 13]. The idea of this work is based on the creation of stable Ag NPs on top of a 

semiconducting sulfide absorber which is almost saturated by silver. A related absorber can 

be, for example, Ag2S (band gap Eg(Ag2S) = 0.9…1.1 eV [14, 15]) or AgInS2 (band gap 

Eg(AgInS2) = 1.96 for the orthorhombic phase and 1.86 or 2.01 eV for the chalcopyrite phase 

[16-18]).  

    The potential of extremely thin In2S3:Cu absorber layers has been demonstrated whereby 

Cu was diffused from a CuSCN source forming the hole conducting contact [13, 19, 20]. 

Hence, similar layers with the displacement of Cu by silver are also expected to show 

potential as extremely thin absorbers. In this work, an In2S3 precursor layer is used as well but 

for forming Ag NPs on an extremely thin semiconducting layer based on Ag, In and S. Such 

extremely thin absorber with Ag NPs can be applied in a solar cell with the structure: 

Glass/TCO contact/metal oxide/extremely thin absorber with Ag NPs/hole conductor/metal 
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contact [13]. Advantages of extremely thin In2S3 precursor layers are (i) that they can be 

deposited by the spray ion layer gas reaction (spray-ILGAR® [21, 22]) technique onto 

practically any surface and (ii) that silver can be easily incorporated by diffusion from a 

sprayed trimethylphosphine (hexafluoroacetylacetonato) silver (Ag(hfacac)(PMe3)) ethanol 

solution.  

    In this work, the amount of silver deposited onto In2S3 precursor layers was changed 

systematically in order to study the incorporation of silver, phase transitions (The phrase 

“phase transition” in this work refers to the variation of compounds in the precursor layer 

during the deposition of Ag on top.) before reaching saturation of silver in the reacted layer 

and the formation and growth of Ag NPs on top of a semiconducting layer. For this purpose, 

the morphology, the silver to indium ratio, crystalline phases, semiconducting properties in 

terms of transitions energies in relation to charge separation and optical absorption of treated 

layers were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray 

emission (EDX), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), 

X-ray diffraction (XRD), modulated surface photovoltage (SPV) spectroscopy and UV-Vis 

spectroscopy. A scheme has been deduced for phase transitions towards the formation of Ag 

NPs on top of an AgInS2/AgIn5S8 compound layer with an Ag2S interfacial layer. 

2. Experimental details 

    In2S3 precursor layers were deposited onto c-Si, glass and molybdenum (Mo)-coated glass 

substrates by using the ILGAR (ion layer gas reaction) technique [21, 22]. For In2S3 

deposition by ILGAR, a 25 mM precursor solution of indium acetylacetonate (In(acac)3) 

dissolved in ethanol was subsequently sprayed onto the substrate and sulfurized in H2S at 225 

°C (14 spray-sulfurization cycles corresponded to an effective layer thickness of In2S3 of 

about 90 nm).  
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    Silver was deposited onto In2S3 precursor layers by spray chemical vapor deposition 

(spray-CVD) of a Ag(hfacac)(PMe3) (trimethylphosphine (hexafluoroacetylacetonato) silver) 

solution. The concentration of Ag(hfacac)(PMe3) was 10 mM in ethanol. The 

Ag(hfacac)(PMe3) solution was nebulized to form an aerosol which was carried by nitrogen 

gas to the substrate. During the silver deposition, the nitrogen flow rate was 5 liters per 

minute and the substrate temperature was 200 °C. The silver deposition time was adjusted 

between 0.17 and 32 min in order to vary the silver content of the samples over a wide range. 

    The sample morphology was studied by SEM using a field emission gun microscope with 

an in-lens detector. Maps of the distributed elements (Ag, In and S) were obtained by EDX 

analysis of the Ag-L, In-L and S-K signals. Both SEM and EDX analysis were performed on 

a LEO GEMINI 1530 scanning electron microscope equipped with a Thermo Noran X-ray 

detector. The acceleration voltages applied were 5 kV (SEM) and 10 kV (EDX). 

    The crystal phases of the samples were studied by XRD with a Bruker D8 X-ray 

diffractometer operated in the detector scan mode (scanning angle from 10° to 70°) with 

radiation of a Cu K source (wavelength 0.154056 nm). Crystalline silicon and glass substrates 

were used for the SEM and XRD investigation, respectively. 

    The overall molar ratio between Ag and Indium was obtained by LA-ICP-MS for layers 

deposited on c-Si substrates. For each sample, laser ablation was performed in one line scan 

with sufficiently high laser power to reach the c-Si surface (CETAC LSX213 laser system, 

213 nm laser light frequency, 4 mJ/pulse, 20 Hz pulse frequency, spot size 200 µm, 200 µm/s 

scan speed). The Ag/In ratio was calibrated using a reference material (NIST612, containing 

23 ppm Ag and 38 ppm In) [23]. The indium signal was constant for all samples within a 

standard deviation of about 2.4%, indicating a layer of In2S3 with homogeneous thickness. 
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    Charge separation and electronic transitions were investigated by SPV in the fixed 

capacitor arrangement [24]. A halogen lamp with a quartz prism monochromator was used for 

illumination. The modulation frequency was 8 Hz. The SPV signals were detected with a high 

impedance buffer and a double phase lock-in amplifier (EG&G 7260 DSP). SPV 

measurements were performed at photon energies in the spectral range between 0.5 eV and 

4.5 eV. For SPV measurements, Mo-coated glass substrates were used. 

    Optical properties were investigated by measuring transmission and reflection spectra with 

a Lambda 950 spectrophotometer. The measurements were carried out with an integrating 

sphere. Absorption spectra were determined by subtracting transmission and reflection from 

100%. For optical measurements, glass substrates were used. 

 

3. Results and discussion 

3.1 Morphology, composition and crystal phase analysis.  

    Figure 1 shows SEM micrographs of the sample surfaces before (a) and after deposition of 

silver (b-f) (for low magnification SEM micrographs of the same samples, see Supporting 

Information). Figure 1 (a) shows a top view of an In2S3 layer deposited on c-Si. The In2S3 

layers were relatively rough with sizes of agglomerates in the order of 50-100 nm. After 

deposition of silver for 0.5 min (b), the layer became more homogeneous and the originally 

very small grains could not be distinguished any more. After silver deposition for 4 min, the 

sample surface became even more homogeneous but small dots with bright contrast and 

diameters in the order of 10 nm appeared (c). The diameter and the density of these dots 

increased after silver deposition for 8 min (d). Silver deposition for 16 min (e and f) resulted 

in a very smooth layer with a thickness of the order of 90 nm (f) covered by particles with 

bright contrast (e) and a size of about 100-200 nm. 
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    The sample with silver deposited for 16 min has been analyzed by EDX mapping as shown 

in Figure 2. The intensity of silver signals correlated very well with the appearance of 

nanoparticles with bright contrast. In contrast, the intensities of the indium and sulfur signals 

did not correlate with these nanoparticles. Therefore, the nanoparticles consisted of silver and 

were located on top of the homogeneous In2S3 precursor layer. 

    The area covered by the Ag NPs has been extracted by Image J software from SEM images 

with an area of 1.50×1.04 µm². The Image J software was used which makes use of contrast 

discrimination. The average diameter is obtained from the diameter of each Ag NP. The 

diameter of each Ag NP is calculated from its coverage area using the equation—A=π(d⁄2)², 

among which A and d are the coverage area and the diameter of the Ag NP, respectively. This 

calculation presumes a spherical shape of the nanoparticles. The very good and comparable 

contrast of silver nanoparticles in all the images allowed for precise measurements, the results 

of them are demonstrated in Figure 3(a). 

    From the SEM images, Ag NPs were first observed after 4 min of Ag deposition. With 

increasing the Ag deposition time to 16 min, the coverage and average diameter of Ag NPs 

were increased from 0.53% and 9.5 nm (4 min sample) to 36.4% and 79 nm (16 min sample), 

respectively. For the sample with 32 min deposition of Ag, the coverage of Ag NPs increased 

to 64%, but because many of the Ag NPs are connected, it is hard and pointless to distinguish 

every particle as well as calculate the average diameter. The numbers of Ag NPs were 76, 204 

and 78 on the defined area for Ag deposition for 4, 8 and 16 min, respectively. As a result, Ag 

NPs can be deposited onto transformed In2S3 precursor layers whereas the size of Ag NPs can 

be controlled between ten(s) and hundred(s) of nm by varying the deposition time. This opens 

the opportunity to incorporate plasmonic Ag NPs into systems with transformed In2S3 

precursor layers. Using the same spray-CVD approach, Ag NPs can also be grown on c-Si 

substrates. Compared to the physical method used to incorporate Ag plasmonic films in a-
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Si:H solar cells [25], the spray-CVD used in this work has the advantages that it allows good 

control over particle size and density of Ag NPs; furthermore, it is a one step, low temperature 

process. Disadvantages of spray-CVD for Ag NPs preparation as presented in this work are 

the requirement of nitrogen as carrier gas for the reaction and so far a limitation to Ag NPs 

smaller than 100 nm in diameter. 

    The dependence of the overall molar Ag/In ratio on the deposition time of the silver 

precursor is presented in Figure 3(b). For a constant deposition rate of silver, the overall molar 

Ag/In ratio would depend linearly on the deposition time. However, the slope of the 

dependence of the overall molar Ag/In ratio on the deposition time decreased strongly 

between 1 and 4 min and between 4 and 8 min. The reduction of the deposition rate follows 

from the smoothening of the layer due to phase transitions. On the other hand, the slope of the 

dependence of the overall molar Ag/In ratio on the deposition time increased between 8 and 

16 min due to an increase of the surface area by nucleating and growing of Ag NPs. Finally, 

the slope of the dependence of the overall molar Ag/In ratio on the deposition time decreased 

between 16 and 32 min due to the onset of forming a compact silver layer. 

    All the data mentioned above, including coverage of Ag NPs, average of diameter of Ag 

NPs, density of Ag NPs and silver to indium overall molar ratio are summarized in Table 1. 

    Obviously, the introduction of silver into In2S3 precursor layers causes strong changes in 

the stoichiometry and related phase transitions are expected. Figure 4 gives XRD patterns for 

an In2S3 layer and for samples after silver deposition for 0.5, 8, 16 and 32 min. Characteristic 

peaks of -In2S3 (JCPDS Files No.: 25-0390), AgIn5S8 (JCPDS Files No.: 25-1329), 

orthorhombic AgInS2 (JCPDS Files No.: 25-1328), Ag (JCPDS Files No.: 04-0783) and Ag2S 

(JCPDS Files No.: 02-0998) are marked in the figure. Only peaks of -In2S3 were detected for 

the precursor layer and for the sample after deposition of Ag for 0.5 min. Peaks of both -
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In2S3 and AgIn5S8 were observed for the sample after Ag deposition for 4 min. The peaks of 

-In2S3 disappeared and peaks of AgIn5S8 appeared on the sample after Ag deposition for 8 

min. Interestingly, XRD peaks of Ag were not observed on samples after deposition of Ag for 

4 and 8 min despite the fact that Ag NPs appeared already in the SEM images. This shows the 

limited sensitivity of XRD. Peaks of AgIn5S8, orthorhombic AgInS2, Ag and Ag2S were found 

for the samples after silver deposition for 16 and 32 min. With the analysis of XRD, it can be 

confirmed that the obtained nanoparticles on top of the layer are indeed pure silver 

nanoparticles. For the sample after silver deposition for 32 min, the XRD peak of silver 

increased by 8 times compared to the sample after silver deposition for 16 min. 

3.2 Surface photovoltage analysis  

Transition energies related to phase transitions as confirmed by the XRD measurements 

could be investigated by a photo-electric method, surface photovoltage (SPV), as it is very 

sensitive on the changes in electronic states participating in charge separation [26]. 

    The sign of the in-phase SPV signals was positive over the whole spectral range for all 

samples (not shown). This means that the direction of modulated charge separation did not 

change. Therefore, the amplitude SPV spectra can be used for the analysis of characteristic 

transition energies. Figure 5 shows the spectra of the SPV amplitude and of the first derivative 

for the In2S3 precursor layer and for the samples after silver deposition for 0.5 and 4 min. The 

onsets of the SPV spectra shifted to lower photon energy with increasing time of silver 

deposition. Additionally, shoulders in the increasing part of the SPV spectra could be 

distinguished, for example, for the sample with a silver deposition time of 4 min. The 

shoulders appeared as local maxima in the spectra of the first derivative. Characteristic 

transition energies can be defined by the peak positions in the spectra of the first derivative 

(energy of derivative peak analysis: Edpa). The values of Edpa were found from fitting of the 

first derivative of the modulated SPV amplitude spectra in the part of increasing signals with a 
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minimum number of Gaussians. The first derivatives for the samples shown in Figure 5 were 

fitted with 1, 2 and 3 Gaussians, respectively, whereas exponential tails at the lower photon 

energies were not taken into account. Figure 6 gives examples for the derivative peak analysis 

by fitting with two and three Gaussians for the SPV amplitude spectra of the samples after Ag 

deposition for 0.5 and 4 min, respectively. 

    The peak positions found by the derivative peak analysis can be compared with the optical 

band gaps of pure phases. For example, the value of Edpa was 2.1 eV for the untreated 

precursor layer which corresponded well to the band gap of -In2S3 [26]. However, transitions 

related to defect states below the band gap can give a value for Edpa as well. Therefore, a 

dependence of the values of Edpa on the silver deposition time does not give direct information 

about phase transitions. One can even state that the dependence of the values of Edpa on the 

silver deposition time gives very sensitively information about the formation of defect bands 

before phase transitions start. 

    Figure 7 summarizes the phase analysis (XRD and SEM) and the first derivative peak 

analysis (SPV) as a function of the silver deposition time. The -In2S3 layer showed one peak 

at 2.1 eV corresponding to the band gap of -In2S3. Two peaks at 2.2 and 1.96 eV can be 

identified after Ag deposition for 0.17 min whereas no new phases were observed yet in SEM 

or XRD. The two peaks shifted to 2.36 and 1.92 eV, respectively, after Ag deposition for 0.5 

min. A third peak had to be introduced for the SPV fitting analysis of the 1 min sample. The 

three peaks were at 2.34, 1.85 and 1.4 eV for the sample after Ag deposition for 1 min. The 

positive part of the first derivative of the 4 min sample could be fitted with three Gaussians 

peaked at 1.9, 1.58 and 1.34 eV. The peak at the low energy shifted to 1.17, 1.18 and 1.0 eV 

for the samples after Ag deposition for 8, 16 and 32 min, respectively, whereas the peak at 

around 1.6 eV remained practically constant. 
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    The AgIn5S8 and Ag phases appeared for Ag deposition times between 1 and 4 min from 

XRD and SEM, respectively, which correlated with the disappearance of the peak at around 

2.3 eV and the appearance of the intermediate peak at around 1.6 eV. The appearance of the 

Ag2S phase correlated with the shift of the low energy peak towards 1 eV. As remark, the 

band gap of the Ag2S phase ranges between 0.9 and 1.1 eV [14, 15]. The peak between 1.8 

and 1.9 eV can be related to a defect band which could be converted into the band gap of 

AgIn5S8 (between 1.7 and 1.8 eV [27, 28]) and/or of orthorhombic AgInS2 (band gap around 

1.96 eV [16, 17]). As remark, the peak between 1.8 and 1.9 eV disappeared in the spectrum of 

the first derivative due to the decrease of the SPV amplitude in this spectral range (change of 

the charge separation mechanism). In this context, it has to be mentioned that the peak around 

1.6 eV is probably not related to the band gap of a given phase but to a defect band.  

3.3 Optical analysis 

    Ag NPs can lead to plasmonic absorption enhancement based on different mechanisms, like 

high-angle scattering, near-field enhancement and coupling into wave-guide modes [4]. 

Depending on the different mechanisms, the optimum size and density of Ag NPs vary 

significantly [6, 9, 29, 30]. For testing properties of semiconductor layers, SPV is a powerful 

tool. However, it is not able to make a clear statement about the optical properties of the Ag 

NPs from the SPV spectra. Therefore, optical characterization of the layer system with 

integration of Ag NPs was performed by UV-Vis spectroscopy. To investigate whether there 

is a plasmonic response of Ag NPs formed on the precursor layer, the absorption property of 

the In2S3 precursor layer was compared to the reacted layer with Ag NPs on top. The 

absorption spectra for the In2S3 precursor layer and for the layer after deposition of Ag for 16 

min are shown in Figure 8. For the absorption spectra of the latter, there is an obvious 

absorption peak at 380 nm which is related to the absorption peak of Ag NPs [31], and for 

longer wavelengths, the absorption is higher than for the In2S3 precursor layer. This shows 
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clearly that the deposition of Ag NPs onto In2S3 precursor layer caused an enhanced 

absorption. For the samples with deposition of Ag for shorter times, before nucleation of Ag 

nanoparticles, no signature of plasmonic absorption peaks was observed (up to the 8 min 

sample). For the 32 min sample, the signature of the plasmonic peak remained and broadened. 

As AgInS2 may be used as an absorber material in solar cells with extremely thin absorber, 

such absorption enhancement would be important for improving the solar energy conversion 

efficiency in such kind of solar cells. UV-Vis measurements cannot distinguish between 

(parasitic) absorption in the Ag nanoparticles and beneficial absorption enhancement in the 

absorber layer. For this purpose electrical measurements on the completed devices will need 

to be performed. 

3.4 Scheme of phase transitions during silver deposition onto In2S3 precursor layers 

Finally, based on the analysis of SEM, ICP, XRD and SPV results, the following reactions 

during the deposition of Ag onto an In2S3 precursor layer were summarized in a scheme 

which is shown in Figure 9. At the first step of deposition, silver penetrated into the In2S3 

precursor layer and a silver doped In2S3:Ag layer was formed and surface planarization 

started. During this process, deep defect bands being almost close to transitions related to 

AgIn5S8 were developed.  

    With increasing deposition time of silver, the AgIn5S8 phase appeared and a composite of 

In2S3:Ag and AgIn5S8 started to develop. The nucleation of Ag NPs started on top of saturated 

AgIn5S8. In the following, In2S3:Ag disappeared and a composite of AgIn5S8 and the 

orthorhombic phase of AgInS2 appeared. The nucleation and the growth of Ag NPs continued 

and the Ag2S phase started to form at the interface between Ag NPs and the AgIn5S8 and/or 

AgInS2. The formation of the Ag2S phase could be explained by reaction between Ag NPs 

and AgInS2.  
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    Nucleated Ag NPs grew larger with increasing deposition time so that agglomeration of 

neighboring Ag NPs set in. At the last step, neighboring Ag NPs merged with each other and 

formed irregular islands of silver, i.e. isolated Ag NPs disappeared.  

    Finally a question which is still under investigation must be pointed out. The formation of 

binary and ternary Ag compounds is explained by reaction of metallic silver. However, if this 

is true and not by reaction of Ag+ from Ag(hfacac)(PMe3) before pyrolysis, which is not very 

likely, Ag must be oxidized from oxidation state 0 to +1, necessarily a redox reaction must 

take place, i.e. another species must be reduced. But so far, no indication of a reduced species 

in the films was detected by XRD.  

4. Conclusion and outlook 

    In this work, phase transitions during the deposition of Ag nanoparticles onto In2S3 

precursor layers were investigated. Using spray chemical vapor deposition, Ag nanoparticles 

with different sizes and densities were deposited on top of the In2S3 precursor layers by a 

simple control of the deposition time. The In2S3 precursor layers were detected transforming 

into AgIn5S8, orthorhombic AgInS2 and Ag2S phases with increasing the deposition time. 

After the phase transitions, the layer still shows semiconducting properties, which allows 

further use as absorber in solar cells. Plasmonic absorption enhancement has been 

demonstrated for the layer after deposition of Ag for 16 min. The phase transition approach 

for the deposition of silver nanoparticles on semiconducting layers is promising for the 

application of plasmonics on solar cells with extremely thin absorber, as it opens the 

opportunity not only to tune the size or density of Ag NPs but can also help to solve the 

problem of stable integration of Ag NPs on top of sulfide absorber layers. It is planned to 

integrate related layer systems with Ag NPs into solar cells with extremely thin absorber and 

to investigate the plasmonic enhancement of the light trapping and its influence on the solar 

energy conversion efficiency.  
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Table 1 

 

Deposition  
time of Ag (min) 

Coverage  
of Ag NPs (%) 

Average diameter  
of Ag NPs (nm) 

Density of  
Ag NPs  

Ag/In  
molar ratio 

0 -- -- 0 0.00 
0.17 -- -- 0 0.12 
0.5 -- -- 0 0.24 
1 -- -- 0 0.32 
4 0.53 9.5 76 0.68 
8 5.2 18 204 0.82 
16 36.4 79 78 2.05 
32 64 -- -- 2.85 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Figure 7 
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Figure 8 
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Figure 9 
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CAPTIONS  

 

Figure 1. Top (a-e) and side (f, tilt angle 30 °) views of c-Si coated with an In2S3 precursor 

layer after deposition of Ag from an Ag(hfacac)(PMe3) source for deposition times of 0 min 

(a), 0.5 min (b), 4 min (c), 8 min (d) and 16 min (e and f). 

Figure 2. Top view (a) and maps of Ag, In and S (b-d, respectively) for the c-Si/In2S3 sample 

after deposition of Ag for 16 min. 

Figure 3. Dependence of the coverage by Ag nanoparticles (circles) and of the average 

diameter of Ag nanoparticles (stars) (a) and of the overall molar ratio between silver and 

indium (b) on the deposition time of Ag. 

Figure 4. X-ray diffraction spectra of the In2S3 precursor layer deposited on glass before and 

after deposition of Ag for 0.5, 4, 8, 16 and 32 min. The symbols mark the peaks for -In2S3 

(open squares), AgIn5S8 (filled triangles), orthorhombic AgInS2 (stars), Ag (circles) and Ag2S 

(open diamonds). 

Figure 5. Spectra of the SPV amplitudes (open symbols) and of the first derivative for the 

increasing part of the SPV amplitudes (filled symbols with lines) for the In2S3 precursor layer 

(circles) and for the layers after deposition of Ag for 0.5 min (stars) and for 4 min (triangles). 

The dashed lines mark the band gap of -In2S3. 

Figure 6.  Fits with Gaussians of the first derivatives of the SPV amplitude spectra in the 

increasing part for layers after deposition of Ag for 0.5 min (a) and for 4 min (b). 

Figure 7. Dependence of phases (a) and of the peak positions obtained from the first 

derivatives of the SPV amplitude spectra in the increasing part (b) on the deposition time of 
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Ag from a Ag(hfacac)(PMe3) source. The arrows mark the band gaps of -In2S3, AgIn5S8, 

orthorhombic AgInS2 and Ag2S. 

Figure 8. Absorption spectra for the In2S3 precursor layer (filled circles) and for the layers 

after deposition of Ag for 16 min (open triangles). 

Figure 9. Schematic for phase transitions during the deposition of Ag from a 

Ag(hfacac)(PMe3) source on an In2S3 precursor layer.  

 

Table 1. Coverage of silver nanoparticles (Ag NPs), average of diameter of Ag NPs, density 

of Ag NPs (in an area of 1.50×1.04 µm²) and silver to indium overall molar ratio dependent 

on the deposition time of Ag from a Ag(hfacac)(PMe3) source. 
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